TRANSFORMER NETWORK FOR
BRAIN GLIOMA
SEGMENTATION IN MRI IMAGES

by Jana Publication & Research



ISSN: 2320-5407

Int. J. Adv. Res. X(X), XX-XX

7
TRANSFORMER NETWORK FOR BRAIN GLIOMA SEGMENTATION IN MRI IMAGES

Manuscript Info

Manuscript History

Received: XxXXXXXXXXXXXXXXX
Final Accepted: XXXXXXXXXXXX

Abstract

Glioma is a type of tumor that originates in the neuroglial cells of the brain or
spinal cord, forming a mass that can press on surrounding tissue and cause
symptoms. To diagnose glioma and to assess the tumor volume, manual

entation of gliomas in MRI images is normally performed. However, it is

Published: XXXXXXXXXXXXXXXX time-consuming and prone to errors due to diagnostic variability among
experts. This study proposes a deep leaming approach using a Transformer
Network to enhance segmentation accuracy and improve diagnostic
Key words:- efficiency. The research utilizes the BraTS 2021 dataset, consisting of 374
KXXXEXX XXX MRI scans with ground truth labels, to train and evaluate the Transformer
Network model. The model incorporates an EfficientNet-B1 bataone for
computational efficiency and is trained with optimal parameters: a learning
rate of O.Wamh size of 5, and 200 epochs. Results indicate that the
Transformer Network achieved a Dice coefficient of 0.921, significantly
outperforming the baseline deep learning segmentation method, which is U-
Net model (0.827), demonstrating superior segmentation accuracy. In
conclusion, the Transformer Network proves more effective and accurate than
traditional methods for brain glioma segmentation. Future research should
focus on expanding datasets and computational resources to further enhance
model performance. This study is expected to contribute to an improved
glioma diagnosis and treatment planning.

Introduction :-

Introduction :-

Glioma is a type of brain tumor that originates in the brain or spinal cord and arises from neuroglial cells, which
support neuronal function by regulatingnlpulses and supplying nutrients (Verkhratsky et al., 2023). Representing
approximately 33% of all brain tumors, gli§¥hs are among the most common and serious forms of central nervous
system malignancies (Molnar et al., 2015). The World Health Organization (WHO) classifies brain tumors into four
grades based on cellular @cteristics. Low-grade tumors (Grades I and II) are typically benign and slow-growing,
while high-grade tumors (Grades 111 and 1V) are more aggressive and malignant, accounting for roughly 80% of all
brain tumor cases.

Magnetic Resonance Imaging (MRI) is a widely utilized tool in the diagnosis and treatment planning of neurological
disorders, including brain tumors (Fuzari et al., 2020). MRI provides high-resolution images across multiple
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anatomical planes—axial, sagittal, and coronal—allowing detailed visualization of brain structures, vascular

systems, and pathological regions (Afshar, Mohammadi & Plataniotis, 2018). Although the use MRI is critically
important in clinical settings, the manual interpretation of these images is often labor-intensive, subject to variability
among radiologists, and prone to diagnostic inaccuracies (Despotovi¢ et al, 2015). As a result, automated
techniques are increasingly adopted to support and enhance diagnostic precision.

Deep learning, a domain within artificial intelligence, has gained prominence in medical imaging for to
automatically extract meaningful features from raw data. In the context of brain tumor analysis, deep leaming
models assist clinicians in diagnosing and delineating tumors from hhy tissues, ultimately improving treatment
planning and patient outcomes (Ahamed et al., 2023). Automated segmentation of brain tumors in MRI scans
remains a complex challenge due to factors such as tumor heterogeneity, variations in image quality, and limited
availability of annotated data. Reliable segmentation methods are crucial to accurately differentiate tumor
boundaries, particularly for treatment planning and monitoring. Traditional models like U-Net have shown strong
performance in brain tumor segmentation and are often considered benchmarks, outperforming or matching other
architectures such as CNNs and Capsule Networks in various studies.

At present, Tlmfurmer-based architectures are rapidly becoming the new standard in medical image segmentation
that achieve better performance than the previous state-of-the-art models. For instance, Liu et al, (2023)
demonstrated superior performance in cardiacaRI segmentation using a Swin Transformer Network, achieving a
Dice coefficient of 92.28%. Transformers, initially developed for natural language processing, have shown
significant potential in vision tasks due to their ability to model long-range dependencies and global contextual
relationships, which becomes the limitation of conventional CNN-based models. The growing success of
Transformers in visual domains has encouraged their adoption in medical imaging, especially given their
adaptability to varying input dimensions and robustness in handling complex structures. In the case of glioma
segmentation, this adaptability and ability to capture spatial context may result in more precise and reliable
segmentation outcomes.

This study explores the effectiveness of a Transformer-based deep learning model, specifically the Segtran
architecture, for glioma segmentation using MRI data. By combining the strengths of attention mechanisms and
neural network-based feature extraction, the stud@glims to enhance segmentation accuracy, reduce diagnostic
variability, and support clinical decision-making. The performance of the Transformer model is benchmarked
against the well-established U-Net architecture to evaluate its potential advantages in brain tumor segmentation
tasks.

Methodology :-

The transformer architecture was first introduced Waswani et al. in 2017. The architecture is based on self-
attention mechanisms, which replaced traditional recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) in sequence-to-sequence tasks. The model can handle long-range dependencies and parallel
processing (Sajun et al., 2023) and has shown good performance especially in natural language processing (NLP)
tasks. Then, these networks are explored in image classification problem which resulted in the use of Vision
Transformer (ViT) in 2020 (Takahashi et al., 2024).

In terms of medical image segmentation problem that requires precise deliueatiumf anatomical structures, the
Transformer network is integrated with CNN based models to achieve superior performance in various image
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medical tasks such as Tr

UNet and Swin-UNet. The integration has allowed long-range d@dencies information
to be captured, while maintaining the local feature extraction capabilities of CNNs (Chen et al., 2024) (Pu et al.,
2024). The methodology used in this study is based on Transformer network.

The Transformer architecture is composed of two main components: the encoder and the decadEach part

comprises of similar components such as layer normalization, masked multi-head attention modules, position-wise

feed-forward networks, and multi-head attention modules. The decoder’s masked multi-head attention mechanism
restricts attention to earlier positions, ensurilmt predictions depend only on previously generated outputs. This
structure enables the Transformer to perform sequence-to-sequence tasks effectively, such as in machine translation
and speech recognition.

Shachua Li et al., (2021) proposed Segtran, a novel framework for medical image segmentation based on Squeeze-
and-Expansion Transformers. In contrast to conventional models like U-Net, Segtran overcomes the constraint of
limited effective receptive fields by incorporating a squeezed attention block for regularization and an expansion
block to capture diverse feature representations. Additionally, it introduces a novel positional encoding strategy to
improve spatial continuity in image processing by using a continuity inductive bias where spatial relationships are
important. This paper utilized Segtran as proposed by Shaohua Li et al., (2021) to investigate its effectiveness in
segmenting the brain glioma in MRT images.

In this mode, a pretrained CNN backbone was used to extract rich visual features from input MRI slices. For 2D
inputs, EfficientNet-B4 was selected due to its balance between performance and computational efficiency. To
retain higher spatial resolution, the initial convolutional stride was reduced. The feature maps obtained from
multiple stages of the backbone provided multi-w representations for downstream processing. To encode spatial
information crucial for image understanding, a learmable sinusoidal positional encoding was added to the CNN-
extracted features. This encoding combined sine and cosine functions with learnable parameters, allowing the model
to adaptively represent spatial continuity and locality, which are vital for segmenting coherent anatomical structures.

The fused visual and positional features were flattened and passed through a stack of Squeeze-and-Expansion
Transfof@pgr layers, the core innovation of the Segtran framework. In this layer, there are two main components
namely Squeezed Attention Block (SAB) and Expanded Attention Block (EAB). The SAB block is used to reduce
computational overhead and mitigate overfitting risks associated with standard attention mechanisms, attention
computations were compressed using a set of learned codebook vectors (inducing points). This created a more
compact attention map that still preserved global contextual relationships. On the other hand, in EAB block, multiple
attention modes were introduced using a mixture-of-experts approach. Each mode processed the features
independently, and the outputs were aggregated using dynamic mode attention. This allowed the model to learn
diverse contextual representations and increased its modeling capacity.

Since high-level features from the CNN backbone were low in spatial resolution, a dual Feature Pyramid Network
(FPN) structure was applied. The input FPN upsampled coarse CNN features before feeding them into the
transformer layers. The output FPN further upsampled the transformer output to enhance spatial granularity before
segmentation. This FPN configuration was bottom-up, preserving semantic richness during upsampling. The final

feature map, now at a higher resolution, was processed by a simple 1x1 convolutional segmentation head, producing

pixel-wise class confidence scores for each segmentation label, including whole tumor (WT) and the background.

i. Dataset

The study uses the BraTS 2021 Glioma brain tumor dataset from the Perelman School of Medicine at the University
of Pennsylvania, updated annually (hup://www.braintumorsegmentation.org/). BraTS is part of a segmentation
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challenge aligned with MICCAL (https://miccai.org/) and focuses on advanced methods Er brain tumor
segmentation in multimodal MRI. The BraTS 2021 dataset includes 374 clinically obtained multiparametric MRI
scans with confirmed diagnoses, comprising T1, T2, FL@, and T1Ce images. Enhanced contrast in Tlce images is
crucial for distinguishing meningiomas from gliomas. T1-weighted images show high-fat content tissues as bright
and CSF as dark, while T2-weighted images show water-filled areas as bright and high-fat content tissues as dark.
FLAIR images highlight extended T2 tissue areas as bright and suppress CSF signals, appearing dark. Figure 1
shows a sample of the dataset of different types of MRI subimages.

Tlce 2 FLAIR

Figure 1. Four Sub-Files Formed (Tlce, T1, T2, and FLAIR)

ii. Training and Testing

During the training phase, the process was conducted over three epochs with a batch size of five, using the standard
AdamW optimization method. AdamW is an optimization algorithm used for training deep learning models, which
helps improve generalization and prevent overfitting by decoupling weight decay (Loshchilov & Hutter, 2019“‘[13
parameter refinement phase is conducted based on the input data model, selecting the best hyperparameters. Early
stopping based on the validation loss was used to prevent overfitting.

iii. Model Evaluation

3
The Dice Similarity Coefficient (DSC) is a commonly used evaluation method in brain tumor segmentation
problems (Kao et al, 2020). The Dice coefficient also serve a general evaluation methed in all BraTS
challenges, with many researchers using it in their work (Isensee et al., 2017; Havaei et al., 2017; Kamnitsas et @
2017; Myronenko et al., 2018). Therefore, the Dice coefficient will be used as the evaluation method in this study to
measure the similarity between the predicted tumor segmentation and the actual tumor segmentation.

The formula for the Dice coefficient is:
_ 2+|AnB|

DSC = ———
lal+8]

oy

15
In this formula, 4 and B are two different sets to be compared. The Dice score gges from 0 to 1, witlg value of 1
indicating a perfect match between the predicted and ground truth labels, and 0 indicating no m'erlap‘llqthere is no
similarity between the twi s, the Dice coefficient will be 0. When the actual ground truth segmentation closely
mhes the predicted one, the Dice coefficient will be equal to 1. The Dice score is calculated for each tumor region
(whole tumor, tumor core, and enhancing core) and averaged to obtain the mean Dice score.
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According to Zhou et al. (2019), the binary cross-entropy loss function is commonly used in image segmentation.

The binary cmss-entmmeE) is calculated by comparing the predicted pixel vector to the actual pixel vector,
where the pixel vector y; represents the ground truth segmentation mask and § represents the predicted segmentation
mask.

LOSSpcr = — X, vilogy (2)

However, imbalanced datasets in terms of class representation can lead to incorrect behavior of the loss function. To
address class irna]ance, the weighted binary cross-entropy (WBCE) loss function is used. This is particularly useful
in cases where the ground truth segmentation mask has many background pixels and vﬁcw tumor regions (Long,
Shelhamer & Darrell, 2015). The LOSSwscr is defined as follows, where w; represents the weights assigned to each

class.
— N -
LOSSwece = — Liza WiYilogy 3)
Based on Dong et al. (201 ¢ basic U-Net model for brain tumor segmentation employs the Dice Loss function,

defined as the inverse of the Dice Coefficient. The Dice Loss is shown in Equation 4 where G and P are two
different sets to be compared.

2x|GNP|

LOSSDSC =1- 1Gl+1P|
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This study utilizes Visual Studio Code with Python for brain glioma segmentation in MRI images. The following
parameters are used:

s math for basic mathematical functions.

*  numpy for scientific computing.

s torch for training neural networks.

e torch.nn for neural network layers.

e torch.nn.Parameter for learnable parameters.

s torch.nn functional for mathematical operations.

s networks.segtran_shared for Segtran model configuration.
e grain_util. batch norm for batch normalization.

s efficienmet.model for efficient models.

e argparse.Namespace for command-line arguments.

Results and Discussion :-

The study ea:loyed the BraTS 2021 dataset, which comprises 374 MRI scans with confirmed brain tuﬁr
annotations, to evaluate the performance of a Transformer-based neural network for glioma segmentation.
dataset was divided into 85% for training and 15% for testing. EfficientNet-B1 was selected as the backbone for its
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computational efficiency and strong feature extraction capabilities. The model architecture consisted of three
convolutional layers followed by three Transformer layers, enabling both local and global feature representation.

Training was conducted using the AdamW optimizer to mitigate overfitting, with an initial learning rate of 01, a
batch size of 5, and a total of 200 epochs. Training performance was monitored using the training loss and the Dice
Similarity Coefficient (DSC) as the primary evaluation metric. Although the model required substantial memory due
to its architecture, it achieved excellent segmentation results, outperforming models trained with fewer epochs. The
configuration demonstrated robust learning and generalization across the dataset. We experimented with different
parameter settings to determine the optimal hyperparameters based on the dataset size, batch size, number of
iterations, and learning rate.

.

i.  Dataset size

Table 1 shows the Dice coefficient values for different dataset sizes used to tramn and test Segtran Transformer
arwcrk and U-Net models. The models were trained with various dataset sizes while keeping parameters like
epochs, learning rate, and batch size constant (150 epochs, learning rate of 0.0001, batch size of 1).

23
Table 1  Comparison of Dice coefficient values for different dataset sizes for Transformer and U-Net networks

Dataset Testing Data Transformer U-Net
100 10 0.904 0.767
200 20 0.864 0.787
300 20 0.823 0.801
320 54 0.829 0.817

Results indicate that larger datasets yield higher Dice coefficients. The dataset was maximized to 374 samples, split
into 320 for tr
interpreting variations and patterns, reducing overfitting, and addressing class imbalance. Larger datasets are used to
enhance model accuracy by (Loshchilov & Hutter, 2019).

ining and 54 for testing. Larger datasets improve model accuracy by providing more data for

ii.  Iteration
The training process consists of several iterations, known as epochs, during which the model learns from the training
data and adjusts parameters to improve its performance (Wang et al. 2019). Table 2 represents the Dice coefficient
values for different numbers of epochs used to train Transformer network and U-Net models.

Table2  Comparison of Dice coefficient values for different iterations for Transformer and U-Net networks

Dataset Training Tteration Transformer  U-Net
Data

320 54 100 0.733 0.643

320 54 150 0.829 0.817

320 54 200 0.856 0.821

320 54 250 0.849 0.758

320 54 300 0.818 0.675
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With the dataset size set to maximum, and both thcgg.ming rate of 0.0001 and batch size of 1 are held constant, the
study found that training for 200 epochs yielded the himst Dice coefficient—0.856 for the Transformer network
and 0.821 for U-Net. Training for 200 epochs enabled the model to learn complex pattemsud extract essential
features necessary for accurate tumor segmentation. However, exceeding this number of epochs may lead to
overfitting, where the model performs well on the training data but poorly on unseen data. Therefore, 200 epochs
were identified as the optimal training duration.

iii. Learning Rate

Table 3 presents the Dice coeffldient values obtained for different numbers of training epochs using the Transformer
network amm-NEt models. To ensure a fair comparison, other parameters—namely the dataset size (set to its
maximum), learning rate (0.0001), and batch size (1)—were kept constant. The nng process involves multiple
epochs during which the model iteratively learns and updates its parameters (Wang et al., 2019).

Table3 Comparison of Dice coefficient values for different learning rates for Transformer and U-Net networks

Dataset Training Data Learning  Transformer  U-Net
Rate

320 54 0.0001 0.856 0.821

320 54 0.001 0.657 0.616

320 54 0.01 0.007 0.003

320 54 0.1 0.001 0.000

44
The study found that 200 epochs yielded optimal gfmmance, achieving a Dice &fﬁcient of 0.856 for the
Transformer network and 0.821 for U-Net. Training beyond 200 epochs may result in overfitting, where the model
becomes overly specialized to the training data and performs poorly on unseen data (Li et al., 2021). Thus, 200
epochs were identified as the optimal training duration.

iv.  Batch Size

Batch size refers to the number of data samples processed at once before updating model parameters in an iteration
(Wang et al. 2019). Table 4 presents the Dice coefficient values for different batch sizes used with the Transformer
network and U-Net models. To assess model performance across varying batch sizes, Gtherﬁ«uueters%ataset size
(maximum), number of epochs (200), and learning rate (0.0001)—were kept constant. Batch size refers to the
number of data samples processed smlltaneously before the model updates its parameters in each iteration (Wang
et al., 201. The study found that a batch size of 5 yielded the best performance, with the Transformer network
achieving a Dice coefficient of 0.921, outperforming U-Net, which achieved a Dice coefficient of 0.827.

Table 4. Comparison of Dice coefficient values batch size for Transformer and U-Net networks

Dataset Training Data BS Transformer U-Net
320 54 1 0.856 0.821
320 54 2 0.878 0.822
320 54 4 0.880 0.825
320 54 5 0.921 0.827
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v.  Segmentation Performance using Optimum Parameters

nld:r identical training conditions, the Transformer model outperformed U-Net in brain tumor segmentation,
achieving a Dice coefficient of 0.921 cofpared to 0.827 for U-Net (Table 5). Both models utilized EfficientNet-bl
as the backbone, were trained for 200 chs with a batch size of 5, and employed the AdamW optimization
algorithm with a learning rate of 0.0001. The superior performance of the Transformer model can be attributed to its
self-attention mechanism, wﬂ] enables the extraction of global contextual features and long-range dependencies
across the input MRI scans. This capability is particularly beneficial in medical image segmentation, where tumors
may show complex shapes. While U-Net relies heavily on local solutional operations, the Transformer
architecture enhances feature representation by capturing information of different regions of the image. This leads to
more accurate segmentation and better delineation of tumor boundaries. These findings &gcst that the Transformer
network is more effective at capturing critical spatial and contextual information, making it a more sutable
architecture for brain tumor segmentation tasks.

Table 5. Comparison of Transformer and U-Net networks on testing dataset

Parameters Transformer U-Net
Backbone EfficientNet-bl EfficientNet-bl
Layers 3 3
Opitimization AdamW AdamW

Batch Size 5 5

Learning Rate 0.0001 0.0001

No of Iteration 200 200

Dice Coefficient 0.921 0.827
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Figure 2 imratcs the training loss curve during gtraining process of the Transformer model. Training loss
represents the error between the model's predictions and the actual values in the training dataset. Ideally, the loss
should decrease progressively with each iteration or epoch, indicating that the model is improving its predictive
accuracy. A consistent downward trend in the graph shows effective learning and model optimization. As shown in
the figure, the training process achieves stable convergence, suggesting that the model is learning efficiently and
avoiding issue of overfitting.

Training Loss
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— loss
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03
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00
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Step

Figure 2 Training Loss

49
Figure 3 shows the gss-entmpy loss graph. Cross-entropy loss measures %difference between the predicted
distribution by the model and the actual distribution in the data. In brain tumor segmentation, it evaluates how well
the model predicts the correct pixels for each class (e.g., tumor vs. non-tumor). The graph displays a decrease in
cross-entropy loss with each training iteration. A consistent decrease indicates that the model is improving in
recognizing patterns and making accurate predictions.

Total CE Loss
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Figure 3 Cross Entropy Loss
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10
Finally, Figure 4 shows the Dice loss graph. This grapl@iplays changes in %s based on the Dice coefficient during
the training process. The Dice coefficient measures similarity n:twccn two data sets, mn this case, between the
model's predicted segmentation and the actual segmentation. Dice loss is the inversém' the Dice coefficient,
meaning lower loss indicates more accurate segmentation. A consistent decrease in Dice loss shows that the model

is improving in tumor segmentation.

Total Dice Loss

07 = Total Dice Loss

06

05

04

03

Total Dice Loss

0.2
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0 5 S0 75 100 125 150 175 200
Step

Figure 4 Total Dice Loss

Conclusion :-

7
In conclusion, this study evaluated the effectiveness of Segtran, a transformer-based neural lawork for brain glioma
segmentation using the BraTS MRI dataset and benchmarked its performance against the widely used U-Net
architecture. The model demonstrated superior segmentation performance urm optimal conditions, including an
EfficientNet-B1 backbone, three transformer layers, the AdamW optilﬂm‘, a batch size of 5, a learning rate of
0.0001, and 200 training epochs. The Transformer model achieved a Dice coefficient of 0.921, significantly
outperforming U-Net, which achieved 0.827. These results highlight the Tl‘Ul‘ll]El‘ Network’s capability to
deliver more accurate and efficient tumor segmentation, supporting its potential as a valuable tool in medical image
analysis.
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