ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-52634

Date: 5/7/25

Title: A review and comparative study on task scheduling in group mutual exclusion algorithms to solve critical section problem based on cloud computing

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is	Originality			yes	
Accept after minor revision	Techn. Quality			yes	
Do not accept (<i>Reasons below</i>)	Clarity			yes	
	Significance			yes	

Reviewer Name:Dr.Shaweta Sachdeva

Date: 5/7/25

Reviewer's Comment for Publication. Accepted with Major Revision as it is only Review paper

(To be published with the manuscript in the journal)

The reviewer is requested to provide a brief comment (3-4 lines) highlighting the significance, strengths, or key insights of the manuscript. This comment will be Displayed in the journal publication alongside with the reviewers name.

Significance

1. Bridges Scheduling and GME in Cloud Context:

The paper uniquely combines task scheduling with **Group Mutual Exclusion (GME)** — a relatively less-explored area — within cloud computing. This niche integration is valuable for optimizing resource allocation in distributed systems that involve multiple users accessing shared resources concurrently.

2. Comprehensive Review:

The manuscript surveys a variety of task scheduling algorithms (FCFS, Round Robin, Priority Scheduling, and DHJS), offering both **conceptual overviews** and **comparative analysis**, which serves as a solid starting point for researchers new to the domain.

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Key Strengths

1. Focus on Real-World Metrics:

The discussion includes practical factors such as **SLA adherence**, **QoS**, and **fault tolerance**, showing awareness of real-world deployment constraints in cloud environments.

2. Coverage of Dynamic Algorithms:

The paper pays special attention to **dynamic scheduling** techniques like DHJS, which is more suited to adaptive cloud environments compared to static models.

3. Inclusion of Classical and Heuristic Approaches:

It draws from both traditional algorithms (e.g., FCFS) and **modern heuristic-based** methods (e.g., NSGA-II + GSA hybrid), reflecting the evolution of scheduling techniques over time.

4. Well-Cited Background:

The literature review covers a wide array of foundational work (e.g., Ricart-Agarwala, Raymond's tree algorithm, Maekawa's algorithm), grounding the study in classical distributed systems theory.

Key Insights

• No One-Size-Fits-All:

The paper underscores that **different scheduling strategies have trade-offs**, and selection must consider specific workload, system requirements, and performance metrics.

- Dynamic Heuristics Are Promising: The Dynamic Heuristic Johnson Sequencing algorithm is identified as particularly wellsuited for cloud environments due to its ability to handle variable service times and dynamic workloads efficiently.
- Need for Context-Aware Scheduling:

The study highlights the importance of designing **context-sensitive** scheduling algorithms that adapt to the **heterogeneous** and **dynamic nature** of cloud resources.

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Detailed Reviewer's Report

- 1. The abstract lacks clarity, suffers from grammatical errors, and repeats phrases like "some others scheduling method".
- 2. Many sections repeat the same ideas (e.g., advantages/disadvantages of scheduling algorithms).
- 3. Consider organizing with clearer subsections under Related Work (e.g., "Static Priority Algorithms", "Dynamic Priority Algorithms") to help reader navigation.
- 4. Add **figure(s) or flowcharts** comparing the algorithms visually these would improve readability and comprehension.
- 5. The comparison is mostly textual; a **quantitative or simulation-based comparison** using metrics like execution time, throughput, or latency under various workloads would greatly strengthen the study.
- 6. Include a **summary table** of algorithms against evaluation criteria (e.g., SLA adherence, fault tolerance, resource efficiency). The treatment of some algorithms is superficial (especially for more advanced ones like DHJS).
- 7. Suggested improvements:
 - a. Highlight main takeaways for each algorithm.
 - b. Mention open challenges in dynamic scheduling for cloud environments.
 - c. Suggest future enhancements or potential hybrid models.
- 8. Add:
 - Detailed algorithm steps
 - Complexity analysis
 - Use-case applicability