

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-53019 Date: July 26, 2025

Title: Effects of calcination temperature on the catalytic activity of CaO synthesized by alkaline precipitation in the transesterification reaction,

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is	Originality		Χ		
Accept after minor revision Accept after major revision Do not accept (Reasons below)	Techn. Quality		Х		
	Clarity			X	
	Significance			X	

Reviewer Name: Dr Lakhdar Guerine Date: July 26,

2025

Detailed Reviewer's Report

This study evaluates the effect of calcination temperature (750, 850, and 950 °C) on the catalytic activity of CaO synthesized by alkaline precipitation from CaCl₂. The catalyst was applied in the transesterification of soybean oil to produce biodiesel (FAME). Results show that all powders exhibited catalytic activity, with FAME yields ranging from 65% to 91%. CaO calcined at 850 °C demonstrated the best stability, maintaining yields above 85% even after two reuses. However, overall process yields varied between 33% and 60%, indicating losses during purification steps. The findings confirm the potential of CaO as a heterogeneous catalyst while highlighting the need to improve reusability and minimize losses.

Strengths

a) Optimal temperature identified (850 °C), ensuring high activity and reusability.

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

- b) Simple and cost-effective synthesis method for CaO.
- c) High FAME yields (up to 91%) during the first use.
- d) Comprehensive experimental characterization (XRD, viscosity, yield).

Weaknesses

- 1) Significant losses during purification steps, leading to low overall process yield.
- 2) Limited reusability; performance drops after two cycles.
- 3) No detailed analysis of surface area and porosity of catalysts.
- 4) Formation of Ca(OH)₂ and CaCO₃ due to air exposure, reducing catalyst purity.

Recommendation: Minor revison

Formatting and layout issues

- 1) Misplaced Figures 3 and 4, disrupting the reading flow.
- 2) Lack of tables, making numerical comparison difficult.

Incomplete discussion

- a) No detailed analysis of textural properties (surface area, porosity).
- b) No quantitative comparison with other studies to contextualize performance.

Language and scientific style

1) Some sentences are overly descriptive rather than analytical.