- Long-Term Functional Recovery Following
- 2 Botulinum Toxin Type A for Gastrocnemius
- 3 Hypertonia After Lumbar Laminectomy: A Case
- 4 Report

5

6

### **Abstract**

- 7 Background: Focal muscle hypertonia/spasticity can complicate recovery after spinal
- 8 surgery, limiting mobility and function. Botulinum toxin type A (BoNT-A) reduces
- 9 acetylcholine release at the neuromuscular junction and is an established, targeted therapy
- 10 for focal spasticity when combined with rehabilitation.

11

- 12 Case: A 23-year-old man developed painful spasms and focal hypertonia of the right
- 13 gastrocnemius after L2–L3 laminectomy. Ultrasound-guided BoNT-A was administered
- to the medial (25 U) and lateral (12.5 U) heads, followed by a structured rehabilitation
- program.

16

- 17 Outcomes: The patient showed rapid improvements in pain, modified Ashworth scale
- 18 (MAS), ankle dorsiflexion, and gait within two weeks; he resumed light jogging by three
- months. At two years, he reported full return to running and gym activities without
- 20 reinjection and no adverse effects.

21

25

- 22 Conclusion: In this postoperative context of focal gastrocnemius hypertonia, BoNT-A
- 23 plus rehabilitation was associated with sustained pain relief and functional recovery over
- 24 two years, supporting individualized, multidisciplinary spasticity management.

### Introduction

- 26 Postoperative hypertonia and spasticity can hinder gait restoration after spinal procedures
- 27 when neural elements are irritated or recovery is prolonged. BoNT-A acts by reversibly
- 28 inhibiting acetylcholine release through cleavage of SNARE proteins at cholinergic
- 29 terminals, producing a focal chemodenervation that peaks over 1–2 weeks and typically
- 30 lasts 3–4 months. Across neurologic etiologies, randomized and real-world evidence
- 31 supports BoNT-A for lower-limb spasticity, including plantarflexor overactivity affecting
- 32 gait. Guidance statements emphasize goal-directed dosing and muscle selection alongside
- 33 rehabilitation to optimize function. Ultrasound or electrical stimulation guidance
- 34 enhances injection precision compared with landmark methods for triceps surae.

### **Case Presentation**

35

### **Patient Information**

- A 23-year-old previously healthy male (history notable only for irritable bowel
- 38 syndrome) presented with acute low back pain and right-sided radiculopathy that
- 39 progressed over one week to the point of limited ambulation. No trauma, constitutional
- 40 symptoms, or sphincter dysfunction were reported.

## 41 Clinical Findings

- 42 Neurological examination demonstrated a right L4 sensory deficit, reduced strength in
- right hip/knee muscle groups, positive straight-leg raise at 40° on the right, and painful
- spasm with hypertrophy of the right gastrocnemius. There were no signs of wound
- 45 infection or myelopathy.

### 46 Timeline

| Date     | Event                                                                       |
|----------|-----------------------------------------------------------------------------|
| Apr 21   | ER presentation with back pain and radiculopathy                            |
| Apr 24   | L2–L3 laminectomy                                                           |
| May 1    | Discharged after initial rehab assessment                                   |
| Jul 9    | Outpatient review: right gastrocnemius focal hypertonia observed            |
| Jul 15   | BoNT-A injection: medial head 25 U; lateral head 12.5 U (ultrasound-guided) |
| Jul 30   | Marked symptom relief; improved gait and ankle ROM                          |
| 3 months | Functional stretching; light jogging                                        |
| 1 year   | Moderate physical tasks tolerated;<br>minimal stiffness only                |
| 2 years  | Full return to running/gym; no recurrence; no reinjection                   |

## 48 Diagnostic Assessment

- 49 Ultrasound revealed right medial gastrocnemius hypertrophy (≈1.3 cm vs 0.8 cm
- 50 contralaterally). Spasticity measured MAS 1+ at the ankle plantarflexors. Pain was VAS
- 51 6/10 pre-injection. Passive ankle ROM was full with end-range pain; active dorsiflexion
- was limited by overactivity. Post-injection manual muscle testing showed at least a
- two-grade improvement in dorsiflexors and plantarflexors.

# 54 Therapeutic Intervention

- 55 Under ultrasound guidance, BoNT-A was infiltrated into the medial (25 U) and lateral
- 56 (12.5 U) heads of the gastrocnemius. Post-injection rehabilitation comprised daily
- 57 gastrocnemius—soleus stretching, progressive neuromuscular re-education (ankle strategy
- and closed-chain control), and gait retraining emphasizing controlled tibial progression
- 59 and terminal stance.

## **Follow-Up and Outcomes**

- 61 Short-term (1 month): Pain decreased to VAS 1–2/10; MAS improved; dorsiflexion
- strength and spatiotemporal gait parameters improved; standing calf stretching became
- pain-free.

60

- 64 Intermediate (3–12 months): Gradual resumption of sport; no recurrence of spasms;
- occasional tightness only after prolonged activity.
- 66 Long-term (2 years): Full return to running and resistance training; single-leg hop
- 67 symmetric bilaterally; no reinjection required; no adverse events were reported.

### 68 Discussion

- This case highlights a post-laminectomy context of focal gastrocnemius hypertonia
- successfully addressed with targeted BoNT-A plus rehabilitation, with sustained recovery
- at two years. Although most BoNT-A evidence arises from post-stroke or other upper
- 72 motor neuron syndromes, its mechanism and goal-directed application are consistent
- across etiologies when focal overactivity limits function. Precise targeting of the
- 74 gastrocnemius heads under ultrasound likely enhanced localization and response
- compared with landmark techniques, while pairing injections with rehabilitation is
- 76 recommended to translate tone reduction into functional gains. For mild spasticity (MAS
- 1+), a relatively low total dose confined to the target muscle can minimize spread and
- adverse effects while allowing active retraining. BoNT-A effects typically last 3–4
- 79 months, but functional benefits may persist with ongoing rehabilitation or repeated cycles
- when indicated. In this case, durable recovery without reinjection may reflect early
- 81 correction of aberrant motor patterns and improved strength, although this hypothesis
- 82 requires prospective validation.

### 83 Conclusion

- 84 In a young adult with post-laminectomy focal gastrocnemius hypertonia,
- 85 ultrasound-guided BoNT-A combined with structured rehabilitation was associated with
- rapid symptom relief and sustained, reinjection-free functional recovery at two years.
- 87 This case supports individualized, multidisciplinary spasticity management and judicious
- 88 BoNT-A use outside traditional post-stroke indications.

### **89** Patient Perspective

- 90 "The treatment made a huge difference. I went from being unable to walk without pain to
- 91 running again. I feel completely back to normal now."

#### 92 Informed Consent

- Written informed consent was obtained from the patient for publication of this case report
- and any accompanying images.

## 95 References

- 96 1. Esquenazi, A., Alfaro, A., Ayyoub, Z., Charles, D., Dashtipour, K., Graham, G. D.,
- 97 McGuire, J. R., Odderson, I. R., Patel, A. T., & Simpson, D. M. (2017).
- OnabotulinumtoxinA for lower limb spasticity: Guidance from a Delphi panel
- 99 approach. PM&R, 9(10), 960–968. https://doi.org/10.1016/j.pmrj.2017.02.014
- 100 2. Esquenazi, A., Bavikatte, G., Sunnerhagen, K. S., Kaji, R., Mazibrada, G., &
- Marciniak, C. (2021). OnabotulinumtoxinA treatment for adult lower limb spasticity:
- Long-term observational results from the ASPIRE registry. PM&R, 13(10), 1079–
- 103 1093. https://doi.org/10.1002/pmrj.12517
- 3. Morel, C., Hauret, I., Andant, N., Bonnin, A., & Coudeyre, E. (2023). Effectiveness
- of ultrasound-guided vs electrical-stimulation-guided abobotulinumtoxinA injections
- in triceps surae spasticity after stroke. Journal of Rehabilitation Medicine, 55,
- 107 jrm00380. https://doi.org/10.2340/jrm.v55.1381
- 4. Paley, M., Venkatesan, M., Li, S., & Fridman, E. A. (2022). Comparison of
- 109 ultrasound and electrical stimulation guidance for onabotulinumtoxinA injections.
- Movement Disorders Clinical Practice, 9(8), 1061–1069.
- 111 https://doi.org/10.1002/mdc3.13533
- 5. Padda, I. S., & Tadi, P. (2023). Botulinum toxin. In StatPearls. StatPearls Publishing.
- 6. Picelli, A., Bonetti, P., Fontana, C., Barausse, M., Dambruoso, F., Gajofatto, F.,
- Tamburin, S., Girardi, P., Gimigliano, R., & Smania, N. (2012). Accuracy of
- botulinum toxin type A injection into the gastrocnemius: Manual vs electrical
- stimulation guidance. Journal of Rehabilitation Medicine, 44(5), 450–452.
- 117 https://doi.org/10.2340/16501977-0970

- 7. Picelli, A., Lobba, D., Midiri, A., Prandi, P., Melotti, C., Baldessarelli, S., & Smania,
- N. (2013). Forearm injections for post-stroke spasticity: Manual vs electrical vs
- 120 ultrasound guidance (randomized trial). Clinical Rehabilitation, 28(3), 232–242.
- 121 https://doi.org/10.1177/0269215513497735
- 8. Picelli, A., Tamburin, S., Cavazza, S., et al. (2014). Ultrasound, EMG, and clinical
- parameters in spastic equinus. Archives of Physical Medicine and Rehabilitation,
- 95(8), 1564–1570. https://doi.org/10.1016/j.apmr.2014.04.011
- 9. Santamato, A., Cinone, N., Panza, F., Letizia, S., Santoro, L., Lozupone, M., Daniele,
- A., Picelli, A., Baricich, A., Intiso, D., & Ranieri, M. (2019). Botulinum toxin type A
- for lower limb spasticity after stroke: A review. Drugs, 79(2), 143–160.
- 128 https://doi.org/10.1007/s40265-018-1042-z
- 129 10. Wein, T., Esquenazi, A., Jost, W. H., Ward, A. B., Pan, G., & Dimitrova, R. (2018).
- OnabotulinumtoxinA for post-stroke distal lower-limb spasticity: A randomized trial.
- PM&R, 10(7), 693–703. https://doi.org/10.1016/j.pmrj.2017.12.006
- 132 11. Wissel, J., Bensmail, D., Ferreira, J. J., et al. (2022). A practical guide to optimizing
- post-stroke spasticity care. Journal of Rehabilitation Medicine, 54, jrm00363.
- 134 https://doi.org/10.2340/jrm.v54.1769