Cyclotomic Cosets in The Ring R_(4p^n q^m)=GF(l) [x]/(x^(4p^n q^m)-1)

Submission date: 01-Jul-2025 01:56PM (UTC+0700) Submission ID: 2690326558 File name: IJAR-52557.docx (36.86K) Word count: 774 Character count: 4310 Cyclotomic Cosets in The Ring $R_{4p^nq^m} = GF(l)[x]/(x^{4p^nq^m} - 1)$

ABSTRACT

1

We consider the ring $R_{4p^nq^m} = GF(l)[x]/(x^{4p^nq^m} - 1)$ where p, q, l are distinct odd primes, l is a primitive root both modulo p^n and q^m such that $gcd(\varphi(p^n), \varphi(q^m)) = d$. Explicit expressions for all the $4(m \times n \times d + m + n + 1)$ Cyclotomic Cosets are obtained, p does not divide q - 1.

Keywords: Cyclotomic coset, generating polynomials, and minimal cyclic codes.

MSC: Primary 11T30; Secondary 94 B15, 11T 71.

1. INTRODUCTION

Let GF(l) be a field of odd prime order l.Let $z \ge 1$ be an integer with gcd(l, z) = 1.Let $R_z = d_2(l)[x]/(x^z - 1)$. The minimal cyclic codes of length z over GF(l) are ideals of the ring R_z . G.K. Baks 1 and Madhu Raka [4] obtained 3n + 2 primitive idempotents in R_z for $z = p^n q$ where p, q, l are distinct odd primes, l is a primitive root both modulo p and q and $gcd(q(p^n), q(q)) = 2$. Amita Sahni and P.T. Sehgal [5] extended the results of G.K. Bakshi and Mathu Raka and obtained (d + 1)n + 2primitive idempotents in R_z for $z = p^n q$ where p, q, l are distinct odd primes, l is a primitive root both modulo p^n and q and $gcd(q(p^n), q(q)) = d$. When d = 2 In [5], we obtain all the results of [4]. So [4] becomes a special case of [5].

In this paper, we consider the case when $Z=4p^nq^m$ where p,q,l are disject odd primes, *l* is a primitive root both modulo p^n and q^m .Explicit expressions for all the $4(m \times n \times d + m + n + 1)$ Cyclotomic Cosets are obtained. $gcd(\varphi(p^n),\varphi(q^m)) = d, p$ does not divide q - 1.. Here, we extend the results of Amita Sahni and P.T. Sehgal [5].

REMARK2.1For $0 \le s \le z - 1$, let $C_s = \{s, sl, sl^2, \dots, sl^{t_s-1}\}$, where t_s is the least positive integer such that $sl^{t_s} \equiv s \pmod{p^n q^m}$ be the cyclomic coset containing s.

LEMMA2.1. Let p,q,l be distinct odd primes, $n \ge 1$ an integer, $o(l)_{2p^{n-j}} = \varphi(2p^{n-j})$, $o(l)_{2q^{m-k}} = \varphi(2q^{m-k})$ and $gcd(\varphi(2p^{n-j}), \varphi(2q^{m-k})) = d$ then $o(l)_{4p^{n-j}q^{m-k}} = \frac{\varphi(4p^{n-j}q^{m-k})}{d}$, for all $0 \le j \le n-1$ and $0 \le k \le m-1$.

Proof.Let $o(l)_{4p^{n-j}q^{m-k}} = t$, $0 \le j \le n - 1$ and $0 \le k \le m - 1$. Then $l^t \equiv 1 \mod 4p^{n-j}q^{m-k}$ But p^{n-j} and q are distinct odd primes. Hence $l^t \equiv 1 \mod 2p^{n-j}$ and $l^t \equiv 1 \mod 2q^{m-k}$. Since $o(l)_{2p^{n-j}} = \varphi(2p^{n-j})$ and $o(l)_{2q^{m-k}} = \varphi(2q^{m-k})$ therefore, $\varphi(2p^{n-j})$ and $\varphi(2q^{m-k})$ divides t. Then $lcm(\varphi(2p^{n-j}), \varphi(2q^{m-k})) = \frac{\varphi(4p^{n-j}q^{m-k})}{d}$ divides t. On the other hand, since $o(l)_{2q^{m-k}} = \varphi(2q^{m-k})$, therefore, $l^{\varphi(2q^{m-k})} \equiv 1 \mod 2q^{m-k}$ hence $l^{\varphi(\frac{4p^{n-j}q^{m-k}}{d})} \equiv 1 \mod 4q^{m-k}$. Similarly, $l^{\varphi(\frac{4p^{n-j}q^{m-k}}{d})} \equiv 1 \mod 2p^{n-j}$. As p and q are distinct primes, we get $l^{\varphi(\frac{4p^{n-j}q^{m-k}}{d})} \equiv 1$

 $1 \mod 4p^{n-j}q^{m-k}$

Hence, $t = o(l)_{4p^{n-j}q^{m-k}}$ divides $\frac{\varphi(4p^{n-j}q^{m-k})}{d}$ and we get that $t = \frac{\varphi(4p^{n-j}q^{m-k})}{d}$.

LEMMA2.2. For given *p*, *q*, *l* distinct odd primes such that $gcd(\varphi(p),\varphi(q))=d$, and *l* is a primitive root mod(*p*) as well as *q*, then there always exists a fixed integer a satisfying gcd(a, pq)=1, 1 < a < pq, such that a is a primitive root mod(*p*) and the ord **a** of a mod *q* is $\varphi(q)$. Also a, a^2 , a^3 ,, a^{d-1} does not belong to the set S={1, *l*, *l*², ..., $l^{\frac{\varphi(q)}{d}-1}$. Further, for this fixed integer **a** and for $0 \le j \le n - 1$, $0 \le k \le m - 1$ the set {1, *l*, *l*², ..., $l^{\frac{\varphi(q)n-1}{d}m-k}_{-1}$, **a**, *al*, ..., $a^{l} \frac{\varphi(q)n^{n-1}q^{m-k}}{d}^{-1}$, a^2 , a^2l , a^2l^2 , ..., $a^2l^{\frac{\varphi(q)n}{d}m-k}_{-1}^{-1}$, a^{d-1} , a^{d-1} , l, ..., a^{d-1} $l^{\frac{\varphi(q)n-1}{d}m-k}_{-1}^{-1}$ forms a reduced residue system modulo $4p^{n-j}q^{m-k}$.

Proof.Trivial

THEOREM2.1. If $\eta = 4p^nq^m$ (m and $n \ge 1$), Then the $4(m \times n \times d + m + n + 1)$ cyclotomic cosets modulo $4p^nq^m$ are given by

(i) C₀= {0}, (*ii*) $C_{p^nq^m} = \{p^nq^m\}$ (*iii*) $C_{2p^nq^m} = \{2p^nq^m\}$ (*iv*) $C_{3p^nq^m} = \{3p^nq^m\}$ (v) for $0 \le k \le m-1$

$$\begin{split} & C_{p^n} = \{p^n, \, p^n l, \, \dots, \, _p{}^n \, l^{\varphi(q^{m-k})-1}\} \ , \ (vi) C_{2p^n} = \{2p^n, \, 2p^n l, \, \dots, 2_{p^n} \, l^{\varphi(q^{m-k})-1}\} \quad , \ (vii) C_{3p^n} = \{3p^n, \, 3p^n l, \, \dots, 3_{p^n} \, l^{\varphi(q^{m-k})-1}\} \quad , \ (vii) C_{4p^n} = \{4p^n, \, 4p^n l, \, \dots, 4_{p^n} \, l^{\varphi(q^{m-k})-1}\} \quad \text{ and for } 0 \leq j \leq n-1, \end{split}$$

 $(ix)C_{q^{m}} = \{q^{m}, q^{m}l, \dots, q^{m}l^{\varphi(p^{n-j})-1}\} (x)C_{2q^{m}} = \{2q^{m}, 2q^{m}l, \dots, 2q^{m}l^{\varphi(p^{n-j})-1}\}$

 $(\mathsf{xi})C_{3q^m} = \{3q^m, 3q^ml, \dots, 3_q^{=}l^{\varphi(p^{n-j})-1}\} (\mathsf{xii})C_{4q^m} = \{4q^m, 4q^ml, \dots, 4_q^{m}l^{\varphi(p^{n-j})-1}\}$

For $0 \le j \le n-1$, and $0 \le k$, $\le m-1$ for $0 \le w \le d-1$,

 $\begin{array}{ll} ({\rm xiii}) C_{a^w p^j q^k} = & a^w p^j q^k, a^w p^j q^k l, \dots, a^w p^j q^k & l^{\frac{\varphi(4p^{n-j}q^{m-k})}{d}-1} \\ 2a^w p^j q^k, 2a^w p^j q^k l, \dots, 2a^w p^j q^k & l^{\frac{\varphi(4p^{n-j}q^{m-k})}{d}-1} \end{pmatrix}, (xv) \ C_{3a^w p^j q^k} = & \{ 3p^j q^k, 2a^w p^j q^k l, \dots, 3a^w p^j q^k \\ l^{\frac{\varphi(4p^{n-j}q^{m-k})}{d}-1} \end{pmatrix}, (xvi) \ C_{4a^w p^j q^k} = & \{ 4a^w p^j q^k, 4a^w p^j q^k l, \dots, 4a^w p^j q^k \ l^{\frac{\varphi(4p^{n-j}q^{m-k})}{d}-1} \} & \text{where the number a is given by Lemma 2.2.} \end{array}$

Proof: Trivial as Lemma 2.2.

3. REFERENCES

[1] S.K.Arora, M.Pruthi, "Minimal Cyclic Codes of prime power length", Finite Fields Appl.3 (1997)99-113.

[2] S.K. Arora, M. Pruthi, "Minimal Cyclic Codes of length 2pⁿ" Finite Fields Appl. 5 (1999) 177-187.

[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, "Cyclotomic Numbers and Primitive idempotents in the ring GF (\hbar [x]/<x p^n - 1>", Finite Fields Appl. 10 (2004) 653-673.

2	
2	

[4] G.K.Bakshi, Madhu Raka, "Minimal cyclic codes of length pⁿq", Finite Fields Appl. 9 (2003) 432-448.

[5] A.Sahni and P.T.Sehgal, "Minimal Cyclic Codes of length pnq," Finite Fields

Appl. 18 (2012) 1017-1036.

[6] G.K.Bakshi, Madhu Raka, "Idempotent Generators of Irreducible Cyclic Codes" Ramanujan Math Soc, Mysore (2008) 13-18.

[7] Ranjeet Singh, M.Pruthi, "Primitive Idempotents of Irreducible Quadratic Residue Cyclic Codes of Length pⁿq^m" International Journal of Algebra vol.5 (2011) 285-294.

[8] F.J. Mac Williams & N.J.A. Sloane; The Theory of Error-Correcting Codes, Bell

Laboratories, Murray Hill NJ 07974 U.S.A.

[9] Vera Pless, "Introduction to the Theory of Error-Correcting Codes", Wiley-

Intersci. Ser. Discrete Math. Optim., (1998).

3

Cyclotomic Cosets in The Ring R_(4p^n q^m)=GF(l)[x]/(x^(4p^n q^m)-1)

ORIGINALITY REPORT

	8%	25% INTERNET SOURCES	22% PUBLICATIONS	0% STUDENT PAPERS	
PRIMAR	Y SOURCES				
1	CORE.aC.			10	
2	ijmttjou Internet Sour	<u> </u>		Ç	
3	m.moan Internet Sour				
4	WWW.M- Internet Sourc	hikari.com		2	
5	"Minima	mita, and Poon Il cyclic codes of ir Applications,	length", Fini	-	
6	Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. "The weight distributions of some irreducible cyclic codes of length \$p^n\$ and \$2p^n\$", Advances in Mathematics of Communications, 2015 Publication				
7		S. Rani, P. Kumar, I. Singh. "Minimal cyclic codes of length 2p^n", International Journal of Algebra, 2013 Publication			

Exclude quotes On

Exclude bibliography On