Mulligan Mobilization Techniques to

Restore Knee Flexion in a Post-ACLR

Handball Player: A Case Report

- 4 Keywords: ACLR, meniscus repair, Mulligan technique, manual therapy, knee flexion, sports
- 5 rehabilitation, case report

6 **Abstract**

- 7 Background: Persistent limitations in knee flexion after anterior cruciate ligament
- 8 reconstruction (ACLR) with meniscus repair can hinder athletic performance, delay return
- 9 to sport, and reduce overall quality of life.

1011

3

- Purpose: This case report explores the application of Mulligan mobilization techniques to
- 12 address chronic knee flexion restriction in a competitive handball player one year post-
- 13 ACLR.

14

- 15 Case Description: A 24-year-old male handball player, one year post-ACLR using a patellar
- tendon bone (PTB) graft with concurrent medial meniscus repair, presented with knee
- 17 flexion limited to 125°, pain during quadriceps stretching, and difficulty in functional
- 18 positions such as cross-legged sitting.

19

- Intervention: An 8-week program incorporating weekly Mulligan mobilization with movement (MWM) techniques—lateral tibial glide in prone and internal tibial rotation in
- 22 supine—was implemented alongside home-based active flexion drills.

23

- 24 Outcomes: Knee flexion improved to >135° with resolution of pain during functional
- $25 \qquad \hbox{positions and quadriceps stretching. The patient returned to full handball training without}$
- 26 restrictions.

27

31

- 28 Conclusion: Mulligan mobilization techniques may offer an effective, non-invasive solution
- 29 for post-operative flexion deficits in athletes, supporting both functional recovery and
- 30 return-to-sport readiness.

Introduction

- 32 Anterior cruciate ligament injuries are among the most common and debilitating sports-
- related knee injuries, particularly in pivoting and contact sports such as handball. Surgical
- 34 reconstruction, often accompanied by meniscus repair, aims to restore stability, preserve
- 35 joint integrity, and enable athletes to return to high-level activity (Logerstedt et al., 2013).

- Despite advances in surgical technique and rehabilitation, some patients experience persistent range of motion (ROM) deficits, notably in flexion, which can impair
- 38 biomechanical efficiency and athletic performance (Shelbourne et al., 1996; Wellsandt et al.,
- 39 2017).

40

- Post-operative stiffness—frequently linked to arthrofibrosis—can be challenging to manage
- and may necessitate targeted manual therapy to restore joint mechanics (Hing et al., 2019).
- 43 The Mulligan Concept, integrating mobilization with movement (MWM) principles, utilizes
- sustained accessory glides or rotations while the patient actively moves the joint through
- 45 the restricted range (Hall et al., 2007). This approach can reduce pain, normalize
- arthrokinematics, and promote neurophysiological facilitation of movement (Vicenzino et
- 47 al., 2009).

48

52

- 49 This case report details the successful use of Mulligan mobilization techniques to restore
- 50 knee flexion in a competitive athlete one year after ACLR, highlighting its potential role in
- 51 sports rehabilitation protocols.

Case Presentation

- A 24-year-old male professional handball player presented to the physiotherapy
- department with ongoing difficulty achieving full knee flexion during functional activities.
- He reported pain during quadriceps stretching, inability to sit cross-legged without
- discomfort, and limitations in deep squatting—movements critical for handball agility and
- 57 defensive play.

58

- He had undergone right ACLR with PTB graft and medial meniscus repair 12 months prior.
- 60 His post-surgical course was uneventful, with no episodes of graft failure, infection, or
- 61 significant effusion. Despite completing a standard physiotherapy program, he remained
- restricted in high-flexion activities, prompting further intervention.

63 Clinical Findings

- Active knee flexion: 125°, with end-range discomfort
- 65 Functional pain: During quadriceps stretching and prayer-position sitting
- Knee stability: Normal on Lachman and pivot-shift tests
- 67 Strength: Full isometric quadriceps and hamstrings strength
- 68 Primary deficit: Arthrokinematics-related mobility restriction

Therapeutic Intervention

- 70 Two specific Mulligan techniques were employed over an 8-week period, with one
- 71 supervised session per week and daily home exercises:
- 72 1. Lateral Glide of Tibia in Prone Position: With the femur stabilized, the therapist applied a

73	sustained lateral glide to the tibia while the patient actively flexed the knee.
74	2. Internal Tibial Rotation in Supine: The tibia was mobilized into internal rotation relative
75 76	to the femur while the patient actively moved into flexion.
77	These were complemented by:
78	- Active-assisted knee flexion exercises
79	- Functional mobility drills (deep squatting progression)
80	- Gentle soft tissue mobilization for quadriceps flexibility
81	
82	The patient was subjected to Mulligan Technique three sessions per week for a period of
83	three weeks, performing three sets of ten repetitions during each session. A home program
84	was demonstrated, incorporating self-mobilization techniques using a towel once a day
85	throughout the intervention period.
86	Outcomes
87	At 8 weeks:
88	- Knee flexion ROM: Increased from 125° to >135°
89	- Functional activities: Cross-legged sitting and quadriceps stretching were pain-free
90	- Sport participation: Full return to competitive handball without limitations
91	- Sustainability: Gains maintained at 2-month follow-up without regression
92	Discussion
93	This case supports the integration of Mulligan mobilization into late-stage post-ACLR
94	rehabilitation, particularly when standard physiotherapy fails to resolve residual motion
95	deficits. MWM techniques likely improved tibiofemoral glide mechanics, reduced joint
96	stiffness, and facilitated neuromuscular control, aligning with findings from Hing et al.
97	(2019) and Vicenzino et al. (2009).
98	
99	Persistent flexion deficits, if unaddressed, can compromise kinetic chain efficiency, increase
100	compensatory loading on adjacent joints, and predispose athletes to overuse injuries
101	(Wellsandt et al., 2017). Given its safety, non-invasiveness, and adaptability to functional
102	positions, the Mulligan Concept offers a viable adjunct in sports-specific rehabilitation.
103	Patient Perspective
104	The athlete described the treatment as "transformative," reporting increased comfort,
105	restored confidence in knee function, and the ability to perform high-demand maneuvers
106	without apprehension.

Conclusion 107 108 Mulligan mobilization techniques may be a valuable adjunct for resolving chronic knee 109 flexion deficits post-ACLR. Their inclusion in sports rehabilitation programs could expedite 110 functional recovery and support a safe return to competitive play. References 111 Hall, T., Chan, H. T., Christensen, L., Odenthal, B., Wells, C., & Robinson, K. (2007). Efficacy of 112 113 the Mulligan Concept in the treatment of musculoskeletal conditions: A systematic review. 114 Journal of Manual & Manipulative Therapy, 15(4), 211–229. 115 https://doi.org/10.1179/106698107790819986 116 Hing, W., Bigelow, R., Bremner, R., Cochrane, S., & Mulligan, B. (2019). Mulligan Concept 117 manual therapy: A systematic review and meta-analysis. British Journal of Sports Medicine, 118 53(9), 566–577. https://doi.org/10.1136/bjsports-2017-098546 Logerstedt, D., Lynch, A., Axe, M. J., & Snyder-Mackler, L. (2013). Pre-operative quadriceps 119 120 strength predicts IKDC2000 scores 6 months after anterior cruciate ligament 121 reconstruction. Journal of Orthopaedic Research, 31(12), 1927–1934. 122 https://doi.org/10.1002/jor.22429 123 Shelbourne, K. D., Patel, D. V., & Martini, D. J. (1996). Classification and management of 124 arthrofibrosis of the knee after anterior cruciate ligament reconstruction. American Journal 125 of Sports Medicine, 24(6), 857–862. https://doi.org/10.1177/036354659602400622 126 Vicenzino, B., Paungmali, A., Teys, P., Mulligan, B., & Cleland, J. (2009). Mulligan mobilization 127 with movement: Clinical commentary and evidence review. Physical Therapy in Sport, 128 10(3), 121–130. https://doi.org/10.1016/j.ptsp.2009.02.002

Wellsandt, E., Failla, M. J., & Snyder-Mackler, L. (2017). Limb symmetry indexes can

Therapy, 47(5), 334–338. https://doi.org/10.2519/jospt.2017.7285

overestimate knee function after ACL injury. Journal of Orthopaedic & Sports Physical

129

130

131