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 4 
Abstract - Bioacoustic signal processing has emerged as a critical field in biological monitoring, species 5 
identification, and ecological assessment. However, the presence of noise poses significant challenges to the accurate 6 
analysis of these signals in both terrestrial and aquatic environments. This survey paper provides a comprehensive 7 
review of denoising techniques applied to bioacoustic signals across aerial and underwater domains. We 8 
systematically categorize and compare traditional signal processing methods, statistical approaches, and modern 9 
machine learning techniques. Our analysis reveals that while fundamental principles of signal processing remain 10 
consistent across domains, the unique acoustic properties and noise characteristics of air and water necessitate 11 
specialized approaches. We further identify key research gaps and propose future directions, including multimodal 12 
fusion, adaptive real-time processing, and standardized evaluation frameworks. This survey serves as a resource for 13 
researchers and practitioners working at the intersection of signal processing and bioacoustics in diverse 14 
environmental contexts. 15 
 16 
Index Terms - Bioacoustics, Signal Denoising, Underwater Acoustics, Terrestrial Acoustics, Signal 17 
Processing, Machine Learning 18 

 19 

I. INTRODUCTION 20 

Bioacoustic signals—sounds produced by animals for communication, navigation, and other biological 21 
functions represent a rich source of information for understanding ecological systems, animal behavior, 22 
and biodiversity [1]. The capture and analysis of these signals have applications ranging from species 23 
conservation and environmental monitoring to behavioral studies and automated species identification [2, 24 
3]. However, the quality of bioacoustic recordings is frequently compromised by various noise sources 25 
that can mask, distort, or otherwise interfere with the signals of interest [4]. The challenge of noise 26 
reduction in bioacoustic signals spans two distinct but related domains: aerial (terrestrial) and underwater 27 
environments. While both domains share fundamental signal processing principles, they present unique 28 
challenges due to differences in acoustic propagation, ambient noise characteristics, and recording 29 
technologies [5, 6]. For example, underwater environments are characterized by complex propagation 30 
paths, frequency-dependent attenuation, and distinctive noise sources such as shipping, wave action, and 31 
marine industrial activities [7]. Terrestrial environments, by contrast, contend with wind noise, 32 
anthropogenic sounds, and competing biological signals within similar frequency ranges [8]. 33 

Despite the importance of this field and the growing body of literature on specific denoising techniques, 34 
there exists a need for a comprehensive survey that bridges these two domains, identifying common 35 
principles, unique challenges, and opportunities for cross-domain knowledge transfer. This paper aims to 36 
fill this gap by: 37 
1. Systematically reviewing and categorizing denoising approaches employed in both aerial and 38 

underwater bioacoustic signal processing. 39 
2. Comparing the effectiveness, computational requirements, and domain-specific adaptations of 40 

these techniques. 41 
3. Identifying emerging trends, research gaps, and promising directions for future work. 42 
4. Establishing evaluation criteria and benchmarks for comparing denoising methods across domains. 43 

 44 
We structure our survey to first establish the fundamental characteristics of noise in bioacoustic signals 45 
(Section 2), followed by a taxonomical classification of denoising approaches (Section 3). We then 46 
provide an in-depth analysis of traditional signal processing methods (Section 4), statistical approaches 47 
(Section 5), and machine learning techniques (Section 6). Section 7 presents a comparative analysis of 48 
methods across domains. Finally, we identify research gaps and future directions in Section 8 before 49 
concluding in Section 9. 50 



 

 
 

II. CHARACTERISTICS OF NOISE IN BIOACOUSTIC SIGNALS 51 

A. Noise in Terrestrial Bioacoustic Recordings 52 

Terrestrial bioacoustic recordings are subject to a variety of noise sources that can be broadly categorized 53 
as: 54 
Environmental Noise: This includes wind noise, which typically manifests as low-frequency energy and 55 
can completely mask signals of interest, rain and weather-related sounds and natural background sounds 56 
[9]. 57 
Anthropogenic Noise: Human-generated sounds such as traffic, aircraft, industrial machinery, and other 58 
technological sources represent a significant challenge, particularly in urbanized or developed areas [10]. 59 
These noise sources often occupy broad frequency bands and can exhibit temporal patterns that overlap 60 
with biological signals [11]. 61 
Biological Noise: Sounds from non-target species can interfere with the detection and analysis of specific 62 
bioacoustic signals of interest [12]. This is particularly challenging in biodiversity hotspots where 63 
multiple species vocalize simultaneously, creating a complex acoustic scene [13]. 64 
Recording Artifacts: Equipment-related noise includes microphone self-noise, handling noise, electronic 65 
interference, and quantization effects in digital recording systems [15]. These artifacts can vary with 66 
recording equipment quality and environmental conditions. 67 

B.  Noise in Underwater Bioacoustic Recordings 68 

Underwater acoustic environments present distinct noise challenges; 69 

Ambient Ocean Noise: This encompasses a spectrum of natural sounds including wave action, breaking 70 
waves (especially in coastal areas), rainfall on the water surface, and thermal noise at higher frequencies. 71 
Oceanic ambient noise typically follows the Wenz curves, which describe frequency-dependent 72 
background noise levels [16]. 73 
Marine Traffic Noise: Shipping and boat noise contribute significantly to low-frequency ambient noise in 74 
many marine environments, with global shipping having raised background noise levels by 10-15 dB in 75 
many ocean basins over the past century [17, 18]. 76 
Industrial Activities: Offshore construction, seismic exploration, sonar operations, and drilling create 77 
intense, often impulsive, noise sources that can mask bioacoustic signals across large geographic areas. 78 
Biological Noise: Similar to terrestrial environments, non-target biological sounds can interfere with 79 
signals of interest, with the additional complication that many marine organisms (e.g., snapping shrimp) 80 
produce sounds that can dominate certain frequency bands in specific habitats [20]. 81 
Propagation Effects: Unlike in air, underwater sound propagation is characterized by multipath arrivals, 82 
frequency-dependent attenuation, and refraction due to sound speed profiles, which can distort signals and 83 
complicate denoising efforts [21]. 84 
Hydrophone Artifacts: Self-noise from hydrophones, flow noise from water movement around recording 85 
equipment, and mooring or platform noise represent additional challenges specific to underwater 86 
recording. 87 

C. Comparative Analysis of Noise Characteristics 88 

While both domains contend with noise challenges, several key differences influence the approach to 89 
denoising. Understanding these domain-specific characteristics is essential for selecting and adapting 90 
appropriate denoising techniques for bioacoustic signals in their respective environments. 91 

Frequency Range and Propagation: Sound propagates approximately 4.3 times faster in water than in air, 92 
affecting wavelengths and directionality. Underwater bioacoustic signals often utilize lower frequencies 93 
for long-distance communication, whereas terrestrial signals span a broader frequency range. 94 
Temporal Characteristics: Marine noise tends to be more continuous (shipping, wave action), while 95 
terrestrial noise often includes more impulsive components (bird calls, anthropogenic sounds). 96 
Spatial Considerations: Underwater sound propagation involves complex three-dimensional paths with 97 
significant boundary interactions, whereas terrestrial propagation is often modelled more simply, though 98 
still affected by ground reflections and atmospheric conditions. 99 
Signal-to-Noise Ratio (SNR) Variations: Underwater environments typically experience lower SNR due 100 
to attenuation and complex propagation, requiring more robust denoising approaches. 101 



 

 
 

Recording Technology Differences: Hydrophones and terrestrial microphones have different sensitivity 102 
profiles, self-noise characteristics, and deployment challenges, influencing the preprocessing required. 103 

 104 

III. TAXONOMY OF DENOISING APPROACHES 105 

To systematically review the landscape of bioacoustic denoising techniques, we propose a 106 
taxonomy that categorizes approaches based on their underlying principles, domain of application, and 107 
technical characteristics. This taxonomy serves as an organizational framework for the detailed 108 
discussions in subsequent sections. 109 

A. Classification by Processing Domain 110 

Time Domain Methods: These techniques operate directly on the amplitude-time representation of signals. 111 
They include amplitude thresholding, median filtering, and time-domain Wiener filtering. Time-domain 112 
approaches are often computationally efficient but may be limited in their ability to separate overlapping 113 
spectral content. 114 

Frequency Domain Methods: These approaches transform signals to the frequency domain, typically 115 
using Fourier transforms, and apply filtering or enhancement operations before returning to the time 116 
domain. Examples include spectral subtraction, notch filtering, and spectral gating. 117 
Time-Frequency Domain Methods: These techniques leverage representations that capture both temporal 118 
and spectral characteristics, such as short-time Fourier transforms (STFT), wavelet transforms, and other 119 
multi-resolution analyses [22,23]. They enable more targeted denoising by exploiting the localized nature 120 
of bioacoustic signals in the time-frequency plane. 121 
Spatial Domain Methods: When multiple sensors (microphones or hydrophones) are available, spatial 122 
filtering techniques such as beamforming can be employed to enhance signals from specific directions 123 
while suppressing noise from others [24]. 124 

B. Classification by Algorithmic Approach 125 

Traditional Signal Processing: These include deterministic approaches based on classical signal 126 
processing theory, such as filters (low-pass, high-pass, band-pass), smoothing operations, and transforms 127 
[25]. 128 
Statistical Methods: These leverage statistical properties of signals and noise, including Wiener filtering, 129 
Kalman filtering, Bayesian approaches, and hidden Markov models [26]. 130 
Computational Intelligence: This category encompasses techniques from machine learning and 131 
computational intelligence, including neural networks, deep learning, fuzzy systems, and evolutionary 132 
algorithms [27]. 133 
Hybrid Approaches: Many effective denoising solutions combine multiple techniques, such as wavelet 134 
thresholding with statistical modeling or deep learning with traditional filtering [28]. 135 

C. Classification by Application Context 136 

Offline Processing: Methods designed for retrospective analysis of recorded data, where computational 137 
efficiency is less critical than denoising performance. 138 

Real-time Processing: Techniques optimized for immediate processing, often with constraints on latency 139 
and computational resources, suitable for field deployments and monitoring systems. 140 
Adaptive Methods: Approaches that adjust parameters based on signal characteristics or environmental 141 
conditions, particularly valuable in dynamic acoustic environments [29]. 142 
Context-Specific Methods: Techniques tailored for particular species, environments, or noise types, 143 
leveraging domain knowledge to improve performance [30]. 144 

IV. TRADITIONAL SIGNAL PROCESSING METHODS 145 



 

 
 

Traditional signal processing approaches remain fundamental to bioacoustic denoising due to their 146 
interpretability, established theoretical foundations, and often lower computational requirements. The 147 
table I details out the methods and their application in both terrestrial and underwater contexts. 148 

TABLE I. TRADITIONAL SIGNAL PROCESSING TECHNIQUES 149 

Method Terrestrial Domain Underwater Domain Comparative Observation 

Band Pass Filtering 

 

Effectively removed wind 

noise and other artifacts 

between 1 to 10 kHz [31] 

and improved detection of 

songbird vocalizations by 

15-20% in moderate noise 

conditions [32] 

Commonly used to isolate 

species-specific frequency 

ranges, eg   dolphin whistles 

range from 5-20 kHz [33] and 

shown improvement in whale 

call detection upto 30% in 

noisy environment [34]. 

Terrestrial applications 

typically require wider 

bandwidth filters, while 

underwater applications often 

focus on narrower, lower-

frequency bands [35] 

Adaptive Filtering 

 

LMS adaptive filtering 

improved SNR by 6-8 dB 

for frog calls in rainfall 

noise [36] 

 

Adaptive line enhancers, 

specifically for tonal 

components of dolphin 

whistles, demonstrated 40% 

improvement in correct 

classification rates [37] 

Underwater implementation 

requires long filter length and 

careful Initialization whereas 

terrestrial applications have 

faster adaptation. 

Spectral Subtraction 

 

 

Reduction in background 

noise approximately by 

12dB with temporal call 

pattern preservation in 

cricket calls reported 

through multi-band 

spectral subtraction [38] 

 

 

 

8-10 dB SNR improvement for 

blue whale calls using spectral 

subtraction with adaptive noise 

estimation during signal 

absences have been 

demonstrated [39] 

 

 

 

 

Spectral subtraction in 

underwater environments 

benefits from longer-term noise 

stability but suffers more from 

musical noise artifacts due to 

the complex propagation 

environment. In terrestrial 

applications, more frequent 

noise estimation updates are 

typically required  

Short Term Fourier Transform 

 

Improved accuracy by 25% 

in automated bird call 

detection achieved 

through STFT Thresholding 

approach [67] as well as 

separation of overlapping 

bird calls in complex 

soundscapes [40] 

40% enhanced detection 

ranges reported in tracking 

bow head whales in arctic 

region by STFT processing [and 

Spectrogram filtering widely 

used in marine mammal call 

detection and signal denoising 

[41]  

Underwater bioacoustic 

processing typically 

emphasizes frequency 

resolution for tonal signals, 

while terrestrial applications 

often require better time. 

resolution for transient calls 

Wavelet Based 

 

 

 

 

Improvement in bat call 

classification accuracy by 

18% compared to STFT-

based methods in urban 

recording environments 

through wavelet packet 

decomposition with soft 

thresholding have been 

reported [42]. Wavelet 

shrinkage denoising has 

shown promise for 

enhancing transient bird 

calls and bat echolocation 

pulses [43]. 

 

 

Gervaise et al. [44] developed 

wavelet-based denoising 

specifically for underwater 

bioacoustics, reporting SNR 

improvements of 9-14 dB for 

sperm whale clicks in shipping 

noise. Wavelet analysis has 

been applied to marine 

mammal vocalizations, 

particularly for denoising 

transient signals like dolphin 

clicks [45]. 

 

 

Wavelet selection differs 

between domains, with 

underwater applications 

favouring wavelets with better 

frequency localization for 

lower-frequency vocalizations, 

while terrestrial applications 

often employ wavelets with 

better time localization for 

rapid, transient calls 

Empirical Mode EMD has been applied to EMD has been adapted to  Underwater applications of 



 

 
 

 150 

V. STATISTICAL APPROACHES 151 

 152 

Statistical approaches leverage probabilistic models of signals and noise to achieve separation. These 153 
methods can be particularly effective when the statistical properties of the noise or signal are well-154 
characterized. Table II summarises the Statistical approaches; 155 

TABLE I. STATISTICAL APPROACHES 156 

Decomposition 

 

 

 

separate overlapping insect 

and bird sounds with 

different temporal 

characteristics [46] and 

demonstrated that EMD-

based filtering improved 

detection of cricket chirps 

in windy conditions by 

adaptively identifying and 

removing noise-dominated 

IMFs[ 47]. 

 

 

address multipath propagation 

effects. Huang et al. [48] 

adopted Ensemble EMD to 

enhance humpback whale 

vocalizations, achieving better 

preservation of signal structure 

than conventional filtering 

 

 

 

EMD require special attention 

to mode mixing issues caused 

by the complexity of 

propagation paths. Both 

domains benefit from EMD's 

adaptivity to non-stationary 

signals, but implementation 

details such as stopping criteria 

and IMF selection strategies 

differ substantially  

 

Method Terrestrial Domain Underwater Domain Comparative Observation 

Wiener Filtering 

 

 

 

For bird vocalization 

enhancement, 

iterative Wiener 

filtering with voice 

activity detection has 

shown promising 

results [49] 

 

Wiener filtering has 

been adapted to account 

for the colored noise 

typical of underwater 

environments [50]. 

Thode et al. [51] 

implemented a modified 

Wiener filter for 

bowhead whale calls 

that incorporated 

underwater acoustic 

propagation models, 

improving detection 

range by approximately 

30%. 

 

 

Underwater applications typically 

employ longer estimation windows 

due to slower temporal variations in 

noise, while terrestrial 

implementations must adapt more 

quickly to changing conditions 

Kalman Filtering 

 

 

 

Brandes et al. [52] 

demonstrated that 

Kalman filtering 

improved frog call 

pitch estimation 

accuracy by 35% 

compared to 

spectrogram peak-

picking in moderate 

rainfall conditions. 

 

 

Roch et al. [53] applied 

Kalman-based tracking 

to dolphin whistles, 

reducing frequency 

estimation error by 45% 

compared to direct 

spectrogram methods in 

shipping noise. 

 

 

State transition models differ 

significantly between domains, 

reflecting the different vocalization 

patterns of terrestrial and marine 

species. Underwater 

implementations typically 

incorporate more complex 

observation models to account for 

propagation effects. 

 

Hidden Markov Model 

 

 

 

Widely used for bird 

call denoising and 

recognition, 

particularly for 

species with 

structured 

vocalizations. 

Potamitis et al. [54] 

HMMs have been 

adapted to model the 

unique temporal 

structure of underwater 

vocalizations. Roch et 

al. [39] developed 

HMM-based 

enhancement for blue 

State topologies and transition 

probabilities differ substantially 

between domains, with underwater 

implementations typically requiring 

more states and longer-range 

dependencies to capture the 

complex structure of marine 



 

 
 

 157 
 158 
VI. MACHINE LEARNING AND COMPUTATIONAL INTELLIGENCE 159 
 160 
Recent advances in machine learning have revolutionized bioacoustic signal denoising, offering data-161 
driven approaches that can adapt to complex noise environments and leverage large datasets for training. 162 
Machine Learning and Deep learning architectures offers numerous advantages and favours numerous 163 
opportunities on exploration of varied techniques and applications. These models perform strongly 164 
through   improvement in denoising of signals, species classification accuracy enhancement, Enhanced 165 
target recognition and detection, Adaptive signal feature extraction and preservation, real time decision 166 
making, autonomous navigation, data fusion, handling high capacity data, anomaly detection and widely 167 
employed in predictive modelling and  self / adaptive learning. The table III summarises the model and its 168 
relevance in signal processing. 169 

TABLE III. ML/DL MODELS AND ITS RELEVANCE 170 

 reported that HMM-

based enhancement 

improved bird 

species classification 

by 22% in noisy 

forest recordings 

compared to spectral 

subtraction. 

 

whale calls, 

demonstrating a 28% 

improvement in 

detection performance 

in the presence of 

distant shipping noise. 

 

 

 

 

mammal vocalizations 

 

Bayesian approach 

 

 

Compared to Non-

Bayesan approach, 

an improvement of 

30% individual 

species identification 

have been reported 

using Bayesan 

source separation 

approach [55] 

 

Socheleau et al. [56] 

presented a Bayesian 

detector for whale 

vocalizations that 

incorporated 

environmental 

knowledge, achieving 

false alarm rates five 

times lower than 

energy-based detectors 

at comparable 

sensitivity. 

 

Prior distributions differ 

significantly between domains, 

reflecting the different noise 

characteristics and signal structures. 

Underwater applications benefit 

particularly from incorporating 

propagation models into the 

Bayesian framework, while 

terrestrial applications often 

leverage more detailed signal 

models 

Signal Processing Technique Purpose ML /DL Integration 

Kalman Filtering Real time state estimation and sensor fusion RNN /LSTM, Reinforcement Learning 

Time Frequency analysis Non-stationary signal characterization CNN- LSTM hybrids, Transformers 

Wavelet transform Multi resolution denoising and feature extraction CNN, Autoencoders 

Sparse representation Feature selection and data compression Transformers, Featured learning 

Higher order statistics Anomaly detection and non-linear signal analysis 

Graph Neural Networks, Self-

supervised learning 

Empirical Mode Composition Non-linear signal decomposition 

Neural Ordinary Differential Equations, 

Ensemble learning 

Dynamic Time Wrapping Pattern matching and time series alignment 

Attention mechanisms, Siamese 

networks 

Independent Component Analysis Anomaly detection and Blind source separation 

Generative Adversarial Networks 

(GAN), Variational autoencoders 



 

 
 

A. OBSERVATIONS 171 
 172 

1. Network architectures differ between domains, with underwater applications typically 173 
employing deeper networks with larger receptive fields to capture the extended temporal context of 174 
marine mammal vocalizations. Training data requirements also differ, with underwater applications often 175 
struggling with limited labelled datasets [57]. 176 
2. Memory cell configurations and sequence lengths differ significantly between domains, 177 
reflecting the different temporal scales of terrestrial and marine vocalizations. Underwater 178 
implementations typically require longer sequence modelling capabilities and more careful regularization 179 
due to limited training data [58]. 180 
3. Network depth and skip connection structures differ between domains, with underwater 181 
applications typically requiring deeper networks and more complex skip connections to capture the 182 
extended temporal-spectral patterns of marine bioacoustics [59]. 183 
4. Adversarial loss functions and training strategies differ between domains, with underwater 184 
applications requiring more carefully designed frequency-weighted losses to account for the critical 185 
features of marine mammal vocalizations. Training stability also presents different challenges across 186 
domains [60]. 187 
5. The balance between signal processing and learning components differs across domains, with 188 
terrestrial applications often emphasizing the learning component due to more abundant training data, 189 
while underwater applications depend heavily on model-based components to compensate for data 190 
scarcity [61]. 191 

VII. COMPARATIVE ANALYSIS: AERIAL VS. UNDERWATER TECHNIQUES 192 

A. Performance Comparison 193 

Signal-to-Noise Ratio Improvement: A meta-analysis of 45 studies reveals that underwater denoising 194 
methods typically achieve 2-3 dB less SNR improvement than their terrestrial counterparts when applied 195 
to recordings with comparable initial SNR. This disparity is primarily attributed to the more complex 196 
propagation environment and diverse noise characteristics underwater. 197 

Preservation of Signal Features: Terrestrial methods tend to better preserve temporal fine structure, while 198 
underwater techniques excel at maintaining frequency contours [62]. This difference reflects the relative 199 
importance of these features in species-specific vocalizations across domains. 200 
Computational Efficiency: Underwater processing techniques typically require 1.5-2.5 times more 201 
computational resources for comparable performance, largely due to the need for longer analysis 202 
windows and more complex models to account for propagation effects [63]. 203 
Generalization Across Noise Types: Terrestrial methods show better generalization across diverse noise 204 
environments, while underwater techniques often require more specific optimization for particular noise 205 
conditions [64]. 206 

B.  Domain-Specific Adaptations 207 

Adaptive noise cancellation Real time vocalization enhancement 

RNN based filters, Reinforcement 

learning 

Non-linear dynamics analysis Chaotic signal characterization LSTM-Echo State networks 

Non-negative matrix factorization Source separation in mixed signals 

GANs , Unsupervised learning (Deep 

clustering) 

Mel-frequency cepstral 

coefficients Spectral feature extraction 

CNN/ResNets 

Time-Frequency thresholding  Noise reduction UNets , diffusion models 

Cross correlation Species identification Siamese networks, metric learning 



 

 
 

Frequency Range Considerations: Techniques developed for terrestrial bioacoustics typically emphasize 208 
mid to high frequencies (1-10 kHz), while underwater methods focus more on low to mid-range 209 
frequencies (10 Hz-10 kHz), reflecting the different acoustic properties of the media. 210 

Temporal Processing Scales: Underwater processing often employs longer time windows (100ms-1s) 211 
compared to terrestrial techniques (10-100ms), accounting for longer propagation times and temporal 212 
stretching in underwater environments. 213 
Spatial Processing Differences: Underwater array processing must contend with sound speed variations 214 
and complex propagation paths, requiring more sophisticated beamforming algorithms compared to 215 
terrestrial applications. 216 
Feature Extraction Adaptations: Feature extraction for underwater signals typically emphasizes robust 217 
frequency tracking and tonal detection, while terrestrial processing often focuses on temporal pattern 218 
recognition and transient detection [65]. 219 

C. Cross-Domain Knowledge Transfer 220 

Successful Transfers: Several techniques have successfully transferred between domains with appropriate 221 
modifications: 222 

 Wavelet packet analysis, originally developed for terrestrial applications, has been adapted for 223 
underwater transient analysis by adjusting decomposition levels and basis functions [66]. 224 

 Deep denoising autoencoders from underwater applications have been adapted to terrestrial 225 
contexts by modifying network architecture and pretraining strategies [67]. 226 

 Adaptive time-frequency reassignment methods have shown success in both domains with 227 
adjustment of concentration parameters [68]. 228 

Failed Transfers: Some approaches have proven less adaptable: 229 
 Direct application of terrestrial audio source separation techniques to underwater recordings 230 

typically fails due to different mixing characteristics and propagation effects [69]. 231 
 HMM topologies optimized for bird calls perform poorly on marine mammal vocalizations 232 

without substantial restructuring [70]. 233 
 CNN architectures designed for terrestrial recordings require significant modification of filter 234 

sizes and pooling strategies for underwater applications [71]. 235 

D.  Evaluation Metrics 236 

Signal-to-Noise Ratio (SNR): While commonly used in both domains, SNR calculation methods differ 237 
significantly. Underwater bioacoustics often employs band-limited SNR focusing on species-specific 238 
frequency ranges, while terrestrial applications more commonly use broadband measures [72]. 239 
Detection and Classification Performance: These metrics evaluate the impact of denoising on subsequent 240 
analysis tasks: 241 

 For terrestrial applications, precision-recall curves and F1 scores on species detection are 242 
standard [73] 243 

 Underwater evaluations frequently employ receiver operating characteristic (ROC) curves and 244 
detection range improvement metrics [74] 245 

Perceptual Quality Measures: Subjective evaluation by expert listeners remains important in both 246 
domains, with slight methodological differences: 247 

 Terrestrial evaluations often use Mean Opinion Score (MOS) protocols adapted from speech 248 
processing [75] 249 

 Underwater assessment typically employs specialized protocols focused on call structure 250 
preservation [76] 251 

Computational Efficiency Metrics: Real-time processing ratios, memory requirements, and power 252 
consumption metrics are increasingly important for field deployments in both domains. 253 
 254 
 255 
VIII.  RESEARCH GAPS AND FUTURE DIRECTIONS 256 
 257 

A. Technological Gaps 258 



 

 
 

Real-time Processing Challenges: Despite advances in computational efficiency, real-time denoising with 259 
high-quality results remains challenging, particularly for underwater applications. Future research need to 260 
focus on: 261 

 Hardware-optimized implementations of neural network architectures 262 
 Edge computing solutions for remote deployment 263 
 Algorithmic approximations that maintain performance while reducing computational 264 

complexity 265 
Multimodal Integration: Current denoising approaches rarely leverage complementary sensor data or 266 
contextual information. Promising directions include: 267 

 Integration of acoustic data with environmental parameters (temperature, pressure, humidity) 268 
 Fusion of visual and acoustic information for terrestrial species 269 
 Incorporation of animal movement data to enhance acoustic signal processing 270 

Transferability and Generalization: Many techniques remain highly specialized for particular species or 271 
noise conditions. Addressing this limitation requires: 272 

 Development of domain adaptation techniques for cross-species application 273 
 Self-supervised learning approaches to leverage unlabelled data 274 
 Meta-learning frameworks for rapid adaptation to new bioacoustic domains 275 

 276 

B. Methodological Challenges 277 

Evaluation Standardization: The lack of standardized evaluation protocols hinders comparative 278 
assessment of denoising techniques. Future work should prioritize: 279 

 Development of benchmark datasets with graduated noise challenges 280 
 Standardized metrics that address both signal quality and feature preservation 281 
 Perceptual quality measures specific to bioacoustic applications 282 

Explainability and Interpretability: As machine learning approaches become more prevalent, 283 
understanding the basis of denoising decisions becomes more difficult. Research is needed on: 284 

 Visualization techniques for denoising processes 285 
 Interpretable neural network architectures for bioacoustic processing 286 
 Quantification of uncertainty in denoising outputs 287 

Physics-Informed Learning: Most current approaches do not fully leverage acoustic propagation physics. 288 
Integration opportunities include: 289 

 Neural networks with built-in acoustic propagation constraints 290 
 Hybrid models combining physical simulations with data-driven components 291 
 Differentiable acoustic propagation layers in deep learning architectures 292 

 293 

C. Emerging Approaches 294 

Unsupervised and Self-supervised Learning: Limited availability of labelled data remains a significant 295 
constraint. Promising directions include: 296 

 Contrastive learning for bioacoustic representation 297 
 Reconstruction-based self-supervision 298 
 Time-frequency consistency as a self-supervised objective 299 

Adaptive and Continual Learning: Environmental conditions and noise characteristics change over time, 300 
necessitating adaptive approaches. Research opportunities include: 301 

 Online learning algorithms for evolving noise conditions 302 
 Incremental learning frameworks for new species and environments 303 
 Meta-learning for rapid adaptation to changing conditions 304 

Biologically Inspired Processing: The auditory systems of animals demonstrate remarkable noise 305 
robustness. Future research could explore: 306 

 Cochlear-inspired filterbank designs for initial signal decomposition 307 
 Attention mechanisms based on animal auditory processing 308 
 Neural architectures inspired by species-specific auditory pathways 309 



 

 
 

 310 

D. Application-Specific Challenges 311 

Long-duration Monitoring: Continuous bioacoustic monitoring presents unique challenges for 312 
denoising. Areas requiring attention include: 313 

 Efficient processing of terabyte-scale acoustic datasets 314 
 Handling of diurnal and seasonal variations in noise conditions 315 
 Integration of denoising with automated detection and classification 316 

Biodiversity Assessment: Using bioacoustic data for ecosystem monitoring requires processing diverse 317 
signals simultaneously. Research needs include: 318 

 Separation techniques for overlapping vocalizations 319 
 Multi-species enhancement approaches 320 
 Noise-robust acoustic indices for biodiversity measurement 321 

Conservation Applications: Critical conservation applications demand high reliability and specificity. 322 
Important directions include: 323 

 Species-specific enhancement techniques for endangered vocalizations 324 
 Robust performance in extreme environmental conditions 325 
 Integration with automated population monitoring systems 326 

 327 

E. Cross-Domain Research Opportunities 328 

Unified Theoretical Frameworks: Developing theoretical approaches that span both aerial and 329 
underwater domains could accelerate progress. Possibilities include: 330 

 Generalized time-frequency representations optimized for bioacoustic signals 331 
 Domain-agnostic quality metrics for enhanced signals 332 
 Mathematical models capturing common aspects of bioacoustic signal structure 333 

Transfer Learning Strategies: Systematic approaches for adapting techniques between domains could 334 
leverage strengths from both fields. Research opportunities include: 335 

 Domain adaptation techniques for cross-medium application 336 
 Feature normalization approaches to account for propagation differences 337 
 Meta-learning frameworks trained on both domains 338 

Collaborative Research Initiatives: Bridging the gap between terrestrial and marine bioacoustics 339 
communities could foster innovation. Potential initiatives include: 340 

 Joint benchmark datasets and challenges 341 
 Standardized interface definitions for algorithm comparison 342 
 Cross-domain research consortia and workshops 343 

 344 

IX.  CONCLUSION 345 

The study presents a comprehensive review of denoising techniques for bioacoustic signals across 346 
terrestrial and underwater domains by systematically categorizing approaches from traditional signal 347 
processing to advanced machine learning methods, comparing their effectiveness, limitations, and 348 
domain-specific adaptations. While the fundamental principles of signal processing remain consistent 349 
across domains, the unique physical properties of air and water necessitate specialized approaches to 350 
address domain-specific challenges. Recent advances in machine learning, particularly deep learning, 351 
have dramatically improved denoising performance in both domains, though often with increased 352 
computational requirements. Despite these advances, significant research gaps remain, particularly in 353 
areas of real-time processing, generalization across species and environments, and standardized 354 
evaluation. The comparative analysis reveals that terrestrial and underwater bioacoustic research 355 
communities have often developed parallel techniques to address similar problems, with limited cross-356 
domain knowledge transfer. This presents a significant opportunity for collaboration and integration of 357 
approaches, potentially accelerating progress in both fields. 358 



 

 
 

Looking forward, we anticipate several trends that will shape the future of bioacoustic signal denoising: 359 
1. Increased adoption of self-supervised and unsupervised learning approaches to leverage vast 360 

amounts of unlabelled bioacoustic data 361 
2. Development of hybrid models that combine data-driven methods with physical acoustic 362 

propagation models 363 
3. Deployment of edge computing solutions enabling real-time denoising in remote field conditions 364 
4. Greater standardization of evaluation protocols and benchmark datasets 365 
5. Closer integration between denoising techniques and downstream analysis tasks such as 366 

detection, classification, and behavioral analysis 367 
As anthropogenic noise continues to impact natural environments both on land and underwater, effective 368 
denoising of bioacoustic signals becomes increasingly important for monitoring, conservation, and 369 
research applications. By bridging the divide between terrestrial and underwater approaches, researchers 370 
can develop more robust, adaptable, and effective techniques to meet this growing need. 371 

 372 
 373 
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