

1

 1

A review and comparative study on task scheduling in group mutual 2

exclusion algorithms to solve critical section problem based on cloud 3

computing 4

Abstract 5

In large distributed systems which are based on cloud computing, the resources are shared to the 6

clients. There must be some effective task scheduling method which efficiently use the different 7

resources in cloud computing. In most of the algorithms which are based on group mutual 8

exclusion , First come First serve scheduling method is used. But some others scheduling method 9

are also used. These are round robin ,priority scheduling and Johnson sequencing task scheduling 10

and priority based job scheduling. All these are having some advantaged and disadvantages 11

considering the different factors such as SLA , QoS and fault tolerance. 12

In this paper , we present a review and comparative study of different scheduling algorithms 13

which best suits for cloud computing. 14

Keywords: Critical section ,Scheduling methods , Cloud computing, Quality of Service, Group 15

mutual exclusion. 16

1.0 Introduction 17

Cloud computing model provide on-demand network access to shared resources[1]. The services 18

of cloud computing are hosted on a series of virtual machines running over the physical 19

machines. The property of cloud elasticity must be fulfilled. The cloud elasticity is the ability to 20

provide the cloud resources to different processes dynamically. The needs of customers for cloud 21

services are shaped by various aspects, including deadlines, budgetary factors, payment rates, 22

initiation times, duration of execution, and the required quantity of virtual machines. Effective 23

cloud computing involves handling several applications simultaneously and efficiently 24

distributing a range of resources. Resource management systems are essential for distributing 25

resources among different applications, reclaiming resources from finished tasks, and enhancing 26

their deployment to satisfy demand. [2]. Cloud service providers (CSPs) carefully implement 27

resource management techniques, as resources like RAM, memory, processors, I/O devices, 28

extra data centers. As a result, a pay-per-use model is used to provide users with designated 29

amounts of resources, helping to avoid both underutilization and overutilization of resources. To 30

enhance resource utilization and system performance, cloud computing requires the use of 31

effective scheduling strategies. [3]. Cloud service providers aim to ensure effortless access to 32

proficient cooperatives that can support their services and improve the overall cloud 33

infrastructure. Scheduling is aimed to optimize the delivery of cloud services, taking into account 34

the complexities of resource distribution, application deployment, and the fluctuating nature of 35

2

user requirements. Cloud computing has transformed how customers engage with different cloud 36

tiers, enabling them to implement applications. [4]. A crucial component of this system is the 37

cloud broker, which serves as a platform to gather user data, analyze it, and communicate with 38

Cloud Service Providers (CSPs) on behalf of clients while also providing billing solutions. The 39

cloud broker‟s ability to integrate information can be effortlessly incorporated into any cloud 40

networking, allowing users to oversee the execution times of their requests, monitor resource 41

usage, and evaluate waiting times. Distributed computing has developed into a virtualized model 42

where applications run transparently, despite the complexities of the cloud infrastructure. [5]. It 43

provides flexible resource allocation and a strong platform to tackle multiple issues, such as 44

effective request handling within a pay-as-you-go framework. [6]. Its dependability, ability to 45

scale, and affordability, cloud computing has become extremely popular in addressing a variety 46

of computational issues. [7]. In cloud computing, services are delivered to clients based on a 47

shared understanding between the client and the Cloud Service Provider (CSP). These services 48

are carried out through a series of tasks, leading to the idea of re-serving, where tasks may be 49

redistributed for maximum efficiency. By tackling challenges such as delays in processing 50

clinical requests and optimizing processor and resource use, the scheduling aims to provide 51

valuable insights for advancing cloud computing practices, resulting in better service quality and 52

increased customer satisfaction. Task scheduling in cloud computing is a complex computational 53

challenge known as NP-Complete [8]. The goal of task scheduling is to optimize certain 54

parameters like resource utilization, and power consumption by establishing the sequence in 55

which tasks are performed on virtual machines. Companies that specialize in cloud services 56

utilize various types of machines in their data centers to deliver timely services. 57

.Objective of the study: 58

In this paper, we have presented a comparative study of various task scheduling algorithms in 59

the context of cloud computing. The different algorithms used for task scheduling are First-60

Come-First-Serve (FCFS), Round Robin, and Priority Scheduling . 61

2.0 Related Work: 62

The problem of GME was firstly given by Yuh-Jeer Joung[9]. Joung proposed two different 63

algorithm for GME. These are Joung‟s broadcast based algorithm[10] and Joung‟s quorum based 64

algorithm[11]. Joung‟s broadcast based algorithm was an extension of Ricart and Agarwala 65

distributed mutual exclusion algorithm[12]. Joung proposed two algorithms RA1 and RA2. In 66

RA1, the process which wants to enter the critical section , sends a request message to all the 67

processes and upon receiving reply message from all the processes, it enters the critical section. 68

There are some concurrency related issues in RA1, which was later solved by using RA2. In 69

Joung‟s quorum based algorithm , the concept of quorum is used. A process has to obtain 70

permission from all the processes in the quorum to enter critical section. For concurrency, Joung 71

proposed two algorithms , the first one is Maekawa_M, which sends message in parallel and 72

3

second one is serial version called Maekawa_S, which obtains sequential permission from each 73

process in quorum. These two algorithms avoids deadlock . 74

In comparison to classical distributed systems , the working in cloud computing is different 75

because it deals with different characteristics . The different characteristics in cloud computing 76

includes fault-tolerance, QoS, scalability and priority. There are different priority based 77

algorithms which are used for real time systems. These can be categorized as : 78

(i)Static priority algorithms (ii) Dynamic priority algorithms. 79

The priority in static priority algorithms remains the same. There is no priority inversions but it 80

can lead to starvation as low priority processes cannot be able to enter the critical section. Housni 81

and trehel[13] proposed an algorithm where sites with same priority forms the group. It uses 82

router for external communication and the processes within the group communicate with each 83

other by passing messages. When any process wants to enter the critical section, it sends the 84

request and that request is forwarded to the root. The root sends the token request to the routers. 85

In each group , the Raymond algorithm[14] is used. 86

In dynamic priority algorithms, the priority of algorithm is increased with the passage of time. 87

For increasing the priorities , different factors such as request time, level and distance are used in 88

different algorithms. In Kanrar-Chaki[15] token based algorithm , which is based on Raymond 89

algorithm[14], the low priorities of pending requests are increased dynamically. In avoids 90

starvation but increases priority inversions. Jonathan Lejeunl et al[16] proposed a token based 91

algorithm where new concepts have been added in Kanrar-Chaki[15] token based algorithm. 92

These are level heuristics and level distance heuristics. Level heuristics postpones the priority 93

increment of pending requests. In level distance heuristics , the processes are incremented 94

according to the level of the tree. These two heuristics removes the drawbacks of the Kanrar-95

Chaki[15] token based algorithm where the low priority processes frequently access the critical 96

section which is priority inversion. In priority inversions, a low priority process has been granted 97

the access to critical section before the high priority process which is violation of Service Level 98

Agreement. Jonathan Lejeunl et al[16] proposed a new algorithm where the attempt is balance 99

the priority inversions and response time of low priority processes. It uses the awareness concept 100

which aims at reducing maximum response time whereas the number of priority inversions 101

remains low. For this global view of pending requests is necessary. 102

Task scheduling plays a vital role in distributed computing settings, especially within cloud 103

computing. Efficient scheduling techniques strive to reduce task waiting periods and improve 104

overall cloud performance to maximize advantages. The goal of utilizing different scheduling 105

algorithms is to determine a suitable task sequence that shortens the total execution time. 106

Considering the distributed and diverse characteristics of cloud environments, conventional 107

scheduling algorithms may not be suitable for direct application. Therefore, it is important to 108

create scheduling algorithms designed specifically for cloud systems. [17]. By tackling the 109

4

specific challenges presented by cloud environments, these tailored scheduling algorithms can 110

improve resource management, decrease latencies, and enhance overall system performance, 111

ultimately resulting in greater advantages for both cloud service providers and users. Effective 112

task scheduling is vital for unlocking the complete potential of cloud computing and fulfilling the 113

increasing demands of various applications and services in the digital age. As researchers, it is 114

essential to investigate new and efficient scheduling algorithms designed for cloud environments 115

to continually improve cloud services and promote progress in the field of distributed computing. 116

In the field of virtual machine (VM) selection for application scheduling, Naik et al. [18] 117

introduced a novel hybrid multiobjective heuristic method that combines the Non-dominated 118

Sorting Genetic Algorithm-2 (NSGA-II) with the Gravitational Search Algorithm (GSA). This 119

hybrid strategy aims to improve both the efficiency and efficacy of the scheduling process by 120

leveraging the advantages of NSGA-II and GSA. While GSA focuses on utilizing effective 121

solutions to search for optimal results and avoid becoming stagnant, NSGA-II expands the 122

exploration range through a thorough investigation. The main goal of this hybrid approach is to 123

achieve better job scheduling performance, concentrating on three essential factors: maximizing 124

the total number of scheduled jobs, reducing overall energy consumption, and achieving the 125

shortest response time alongside the lowest cost. It is crucial to recognize that current scheduling 126

algorithms in VMs do not cater to the specific needs and goals that this hybrid approach 127

considers. Consequently, the suggested integration of NSGA-II and GSA presents an innovative 128

and promising method for tackling the challenges associated with VM selection and application 129

scheduling, which may enhance cloud computing performance and resource efficiency. In the 130

field of public cloud computing, a variety of heuristic algorithms have been created and utilized 131

to efficiently schedule a range of jobs. Among the most significant developments in heuristic 132

methods are the First Come, First Serve (FCFS) algorithm, the Min-Max algorithm, the MinMin 133

algorithm, and the Suffrage computation. Furthermore, other notable innovations in this area 134

include Greedy Scheduling, Shortest Task First (STF), Sequence Scheduling, Balance 135

Scheduling (BS), Opportunistic Load Balancing, and Min-Min Opportunistic Load Balancing 136

[19], [20], [21]. These heuristic algorithms are vital for task scheduling within the public cloud, 137

focusing on optimizing various performance metrics such as job completion times, resource 138

utilization, and system effectiveness. Each algorithm tackles the scheduling challenge from a 139

unique angle, applying specific rules and strategies to meet the intended goals. 140

3.0 Analysis of different Scheduling algorithms: 141

First Come First Serve algorithm: 142

The First-Come-First-Served (FCFS) scheduling algorithm functions by executing tasks in the 143

sequence they are received, employing a non-preemptive strategy. The average waiting time and 144

overall turnaround time for tasks are affected by their size and the timing of their arrival. In a 145

cloud computing setting, several clients seek resources from the data center controller, and these 146

requests are sent to the FCFS virtual machine load balancer. The FCFS virtual machine load 147

5

balancer processes tasks according to the order in which client requests arrive, [22], [23], [24]. 148

The FCFS approach has been extensively researched and utilized in cloud computing because of 149

its simplicity and equitable resource distribution based on arrival times. Nonetheless, it may 150

result in suboptimal resource usage and increased wait times for tasks of different sizes and 151

priorities. To mitigate these drawbacks, scholars have investigated alternative task scheduling 152

methods, such as Round Robin, Priority Scheduling, and Johnson Sequencing, each presenting 153

unique benefits and specific strategies to enhance cloud resource management and performance. 154

Priority Scheduling algorithm: 155

The Priority Scheduling algorithm functions by executing tasks according to their designated 156

priorities, with tasks of higher priority being processed before those of lower priority. This 157

scheduling method is often utilized in operating systems that manage numerous tasks, where the 158

order of execution is influenced by their priority levels. Priority Scheduling can also be applied 159

as a preemptive strategy, enabling a higher priority task to interrupt and take over the execution 160

of tasks with lower priority, [25], [26], [27], [28]. The priority-driven method of task scheduling 161

is beneficial for real-time systems and applications that require certain tasks to be prioritized 162

based on their importance or urgency. However, implementing priority scheduling may result in 163

challenges such as starvation, where lower priority tasks experience significant delays in being 164

executed. It is crucial to strike a balance in priority levels and take task attributes into account to 165

ensure equitable resource distribution and avoid scenarios where low-priority tasks are 166

indefinitely postponed. As the study of task scheduling in cloud computing progresses, it is 167

important to investigate the performance of different scheduling algorithms, including Priority 168

Scheduling, across various circumstances, workload distributions, and system setups. 169

Priority Scheduling Algorithm, follows these steps: 170

• Initialization: The process starts by setting up the list of tasks along with their respective 171

priorities. Each task is depicted as a job or process, with its priority determined by established 172

criteria, including the significance of the task, deadline requirements, or preferences set by the 173

user. 174

 • Sort Tasks: The subsequent step involves arranging the list of tasks according to their 175

priorities, with higher priorities listed first. This arrangement guarantees that tasks with greater 176

importance are positioned at the beginning of the list, while those of lesser importance are 177

located towards the end. 178

 • Execution: The algorithm executes tasks based on their priority levels. The task that has the 179

highest priority is chosen first for execution. The manner of execution can differ based on 180

whether the algorithm operates in a preemptive or non-preemptive manner. In a preemptive 181

algorithm, a currently executing task can be interrupted if a task with a higher priority arrives. 182

The system continuously monitors for any higher priority tasks that may arise during the 183

6

execution of a task. If a higher priority task is detected, the current task is interrupted, and the 184

higher priority task is scheduled to run. In non-preemptive mode, the current task is permitted to 185

finish executing before selecting and scheduling the next task with the highest priority. 186

 • Task Completion: After a task is finished, the algorithm moves on to the subsequent task 187

following the established priority sequence. This cycle continues until all tasks have been carried 188

out. 189

 • Task Arrival: When carrying out tasks, it is possible for new tasks to enter the system. In the 190

case of a preemptive algorithm, the priority of the new task is assessed against the priority of the 191

task currently in progress. If the new task's priority is greater, it interrupts the ongoing task, and 192

the new task is then scheduled for execution. 193

• Task Termination: When tasks finish executing, they are taken off the list, and the algorithm 194

proceeds to choose the next task with the highest priority for execution. 195

 • Completion Check: The algorithm carries on performing tasks until every task in the list has 196

been finished. After all tasks have been executed, the scheduling procedure comes to an end. 197

Round Robin Scheduling algorithm: 198

The Round-Robin (RR) scheduling algorithm is a basic preemptive scheduling method used in 199

different computing environments. In RR, each process is assigned a specific time quantum or 200

time slice by the CPU. The processes are managed in a First-Come-First-Serve (FCFS) order, 201

allowing them to run for the length of the time quantum. After the time quantum expires, the 202

current process is interrupted, and the CPU shifts to the next process in line. This preemption and 203

switching between tasks persist until all processes in the system have finished their execution. 204

The RR scheduling algorithm is commonly utilized in operating systems and distributed 205

computing settings due to its straightforwardness and equitable resource distribution. It 206

guarantees that every task receives an equitable portion of the CPU‟s time, thereby preventing 207

any single task from dominating the CPU for too long. By implementing a fixed time quantum, 208

RR achieves a balance between responsiveness and efficiency in executing tasks. The main 209

characteristics of the Round-Robin scheduling algorithm include the following: 210

• Preemptive Scheduling: RR functions as a preemptive scheduling algorithm, enabling tasks 211

to be interrupted and rescheduled even if they haven't completely used their time quantum. This 212

capability facilitates a flexible and responsive distribution of resources. 213

Time Quantum: The time quantum is an essential factor in the RR algorithm. It defines the 214

duration for which each task can execute before being interrupted. Selecting the right time 215

quantum affects the trade-off between system responsiveness and the overhead caused by context 216

switching. 217

7

• FCFS Order: Tasks are organized in a queue according to their arrival time, and the RR 218

algorithm executes them following the FCFS sequence. This guarantees that tasks are processed 219

in the order of their arrival, promoting fairness in the distribution of resources. 220

 • Preemption Handling: When a task's time slice runs out, the processor records its current state 221

and transitions to the following task in the queue. The interrupted task is then placed at the end 222

of the line to wait for its next opportunity. 223

The Round-Robin scheduling algorithm offers a viable method for organizing tasks across 224

different computing settings. Nevertheless, its efficiency can be affected by factors such as the 225

selected time quantum, the characteristics of the tasks being processed, and the total system load. 226

Ongoing research is dedicated to investigating modifications and improvements to RR to boost 227

its performance and flexibility in various situations [29], [30], [31]. 228

DYNAMIC HEURISTIC JOHNSON SEQUENCING ALGORITHM : 229

 The Dynamic Heuristic Johnson Sequencing (DHJS) algorithm presents an innovative method 230

that integrates the calculation of dynamic burst time and the Johnson sequencing technique to 231

enhance task scheduling in a multi-server setting. Initially, the DHJS algorithm computes the 232

dynamic time quantum for the tasks using the median burst time and the maximum burst time of 233

the tasks. This time quantum is then implemented in a Round Robin scheduling method. 234

Following this, the Johnson sequencing algorithm is utilized to establish the optimal order for 235

executing the tasks. 236

The DHJS algorithm offers a flexible and heuristic method to tackle intricate task scheduling 237

problems in multi-server settings. By integrating burst time calculation, Johnson sequencing, and 238

queuing model evaluation, it seeks to enhance task execution and resource distribution, resulting 239

in greater efficiency and prompt task completion for customers. Continued research and testing 240

are recommended to confirm and improve the effectiveness of the DHJS algorithm across 241

different practical cloud computing situations. 242

 243

 244

 245

 246

 247

4.0 Comparative study of different algorithms: 248

Based on factors: 249

8

Sr.No Scheduling

Algorithm

Factors Advantages Disadvantages

1 First Come First

Serve algorithm

Minimum

waiting time

Increases

average

response time

Does not

consider

additional

factors

2 Priority Algorithm Task priority For task

scheduling ,

priority is

considered.

Sometime lack

of consistency

and complex

structure.

3 Round Robin

Algorithm

Arrival time Fairly

distributed

loads and easy

to implement

Preemption is

required.

4 DYNAMIC HEURISTIC

JOHNSON

SEQUENCING

ALGORITHM :

Arrival time,

Turnaround

time

Minimizes the

service time in

cloud

computing and

high

performance.

Complexity

 250

Based on scheduling methods: 251

Scheduling

method

Job

scheduling

Static

scheduling

Dynamic

scheduling

Cloud

Environment

First Come First

Serve algorithm

Yes Yes Yes

Priority Algorithm Yes No Yes Yes

Round Robin

Algorithm

Yes No Yes Yes

DYNAMIC

HEURISTIC

JOHNSON

SEQUENCING

ALGORITHM :

Yes No Yes Yes

 252

5.0 Conclusion: 253

9

The first come first serve algorithm is fair for simple applications involving less complex 254

structure. The priority algorithm takes into account the priority based on dynamic scheduling. 255

The round robin suits for applications where time quantum is used, All these three algorithms do 256

not fulfils the adaptive nature of the cloud computing. The Dynamic heuristic Johnson 257

sequencing algorithm best suits for scheduling the jobs in cloud computing. It minimizes service 258

time and increases the performance. Considering the dynamic nature , it schedule the jobs in 259

fairly manner, 260

 261

 References: 262

[1]. Edmondson, J., Schmidt, D., & Gokhale, A. (2011). QoSenabled distributed mutual 263

exclusion in public clouds. On the Move to Meaningful Internet Systems: OTM 2011, 542-559. 264

[2]. X. Li, T. Jiang, and R. Ruiz, „„Heuristics for periodical batch job scheduling in a 265

MapReduce computing framework,‟‟ Inf. Sci., vol. 326, pp. 119–133, Jan. 2016. 266

[3]. Y. Xiong, S. Huang, M. Wu, J. She, and K. Jiang, „„A Johnson‟s-rule-based genetic 267

algorithm for two-stage-task scheduling problem in data-centers of cloud computing,‟‟ IEEE 268

Trans. Cloud Comput., vol. 7, no. 3, pp. 597–610, Jul. 2019. 269

[4]. Z. Pan, X. Hou, H. Xu, L. Bao, M. Zhang, and C. Jian, „„A hybrid manufacturing 270

scheduling optimization strategy in collaborative edge computing,‟‟ Evol. Intell., vol. 3, pp. 1–271

13, Oct. 2022. 272

[5]. A. Lachmann, D. Torre, A. B. Keenan, K. M. Jagodnik, H. J. Lee, L. Wang, M. C. 273

Silverstein, and A. Ma‟ayan, „„Massive mining of publicly available RNA-seq data from human 274

and mouse,‟‟ Nature Commun., vol. 9, no. 1, p. 1366, 2018. 275

[6]. S. O. Bukhari, „„Cloud algorithms: A computational paradigm for managing big data 276

analytics on clouds,‟‟ in Intelligent Systems. Singapore: Springer, 2021, pp. 455–470. 277

[7]. Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, „„A novel task scheduling scheme in a 278

cloud computing environment using hybrid biogeographybased optimization,‟‟ Soft Comput., 279

vol. 23, no. 21, pp. 11035–11054, Nov. 2019. 280

[8]. A. Wilczyński and J. Kołodziej, „„Modelling and simulation of securityaware task 281

scheduling in cloud computing based on blockchain technology,‟‟ Simul. Model. Pract. Theory, 282

vol. 99, Feb. 2020, Art. no. 102038. 283

[9]. Y.-J. Joung, ,”The congenial talking philosophers problem in computer networks”, 284

Distributed computing Vol.15,pp 155-175,2002. 285

10

[10]. Y.-J. Joung, “ Quorum based algorithm for group mutual exclusion”, IEEE transactions on 286

parallel and distributed system, vol 14, no. 5 pp.2003,may2003 287

[11]. Y.-J. Joung, Asynchronous group mutual exclusion, Distributed Comput. (DC) 13 (4) 288

(2000) 189–206. 289

[12] .Ricart, G., Agrawala, A.: An Optimal Algorithm for Mutual Exclusion in Computer 290

Networks. CACM, Vol. 24(1). (1981) 9–17 291

[13] Housni, A., & Trehel, M. (2001). Distributed mutual exclusion token-permission based 292

by prioritized groups. In Computer Systems and Applications, ACS/IEEE International 293

Conference on. 2001 (pp. 253-259). IEEE. 294

[14] Raymond, K. (1989). A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM 295

Trans. Comput. Syst., 7, 61-77. 296

[15] KANRAR, S., & CHAKI, N. (2010). FAPP: A New Fairness Algorithm for Priority 297

Process Mutual Exclusion in Distributed Systems. JNW, 5(1), 11-18. 298

[16] Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2012, May). Service level agreement for 299

distributed mutual exclusion in cloud computing. In Proceedings of the 2012 12th IEEE/ACM 300

International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012) (pp. 180-187). 301

IEEE Computer Society. 302

[17] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, „„Task scheduling in 303

cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future 304

trends,‟‟ Swarm Evol. Comput., vol. 62, Apr. 2021, Art. no. 100841. 305

[18] K. Naik, G. Gandhi, and S. Patil, „„Multiobjective virtual machine selection for task 306

scheduling in cloud computing,‟‟ in Computational Intelligence: Theories, Applications and 307

Future Directions (Advances in Intelligent Systems and Computing). Singapore: Springer, 2019, 308

pp. 319–331. 309

[19] M. A. Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, „„Task scheduling in cloud 310

computing based on hybrid moth search algorithm and differential evolution,‟‟ Knowl.-Based 311

Syst., vol. 169, pp. 39–52, Apr. 2019 312

[20] D. Alsadie, „„A metaheuristic framework for dynamic virtual machine allocation with 313

optimized task scheduling in cloud data centers,‟‟ IEEE Access, vol. 9, pp. 74218–74233, 2021 314

[21] Q. Zhang, L. Cheng, and R. Boutaba, „„Cloud computing: State-of-the-art and research 315

challenges,‟‟ J. Internet Services Appl., vol. 1, no. 1, pp. 7–18, May 2010. 316

[22] S. V. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala, D. R. Riley, C. Arze, J. 317

R. White, O. White, and W. F. Fricke, „„CloVR: A virtual machine for automated and portable 318

11

sequence analysis from the desktop using cloud computing,‟‟ BMC Bioinf., vol. 12, no. 1, pp. 1–319

15, Dec. 2011. 320

[23] S. More, S. Muthukrishnan, and E. Shriver, „„Efficiently sequencing taperesident jobs,‟‟ 321

in Proc. 18th ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., Philadelphia, PA, 322

USA, May 1999, pp. 33–43. 323

[24] S. Zhang, H. Yan, and X. Chen, „„Research on key technologies of cloud computing,‟‟ 324

Phys. Proc., vol. 33, pp. 1791–1797, Jan. 2012. 325

[25] M. Choudhary and S. K. Peddoju, „„A dynamic optimization algorithm for task 326

scheduling in cloud environment,‟‟ Int. J. Eng. Res. Appl., vol. 2, no. 3, pp. 2564–2568, 2012. 327

[26] R. K. R. Indukuri, S. V. Penmasta, M. V. R. Sundari, and G. J. Moses, „„Performance 328

evaluation of deadline aware multi-stage scheduling in cloud computing,‟‟ in Proc. IEEE 6th Int. 329

Conf. Adv. Comput. (IACC), Feb. 2016, pp. 229–234. 330

27. S. Pal and P. K. Pattnaik, „„A simulation-based approach to optimize the execution time 331

and minimization of average waiting time using queuing model in cloud computing 332

environment,‟‟ Int. J. Electr. Comput. Eng., vol. 6, no. 2, p. 743, Apr. 2016. 333

28. C. Sriskandarajah and S. P. Sethi, „„Scheduling algorithms for flexible flowshops: Worst 334

and average case performance,‟‟ Eur. J. Oper. Res., vol. 43, no. 2, pp. 143–160, Nov. 1989. 335

29. A. S. Prasad and S. Rao, „„A mechanism design approach to resource procurement in 336

cloud computing,‟‟ IEEE Trans. Comput., vol. 63, no. 1, pp. 17–30, Jan. 2014. 337

30. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, „„CloudSim: A 338

toolkit for modeling and simulation of cloud computing environments and evaluation of resource 339

provisioning algorithms,‟‟ Softw., Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011. 340

 [31] A. V. Karthick, E. Ramaraj, and R. G. Subramanian, „„An efficient multi queue job 341

scheduling for cloud computing,‟‟ in Proc. World Congr. Comput. Commun. Technol., Feb. 342

2014, pp. 164–166. 343

 344

 345

 346

 347

 348

 349

