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”Transformer Decoder for Chest X-ray Image 4 

Captioning Using Deep Feature Extraction” 5 

 6 
Abstract 7 

Chest x-ray are widely used in hospitals to help doctors diagnose lung 8 
problems. Since the outbreack of covid19, especially during second wave 9 
and winter season, it has become even more important to quickly detect 10 
the disease. To help doctors and reduce their workload, we use Deep 11 
Learning to automatically analyze chest X-ray .This study, propose a 12 
method can look at a chest X-ray image and automatically generate a 13 
medical report. First, we use a model called Vision Transformer (ViT) to 14 
understand overall features of image. use another model called CheXNet, 15 
which is good at identifying chest-related diseases, to extract detailed 16 
medical features.These features are combined and sent to a Transformer 17 
decoder, which creates a meaningful text description of what is seen in 18 
the image. This helps doctors by giving them a quick, accurate summary 19 
of the patient’s condition, making the diagnosis process faster and more 20 
reliable. keyword:Chest X-ray,COVID-19,Medical Image,Vision Trans- 21 
former (ViT),CheXNet,Transformer Decoder,Automated Diagnosis, Med- 22 
ical Image, Radiology 23 

 24 

1 Introduction 25 

Chest X-ray Imaging: Principles and Diagnostic Significance chest x ray imag- 26 
ing represents one of the most fundamental and frequently employed diagnostic 27 
modalities in contemporary clinical medicine. Due to its widespread availabil- 28 
ity, rapid image acquisition, low cost, and minimal radiation exposure, it con- 29 
tinues to serve as a primary tool for the evaluation of thoracic diseases across 30 
diverse healthcare settings, from emergency departments to outpatient clinics. 31 
Chest radiographs provide a two-dimensional (2D) projection of complex three- 32 
dimensional (3D) thoracic anatomy, including the lungs, heart, major vessels, 33 
diaphragm, mediastinum, bony structures, and pleural spaces. The diagnostic 34 
utility of CXR imaging is grounded in the principle of differential radiographic 35 
density. This principle allows radiologists to discern normal anatomical varia- 36 
tions and pathological alterations based on how various tissues attenuate X-ray 37 
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beams. Air-filled structures, such as healthy lung parenchyma, appear radiolu- 
cent or black, while denser tissues—such as bone, fluid, or consolidated lung 
tissue—manifest as progressively whiter opacities on the radiograph. This fun- 
damental contrast enables the identification of key pathological hallmarks asso- 
ciated with pulmonary infections, neoplastic growths, pleural abnormalities, and 
vascular or cardiac conditions. Despite the inherent value of chest X-rays, inter- 
pretation remains an intricate task, challenged by the overlapping of anatomical 
structures, variable patient positioning, technical inconsistencies (e.g., exposure, 
projection angles), and subtle early-stage pathologies. Moreover, disease-specific 
radiographic manifestations can vary significantly in their appearance and sever- 
ity, sometimes producing overlapping visual patterns that further complicate 
diagnosis. Consequently, accurate interpretation demands substantial expertise 
and experience, often necessitating the integration of clinical findings with imag- 
ing data. Even among seasoned radiologists, inter-observer variability poses a 
persistent limitation, prompting increased interest in automated diagnostic sys- 
tems utilizing deep learning to enhance consistency and accuracy. Radiographic 
Variability Across Disease States The visual representation of thoracic disease 
on chest X-ray imaging is deeply influenced by the underlying pathological pro- 
cesses. Below, we examine the radiographic hallmarks and pathophysiological 
basis of four major pulmonary conditions—pneumonia, COVID-19, consolida- 
tion, and pleural effusion—which serve as core focus areas for automated image- 
to-text translation systems in medical AI. Pneumonia: Pathogenesis and Radi- 
ologic Characteristics Pneumonia is a common and potentially life-threatening 
respiratory infection characterized by inflammation of the alveoli—the small 
air responsible to oxygen-carbon dioxide exchange in the lungs. This inflam- 
mation leads to the filling of alveolar spaces with exudate, pus, and cellular 
debris, significantly impairing pulmonary function and oxygenation. The etio- 
logical spectrum of pneumonia is broad, encompassing bacterial agents (such as 
Streptococcus pneumoniae), viruses (e.g., influenza virus, respiratory syncytial 
virus), and opportunistic fungal pathogens (e.g., Pneumocystis jirovecii, par- 
ticularly in immunocompromised individuals). Clinically, pneumonia manifests 
with symptoms such as fever, productive or non-productive cough, pleuritic 
chest pain, tachypnea, dyspnea, and general malaise. The condition dispropor- 
tionately affects the extremes of age—the very young and the elderly—as well 
as individuals with underlying health conditions such as chronic obstructive 
pulmonary disease , diabetes, or immunodeficiency. Radiographically, pneumo- 
nia is characterized by areas of increased pulmonary opacity on chest X-rays, 
indicative of alveolar consolidation. These opacities may be confined to a sin- 
gle lobe (lobar pneumonia), distributed in multiple segments (segmental), or 
diffusely scattered (bronchopneumonia). The classic radiologic finding is the 
presence of homogeneous, well-defined opacities, often accompanied by air bron- 
chograms—radiolucent tubular structures representing air-filled bronchi within 
fluid-filled alveoli. Pneumonia significant cause of global morbidity and mor- 
tality, and radiographic imaging plays a vital role in its diagnosis, monitoring, 
and therapeutic management. COVID-19: Radiological Insights into a Global 
Pandemic Coronavirus Disease 2019 COVID-19 is a highly contagious respira- 
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tory illness caused by the novel coronavirus SARS-CoV-2. First reported in 
Wuhan, China, in December 2019, COVID-19 rapidly escalated into a global 
pandemic, placing an unprecedented burden on healthcare systems worldwide. 
The disease exhibits a broad clinical spectrum, ranging from asymptomatic 
infection to severe pneumonia, acute respiratory distress syndrome (ARDS), 
multi-organ failure, and death. The primary mode of transmission is via res- 
piratory droplets and aerosols, with the lungs being the principal target organ 
due to the expression of ACE2 receptors. Radiologic imaging, including both 
chest X-ray and computed tomography , played essential role in the triage, 
diagnosis, and longitudinal assessment of COVID-19 patients, especially in set- 
tings where polymerase chain reaction testing is delayed or unavailable. On 
chest X-rays, COVID-19-related pneumonia is often characterized by bilateral, 
peripheral ground-glass opacities , diffuse patchy infiltrates, and reticular or 
nodular patterns. In advanced cases, extensive consolidation may be observed, 
particularly in the lower lung zones. Unlike bacterial pneumonia, which often 
presents as localized consolidation, COVID-19-related pulmonary involvement 
tends to be more diffuse and asymmetric. The pulmonary damage seen in severe 
COVID-19 is frequently attributed to a dysregulated immune response, includ- 
ing the so-called “cytokine storm,” which leads to widespread alveolar damage, 
increased capillary permeability, and interstitial edema. Chest X-ray imaging 
thus serves not only as a diagnostic tool but also as a monitoring modality to 
track disease progression and evaluate response to therapeutic interventions, 
including antivirals, corticosteroids, and supportive oxygen therapy. Consolida- 
tion: A Radiologic Sign of Underlying Disease In radiological parlance, consoli- 
dation refers to the replacement of normally aerated alveolar spaces with patho- 
logic substances such as pus (as in infection), blood (as in hemorrhage), fluid 
(as in edema), or neoplastic cells (as in malignancy). This phenomenon results 
in a loss of the normal air-tissue interface, producing regions of increased radio- 
density on imaging studies. Consolidation is most commonly associated with 
infectious processes such as pneumonia, but it may also signify non-infectious 
pathologies including pulmonary infarction, neoplasms, and autoimmune con- 
ditions such as organizing pneumonia. On chest X-rays, consolidation appears 
as a well-demarcated or patchy homogeneous white opacity that often obscures 
the underlying pulmonary vascular markings. It may be associated with ad- 
ditional features such as air bronchograms, silhouette sign (loss of the normal 
border between heart and lung), and volume loss or expansion depending on the 
disease mechanism. Importantly, the morphology and distribution of consolida- 
tion can yield diagnostic clues. For instance, focal lobar consolidation suggests 
bacterial pneumonia, whereas bilateral diffuse consolidation might point toward 
viral infection or ARDS. Thus, identifying the pattern, density, and extent of 
consolidation is pivotal in the differential diagnosis of pulmonary conditions and 
in guiding appropriate clinical management. Pleural Effusion: Imaging Features 
and Clinical Relevance Pleural effusion is defined as the pathological accumu- 
lation of fluid within the pleural space—the narrow compartment between the 
parietal and visceral pleura that envelops the lungs. This condition may arise 
due to a wide array of systemic and local factors, including congestive heart 
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failure, pneumonia, malignancy, pulmonary embolism, and connective tissue 
diseases like lupus or rheumatoid arthritis. Clinically, pleural effusion can man- 
ifest as dyspnea, chest pain, and diminished breath sounds on auscultation. The 
severity of symptoms typically correlates with the volume and rapidity of fluid 
accumulation. On chest radiographs, pleural effusion is indicated by blunting of 
the costophrenic angles, a classic meniscus sign, and, in larger effusions, a homo- 
geneous opacity obscuring the underlying lung parenchyma. In lateral decubitus 
positioning, the fluid may shift with gravity, further confirming its free-flowing 
nature. Effusions are broadly classified as transudative—resulting from systemic 
conditions such as heart failure or hypoalbuminemia—and exudative—caused 
by local inflammation, infection, or malignancy. Accurate differentiation be- 
tween these types is crucial for clinical decision-making and is often guided by 
imaging findings combined with pleural fluid analysis via thoracentesis. Chal- 
lenges in CXR Interpretation and the Role of AI Despite its invaluable diagnostic 
role, chest X-ray interpretation remains fraught with challenges. Variability in 
image acquisition (e.g., anterior-posterior vs. posterior-anterior views), patient 
factors (e.g., obesity, inability to inspire deeply), and subtle early-stage disease 
findings contribute to potential diagnostic uncertainty. Furthermore, overlap- 
ping features among different diseases—for instance, diffuse opacities in both 
COVID-19 and ARDS—make visual differentiation difficult even for experienced 
radiologists. In response to these limitations, artificial intelligence (AI)-driven 
solutions have emerged as powerful tools to augment diagnostic accuracy. Deep 
learning models, particularly convolutional neural networks (CNNs) and vision 
transformers (ViTs), have demonstrated considerable promise in analyzing CXR 
images. These models can automatically detect radiographic patterns associ- 
ated with specific diseases, highlight regions of interest using attention maps, 
and even generate textual interpretations akin to radiology reports. By learning 
from large annotated datasets, such AI systems can extract hierarchical features 
that transcend simple pixel-level differences, capturing the complex visual pat- 
terns indicative of specific pathological states. In particular, transformer-based 
models have shown an ability to integrate image features with natural language 
generation, enabling the translation of visual inputs into coherent textual de- 
scriptions—an approach that underpins the goal of chest X-ray image-to-text 
transformation projects. 

 

2 Related Work 

• Pnemonia detection using deep learning 

a deep learning model that achieves radiologist-level performance in detect- 
ing pneumonia from chest X-rays. The model is a 121-layer Dense Convolutional 
Network (DenseNet-121) trained on the ChestX-ray14 dataset, which contains 
over 100,000 frontal-view chest X-rays labeled with 14 different pathologies. To 
demonstrate how a deep learning system can match or even outperform expert 
radiologists.  To achieve this, the authors trained CheXNet to predict all 14 
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pathologies and then fine-tuned it specifically for pneumonia detection. A key 
contribution is the comparison between CheXNet and four radiologists, where 
the model performed slightly better than the average expert in terms of F1 
score. CheXNet uses transfer learning, where a model pretrained on ImageNet 
is adapted to chest X-ray images. The paper also employs class activation maps 
to visualize regions in the X-rays that are most relevant to the model’s predic- 
tions, aiding interpretability. The results showed that CheXNet can serve as a 
reliable tool for screening and triage, especially in areas with limited access to 
radiologists. The study suggests that deep learning has the potential to support 
or partially automate medical image interpretation. 

• ”Automated Chest X-ray Radiology Report Generation” 

a model for automated generation of radiology reports from chest x-ray, aim- 
ing to replicate human-level descriptive capability using deep learning. The sys- 
tem combines a Convolutional Neural Network (CNN) for image feature extrac- 
tion and a Recurrent Neural Network, specifically Long Short-Term Memory, 
for report generation. The dataset used is IU X-Ray, which contains X-ray im- 
ages paired with structured radiology reports. The authors propose a two-stage 
pipeline: (1) image encoder using CNN to obtain image embeddings, and (2) 
report decoder using LSTM to generate textual findings. Attention mechanisms 
are integrated to help the decoder focus on relevant image areas while generat- 
ing each word. Performance is measured using BLEU, METEOR, and ROUGE 
scores. The model showed promising results in terms of linguistic fluency and 
medical accuracy, though it still struggles with rare findings and fine-grained 
nuances. The paper emphasizes the potential of AI in clinical documentation, 
reducing workload and improving consistency. Limitations include data scarcity 
and challenges in accurately modeling diverse medical terminology. 

• ”Transformer-Based Chest X-ray Report Generation” 

This work explores the application of Transformer architectures for generating 
radiology reports from chest X-rays, aiming to improve upon traditional RNN- 
based methods. The authors propose a Vision Transformer (ViT) + Transformer 
decoder model that directly generates full reports. Using the MIMIC-CXR 
dataset, the system maps image patches to embeddings via a ViT encoder, then 
feeds these into a Transformer decoder to produce natural language reports. 
This setup allows for better handling of long-range dependencies in text and 
fine-grained image features. Results are evaluated using BLEU, ROUGE-L, and 
CIDEr. The proposed method outperforms RNN-based baselines and matches 
clinical accuracy in many cases. Visualizations of attention weights show that 
the model effectively links image regions to relevant report content. The study 
concludes that pure Transformer models, while computationally intensive, are 
superior in coherence, accuracy, and scalability for medical text generation. 
Challenges remain in aligning predictions with clinically correct language and 
incorporating domain-specific knowledge. 

• ”Clinically Accurate Chest X-ray Report Generation with Knowledge Graphs” 
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This paper enhances chest X-ray report generation by incorporating medical 
knowledge graphs into a Transformer-based pipeline. The model, called KERP 
(Knowledge Enhanced Report Parser), integrates domain-specific knowledge to 
improve accuracy and reduce factual errors. KERP uses a three-step process: 
(1) a graph encoder creates medical entity embeddings from the knowledge base, 
(2) a visual encoder extracts features from images, and (3) a Transformer de- 
coder generates reports using a fusion of visual and graph-based knowledge. 
The dataset used is MIMIC-CXR. The system outperforms other methods in 
generating clinically accurate and coherent reports, especially in rare or subtle 
disease cases. Evaluation includes BLEU, ROUGE, and a newly proposed clini- 
cal accuracy score. This approach highlights the importance of domain-specific 
knowledge in medical AI systems. The fusion of structured medical knowledge 
with image features leads to reports that are more aligned with real clinical in- 
terpretations. Limitations include the static nature of the graph and incomplete 
knowledge coverage. 

• ”AlignTransformer: Alignment-Aware Transformer for Chest X-ray Re- 
port Generation” 

Align Transformer is a novel architecture designed to improve alignment be- 
tween image features and textual descriptions in chest X-ray report generation. 
The key idea is to explicitly model the alignment between image regions and 
phrases in the report, which traditional models often ignore. The model uses a 
standard CNN (e.g., ResNet-101) to encode the image, followed by an alignment- 
aware Transformer decoder that emphasizes cross-modal relationships. It intro- 
duces an alignment loss function to guide the training process towards bet- 
ter correspondence between visual and textual elements. Using the IU X-Ray 
and MIMIC-CXR datasets, the model achieves higher BLEU, METEOR, and 
ROUGE scores compared to state-of-the-art baselines. Visualizations show that 
the model better grounds textual tokens in specific image regions, making the 
reports more interpretable. The paper concludes that alignment-aware mod- 
eling significantly enhances clinical relevance and interpretability of generated 
reports. Limitations include increased complexity and longer training times. 

• ”Exploring the Limits of Chest X-ray Report Generation with GPT” 

IN This investigates the capabilities of large language models (LLMs), especially 
GPT, in generating radiology reports from chest X-ray images. The authors in- 
tegrate image features from CNNs or ViTs with GPT-style decoders to examine 
how well general-purpose LLMs perform in a medical setting. The architec- 
ture includes an image encoder followed by a frozen or fine-tuned GPT decoder 
trained to generate findings, impressions, and recommendations. The model is 
evaluated using standard metrics like BLEU, ROUGE, and clinical correctness 
by expert radiologists. While GPT performs well in terms of fluency and gen- 
eral structure, it often hallucinates medical facts not grounded in the image. 
Fine-tuning with medical data reduces these errors but doesn’t eliminate them. 
The paper also discusses prompt engineering and transfer learning as ways to 
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adapt general models to medical tasks. The study concludes that while GPT 
shows promise, domain adaptation and medical grounding are crucial for clin- 
ical safety. LLMs are not yet reliable as standalone diagnostic tools but could 
assist radiologists as writing aids. 

• ”Uncertainty-Aware Chest X-ray Report Generation” 

In This proposes an uncertainty-aware approach to chest X-ray report genera- 
tion. The key idea is to quantify the confidence of the AI system when gener- 
ating each sentence in the report, helping doctors identify which parts are more 
reliable. The system combines a CNN image encoder, a Transformer-based de- 
coder, and an uncertainty estimation module. This module uses techniques like 
Monte Carlo Dropout to produce confidence intervals for the generated content. 
Trained on the dataset, the model shows comparable language quality to pre- 
vious methods but provides extra information about prediction reliability. This 
is crucial in clinical settings where overconfidence in incorrect results can be 
harmful. By integrating uncertainty scores with generated text, the model en- 
ables clinicians to better interpret and validate AI outputs. Limitations include 
increased computational cost and difficulty in calibrating uncertainty measures. 

 

3 Proposed Methodology 

details of the proposed model for robust and effcient classifcation of Covid-19 
disease from input chest x ray. 

1. Dataset description A dataset based on chest X-rays is used in this 
study. To complete the classification task, 10,874 X-ray images in PNG 
(portable network graphics) format are used. The size of the input image 

is set to 224 × 224 × 3.One dataset is created by combining the three 
different chest radiographs of lung diseases. All photos are from publicly 
available sources. Three categories are used to group all of the samples: 
training , testing , and validation. A strong and deep effcient model is 
developed. 

2. Data Preprocessing 
1. The goal of image resizing and scaling is to uniformize input dimensions 
throughout the dataset. Method: Depending on the model (e.g., ResNet, 
DenseNet, ViT), all CXR images are downsized to a specific resolution, 

usually 224×224 or 512×512 pixels. 
Rescaling: Pixel values are frequently standardized using mean and stan- 
dard deviation (e.g., ImageNet values) or normalized to a [0, 1] range. 
2. Contrast Enhancement Histogram Equalization: This technique dis- 
perses intensity values to improve contrast. Contrast Limited Adaptive 
Histogram Equalization, is a better local technique that is frequently ap- 
plied in medical imaging to improve soft tissue contrast. 
3. Diminution of Noise Gaussian blurring, also known as median filtering, 
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Figure 1: Preprocessing image 

 
eliminates random noise without obscuring significant patterns.aids in re- 
moving artifacts from images, which is crucial when utilizing portable or 
low-quality X-ray equipment. 

3. Dataset description This work uses a specially curated dataset of frontal 
chest X-ray (CXR) images along with matched textual radiology reports 
in the cross-modal translation from radiography to descriptive text. The 
data set is obtained from publicly accessible data sources like the ChestX- 
ray14, normal X-ray image, and COVID19, pneumonia, consolidation, 
pleural effusion datasets. 

 

4 Ferature Extraction 

• Feature extraction serves as an important aspect of bridging the visual 
and textual modalities in our chest X-ray image-to-report transforma- 
tion pipeline. In this work, we utilize the merits of two of the most 
current deep convolutional and transformer-based architectures—Vision 
Transformer (ViT-B/16) and CheXNet (DenseNet-121)—to extract high- 
level, semantically dense feature representations from preprocessed chest 
radiographs. 

• Vision Transformer is a transformer-based model that uses the self-attention 
operation for image patches as an alternative to convolutional neural net- 
works. We specifically use the ViT-B/16 variant, which separates in- 

put images into non-overlapping 16×16 patches, embeds them into linear 
space, and processes them via stacked encoder transformer blocks. Input 

Image Size: 224 × 224 × 3 Patch Size: 16 × 16 (196 patches in total) 
Output Dimension: 768 (for the [CLS] token and each patch) Feature 
Vector Utilized: Output embedding for the [CLS] token Output Shape: 
(1, 768) The ViT model is pre-trained on ImageNet-21k and fine-tuned on 
ImageNet-1k. We obtain the last [CLS] token embedding after passing the 
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image through all the encoder layers, which captures a global contextual 
representation of the image appropriate for downstream tasks like report 
generation. 

• CheXNet (DenseNet-121) CheXNet is a DenseNet-121 model pretrained 
on the ChestX-ray14 dataset alone for classification of thoracic diseases. 
Its convolutional backbone can extract spatially dense clinical abnormality- 
relevant features. 

Input Image Size: 224 × 224 × 3 

Final Convolution Output: (1024, 7, 7) 

Adaptive Average Pooling: Pooled output to (1024, 1, 1) 

Flattened Feature Vector: 1024-dimensional 

Output Shape: (1, 1024) 

In order to use CheXNet as a feature extractor, we remove the classifica- 
tion head and employ the penultimate feature map. The feature tensor is 
pooled and flattened to get a dense feature representation encapsulating 
the diagnostic content of the image. 

 

5 Model Architecture 

 CheXNet Model Architecture 

Input: 3 × 224 × 224 (Chest X-ray image, RGB) 1. Initial Convolution and 
Pooling Layers 

 

Layer Type Output Shape Kernel/Stride/Pad Description 
Conv2d 64 × 112 × 112 7×7 / 2 / 3 Initial convolution layer 
BatchNorm2d 64 × 112 × 112 - Batch normalization 
ReLU 64 × 112 × 112 - Activation 

MaxPool2d 64 × 56 × 56 3×3 / 2 / 1 Downsampling 

Table 1: Neural network layer specifications. 
 

 

 Dense Block 1 + Transition Layer 1 

 
Component Output Shape Description 
Dense Block 1 256 × 56 × 56 6 dense layers 
Transition Layer 1 128 × 28 × 28 1×1 conv + avg pool 

Table 2: Placeholder caption for component description and output shape 
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 Dense Block 2+ Transition Layer 2 

• Input: 128 × 28 × 28 (from Transition Layer 1) 

• Number of Layers: 12 Dense Layers 

• Growth Rate: 32 (Each layer adds 32 channels) 

• Output Channels: 128 (input) + 12 × 32 (new channels) = 512 channels 

 
Component Output Shape Description 
Dense Block 2 512 × 28 × 28 12 dense layers 
Transition Layer 2 256 × 14 × 14 1×1 conv + avg pool 

Table 3: Description of Network Components 
 
 

 Vision Transformer (ViT-B/16) 

 
The ViT-Base model meets performance on par by utilizing global attention 
mechanisms to represent long-distance relations across image areas. Its design 
eschews convolution operations altogether and instead relies on patch embed- 
dings, self-attention, and deep Transformer encoders to obtain semantic repre- 
sentations of visual information. Its design is especially potent when pretrained 
on big datasets and fine-tuned for applications such as medical image interpre- 
tation, including diagnosis on chest X-rays. 

 

Layer No. Layer Type Input Shape Output Shape 
1 Input Image (3, 224, 224)  

2 Patch Split + Flatten (3, 224, 224) (196, 768) 
3 Linear Projection (196, 768) (196, 768) 
4 Class Token [CLS] (196, 768) (197, 768) 
5 Position Embedding (197, 768) (197, 768) 

6-29 Transformer Encoder ×12 (197, 768) (197, 768) 
 — LayerNorm (197, 768) (197, 768) 
 — Multi-Head Attention (197, 768) (197, 768) 
 — Skip Connection (197, 768) (197, 768) 
 — LayerNorm (197, 768) (197, 768) 
 — MLP (Linear → GELU → Linear) (197, 768) (197, 768) 
 — Skip Connection (197, 768) (197, 768) 

30 Final LayerNorm (197, 768) (197, 768) 
31 CLS Token Extraction (197, 768) (768,) 
32 Classification Head (optional) (768,) (num classes,) 

Table 4: Model Architecture Layer Details 
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 Vision Transformer Algorithm 

1. Patch Embedding 

Convert an input image I ∈ R3×H×W into a sequence of flattened patches: 

x = Flatten(Patch (I)) ∈ RP 
2 ·C 

Apply a trainable linear projection: 

z0 = xpWe + b 

 

2. Self-Attention Mechanism 

For each patch embedding x, compute query, key, and value vectors: 

Q = xWQ, K = xWK, V = xWV 

Compute the attention weights and apply them to the values: 

 
QK⊤

  

 

3. Multi-Head Self-Attention (MHSA) 

Split the input into h heads, perform attention in parallel, and concatenate the 
results: 

MHSA(X) = Concat(head1, . . . , headh)WO 

 

4. Feed-Forward Network (FFN) 

A two-layer MLP with a GELU activation function: 

FFN (x) = Linear2(GELU (Linear1(x))) 
 

Algorithm: ViT Base 
 

Input: RGB Image x R3×224×224 
Output: Feature vector f R768 or classification vector y RC function ViT- 
Base(x): 

Divide x into 16×16 non-overlapping patches 
Flatten patches and apply linear projection → z 
Add class token [CLS] to z 
Add positional encoding to z 
for each of the 12 Transformer Encoder layers: 

Apply LayerNorm → Multi-Head Attention → Residual 
Apply LayerNorm → MLP → Residual 
end for 

Attention(Q, K, V ) = softmax V 
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Extract [CLS] token output as feature vector f 
if classification task then 

Apply classification head → y 
return y 
else 
return f 
end if 
end function 

 

Mathematical Description of the Grad-CAM 

The Gradient-weighted Class Activation Mapping (Grad-CAM) visualizes the 
spatial importance of each region of an input image for a specific class prediction. 
It does this by computing the gradient of the output class score with respect to 
the feature maps of a convolutional layer. 

Let: 

• yc be the class score (e.g., probability or logit) for class c. 

• Ak ∈ RH×W be the k-th feature map of a convolutional layer. 

• αc be the importance weight for feature map k with respect to class c. 

Step 1: Compute Gradients 

Compute the gradient of the class score with respect to the feature maps: 

∂yc 

∂Ak 

Step 2: Global Average Pooling Over Gradients 

Compute the importance weights: 
 

H  W c 

αc = 
 1  Σ Σ  ∂y  

Step 3: Compute Weighted Combination of Feature Maps 

The class activation map is obtained as: 

 
c c  k 
Grad−CAM k 

k 

Here, ReLU is applied to retain only positive influences that contribute posi- 
tively to the class score. 

L 
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6 Result and Discussion 

Self-Attention in Vision Transformers (Viit) 

• Vision Transformers (ViTs) use self-attention to weigh the importance of 
different image patches relative to one another. 

• The image is divided into patches (e.g., 16×16), embedded, and fed into 
a Transformer encoder. 

• At each layer, self-attention maps determine how each patch attends to 
every other patch. 

• These maps can be aggregated (e.g., using attention rollout) to visualize 
overall focus. 

• Attention Rollout Technique: 

• This method propagates attention across layers to determine how the out- 
put class token depends on input patches. It provides a holistic view of 
spatial dependencies learned by the Transformer. 

• Clinical Relevance of Attention Maps Attention heatmaps serve not only 
as interpretability tools but also aid in: 

• Feature localization: Helps the model attend to pathologically relevant 
structures. 

• Model trustworthiness: Provides clinicians visual evidence for AI-driven 
decisions. 

• Training supervision: In weakly supervised learning, attention maps act 
as pseudo-labels. 

• Dataset annotation: Radiologists can validate attention maps to refine 
annotations. 
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Figure 2: Grad-CAM 

 
Prediction and Attention Visualization Result 
Figure 3 illustrates an example output of the proposed image-to-text genera- 

tion model for chest X-rays. On the left, the input is a frontal chest X-ray image 
of a normal subject, displaying clear lung fields without any radiographic signs 
of pathology. In the center, the colored grid represents an attention heatmap 
overlay derived from the Transformer decoder during the text generation pro- 
cess. The heatmap highlights the regions of the image that were most influential 
in the model’s prediction, particularly focusing on the central thoracic zone cor- 
responding to the lung fields and mediastinum. 

On the right, the generated textual report reads: 
”The lungs are clear. No pleural effusion, pneumothorax or focal 

air-space disease.” 
This output demonstrates the model’s ability to not only identify normal 

anatomical structures but also to rule out critical pathologies such as pleural 
effusion, pneumothorax, or focal consolidation. The attention map further con- 
firms that the model is attending to medically relevant areas of the chest X-ray 
during inference, thereby reinforcing the interpretability and clinical plausibility 
of the generated report. 

This result exemplifies the effectiveness of the Vision Transformer (ViT) 
feature extractor combined with a Transformer decoder in producing coherent, 
medically accurate, and interpretable radiological summaries. 

This generated report mirrors common language used by radiologists in nor- 
mal chest X-ray assessments. The absence of findings such as pleural effusion, 
pneumothorax, and air-space disease (e.g., pneumonia or consolidation) indi- 
cates a normal study. The specificity and clarity of this output demonstrate the 
model’s capacity for both diagnostic accuracy and clinically relevant language 
generation. 

chest X-ray image-to-text transformation using a Vision Transformer and 
Transformer decoder. The left panel shows the input image; the middle panel 
is the attention heatmap generated during decoding; the right panel shows the 
automatically generated report. The attention mechanism effectively focuses on 
clinically relevant thoracic regions. 
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Figure 3: Text transformation 

 
Gradient-weighted class Activation Mapping (Grad-CAM) 

As shown in fig.4 Grad-CAM visualizes the spatial importance of each region 
of an input image for a specific class prediction. It does so by computing the 
gradient of the output class score with respect to the feature maps of a convolu- 
tional neural network (CNN), and generating a heatmap that localizes the most 
discriminative regions. In fig.4 Show the Grad-CAM image in different region 
show is in different color 

Context in chest x-ray Image-to-Test Project 

• The input image I is a preprocessed chest X-ray that has undergone seg- 
mentation and enhancement. 

• A CNN backbone (e.g., ResNet or hybrid ViT with convolutional stem) is 
used to extract image features Ak. 

• A Transformer decoder generates medical reports based on these features. 

• Grad-CAM is applied to the CNN encoder to identify the spatial regions 
that most strongly influenced the encoded features for a given class (e.g., 
pneumonia, pleural effusion). 

This visualization serves as an interpretability tool to validate that the model is 
attending to clinically relevant anatomical structures, thereby enhancing model 
transparency in a critical domain like radiology. 
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Figure 4: Grad-CAM 

 

Mapping and Visualization 

• The resulting heatmap Lc 
and overlaid on the original image. 

• A jet colormap is used to visualize: 

– Red/Yellow regions ⇒ L
c
 

 
is upsampled to the input resolution 

 
 

 
≈ 1: High influence zones. 

– Blue regions ⇒ Lc 
Grad−CAM 

≈ 0: Low influence zones. 
Grad−CAM 

This visualization serves as an interpretability tool to validate that the 
model is attending to clinically relevant anatomical structures, thereby enhanc- 
ing model transparency in a critical domain like radiology. 
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