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Abstract 4 

The exponential growth of digital infrastructures and connected devices has made energy demand 5 

increasingly variable and difficult to anticipate. In 2023, smart buildings accounted for nearly 20% of 6 

urban energy consumption, underscoring the urgency of optimized management. This paper 7 

investigates how artificial intelligence (AI) can improve real-time optimization of energy consumption 8 

in smart grids. We collect and pre-process IoT sensor time-series and evaluate two neural approaches 9 

Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) against a seasonal ARIMA 10 

baseline. On a simulated campus-scale testbed inspired by our university infrastructure, LSTM 11 

improves next-hour demand forecasting accuracy by 18.6% over ARIMA and by 5.8% over MLP, 12 

achieving an RMSE of 0.218 kWh. A redistribution simulation driven by predictions yields an average 13 

14.7% reduction in energy losses and a 9.3% net energy gain in office buildings. We discuss 14 

robustness to miss data (≤5%), abrupt load changes, and operational disturbances, and situate our 15 

findings with respect to recent literature including LSTM-based building forecasting, deep 16 

reinforcement learning for grid control, and IoT-enabled management frameworks. We conclude with 17 

actionable deployment considerations for African campuses and municipal facilities. 18 

Keywords: Artificial Intelligence, Smart Grid, Energy Optimization, Neural Networks, LSTM, IoT, 19 

Time-Series Forecasting. 20 

1. Introduction 21 

Digital transformation and the proliferation of connected objects have profoundly altered consumption 22 

profiles, producing non-stationary, context-dependent energy demands that are challenging to forecast 23 

and optimize. Recent figures estimate that smart buildings accounted for nearly 20% of urban energy 24 

usage in 2023 [1], intensifying the need for accurate demand prediction and responsive control. AI-25 

based methods promise to leverage high-frequency IoT telemetry for proactive, data-driven energy 26 

management [2]. Yet, the extent to which sequence models materially outperform statistical baselines 27 

in campus-scale deployments and how forecast gains translate into operational savings remains under-28 

quantified. 29 

Research question. How can AI-based forecasting improve the real-time optimization of energy 30 

consumption in smart grids, relative to established statistical baselines? 31 

This paper makes four contributions: 32 
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i. We design a campus-scale, IoT-driven simulation inspired by the Bouaké university setting, 33 

instrumented with realistic sensing modalities (power, environment, occupancy). 34 

ii. We implement and compare two predictor families MLP and LSTM against a seasonal 35 

ARIMA reference under identical pre-processing and validation protocols [3]. 36 

iii. We quantify operational impact via a redistribution simulation tied to forecasted demand, 37 

reporting loss reduction and response latency. 38 

iv. We analyze robustness to missing data and disturbances and compare our findings with state-39 

of-the-art LSTM building forecasting and control-oriented approaches [4], [5]. 40 

2. Related Work 41 

AI in smart energy spans forecasting, scheduling, and control. Reviews highlight the role of machine 42 

learning in integrating renewables and orchestrating grid operations [2], [6], [7]. For building-level 43 

forecasting, LSTM models consistently outperform shallow learners and classical statistics by 44 

capturing temporal dependencies and seasonality in IoT streams [5]. For control, deep reinforcement 45 

learning (DRL) enables real-time policies that adapt to grid states and price signals [4]; hybrid neural 46 

controllers have also been proposed for predictive management [8]. Urban energy management 47 

frameworks leveraging predictive analytics have demonstrated operational gains but report practical 48 

challenges in data quality and interoperability [3]. Our study complements this literature by providing 49 

a campus-scale evaluation with explicit baselines and by translating forecast gains into simulated 50 

operational savings. 51 

3. Materials and Methods 52 

3.1 Testbed and Data Collection 53 

We emulate a smart-campus environment reflecting classrooms, laboratories, and offices at our 54 

university (AOU Côte d’Ivoire). Sensors and devices include: SCT-013 current sensors, DHT22 55 

(temperature/humidity), BH1750 (illuminance), PIR for occupancy, ESP8266/ESP32 microcontrollers, 56 

and DS3231 RTCs. Measurements were recorded once per minute over 90 days, yielding 129,600 time 57 

steps per sensor. Data were stored in Influx DB and mirrored to a Linux server (Ubuntu 22.04) 58 

running Python 3.11, TensorFlow 2.14, and scikit-learn 1.4. 59 

 60 

3.2 Pre-processing 61 

 Cleaning: outlier detection via IQR; imputation via linear interpolation and 5-minute rolling 62 

average; removal of temporal duplicates. 63 

 Normalization: min–max scaling (0–1) for continuous features. 64 



 

3 
 

 Dimensionality reduction: PCA on energy and environmental variables retaining >95% 65 

explained variance. 66 

 Windowing: 60-minute input windows to predict the next-hour consumption, supporting 67 

sequence models. 68 

3.3 Models 69 

 MLP: 3 hidden layers (64–128–64), ReLU activations, dropout 0.2. 70 

 LSTM: one LSTM layer (100 units) followed by a dense output layer. 71 

 Training setup: Adam (lr =0.001), MSE loss, batch size 32, up to 50 epochs with early 72 

stopping (patience = 10). 73 

3.4 Validation Protocol and Baseline 74 

We adopt 5-fold cross-validation with an independent 20% test set held out for final reporting [5]. A 75 

seasonal ARIMA serves as statistical baseline to contextualize neural performance. 76 

3.5 Metrics and Operational Simulation 77 

 Forecast accuracy: RMSE (kWh) and a normalized accuracy indicator reported as a 78 

percentage. 79 

 Gain over ARIMA (%): relative improvement of the model’s accuracy vs. ARIMA. 80 

 Operational impact: a redistribution algorithm maps forecasts to dynamic resource allocation 81 

(e.g., HVAC and lighting duty cycling, load shifting), yielding (i) energy loss reduction (%), 82 

(ii) net energy gain (%) for offices, and (iii) response latency to load changes. 83 

 84 

 85 

 86 

 87 

4. Results 88 

4.1 Predictive Performance 89 

Table 1 : Test-set evaluation of forecasting models 90 

Model RMSE (kWh) Accuracy (%) Gain over ARIMA (%) 
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ARIMA (ref) 0.401 80.3 – 

MLP 0.326 87.3 +12.8 

LSTM 0.218 93.1 +18.6 

 91 

The LSTM clearly outperforms MLP and ARIMA, corroborating the advantage of recurrent 92 

architectures for non-stationary building loads [5]. 93 

 94 

4.2 24-Hour Profile Fidelity 95 

Over a representative weekday, LSTM predictions track morning peaks (06:00–09:00) and evening 96 

ramps (17:00–20:00) with high fidelity; the Pearson correlation with ground truth reaches r = 0.96 97 

(MLP: 0.88). This supports the model’s ability to capture recurring intra-day patterns beyond simple 98 

seasonal effects [5]. 99 

4.3 Operational Impact from Simulation 100 

Coupling forecasts to dynamic allocation yields: 101 

 Energy loss reduction: 14.7% (average). 102 

 Net energy gain (offices): 9.3%. 103 

 Response latency: 3.2 s to sudden load changes. These figures align with reported benefits of 104 

predictive, AI-assisted orchestration in smart buildings and grids [3], [6], [8]. 105 

4.4 Robustness and Adaptability 106 

Stress tests indicate that LSTM maintains a <10% relative error with up to 5% missing data and 107 

reallocates predicted consumption under overload, suggesting resilience to common field issues such 108 

as sensor dropouts and occupancy variability [2], [6]. 109 

 110 

 111 

4.5 Comparative Visualizations and Literature Benchmarking 112 
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 113 

Figure 1: RMSE (kWh) across models (our test set). 114 

 115 

 116 

Figure 2: Accuracy (%) across models (our test set). 117 
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 118 

Figure 3: Relative RMSE reduction of LSTM vs ARIMA (%) — Cross study comparison. 119 

 120 

Positive values indicate LSTM outperforms ARIMA; negative values indicate the opposite. Our 121 

campus-scale results are contrasted with representative literature cases at grid- and national-scale. 122 

 123 

Analysis and interpretation (vs. the literature). 124 

Figures 1 & 2 confirm that, under our campus-scale, minute-level IoT setting, the LSTM achieves 125 

markedly lower error (RMSE = 0.218 kWh) and higher accuracy (93.1%) than both MLP and 126 

ARIMA. This is consistent with building-level studies in which sequence models capture intra-day 127 

regularities and non-linear dynamics more effectively than statistical baselines [5]. 128 

Figure 3 extends the view beyond our dataset. At fine granularity (our one-hour-ahead horizon with 129 

rich IoT features), the relative RMSE reduction of LSTM over ARIMA is large (+45.6%), in line with 130 

reports of LSTM advantages on building loads. By contrast, coarser horizons or broader aggregation 131 

levels (e.g., monthly national demand) may show smaller gains—or even a reversal—when strong 132 

seasonality dominates and feature sets are limited, a trend discussed in reviews of smart-energy 133 

forecasting and control [2], [6], [7]. This divergence highlights that model choice must match the data 134 

regime: recurrent deep nets excel when high-frequency signals, occupancy, and exogenous drivers 135 

matter; seasonal statistical models remain competitive when periodic structure is predominant. 136 

Operationally, coupling the LSTM forecasts to our redistribution logic yielded a 14.7% reduction in 137 

losses and 9.3% net gains in offices (Section 4.3). These effects are coherent with literature 138 

emphasizing that accurate short-term forecasts unlock proactive orchestration (e.g., demand response, 139 

peak shaving), whether via rule-based strategies or learning-based controllers [4], [8].  140 
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In sum, our results both support and extend [5] they validate LSTM superiority at building/campus 141 

scale and demonstrate that forecast improvements translate into measurable operational benefits. 142 

5. Discussion 143 

5.1 Why LSTM Wins on IoT Time Series 144 

LSTMs retain long-range dependencies and represent periodicities and context transients better than 145 

feed-forward MLPs or ARIMA, which struggle with non-linearities and exogenous factors. Our results 146 

reinforce consensus findings that sequence models are strong baselines for building energy forecasting 147 

[5], [2]. 148 

5.2 Comparison with Zhang & Liu (2023) [5] 149 

Zhang and Liu propose an LSTM-based pipeline for smart-building forecasting using IoT data, 150 

reporting consistent gains over classical models and shallow networks [5]. Our study aligns on key 151 

points sequence modeling, IoT-driven features, and hour-ahead horizons while differing in scope and 152 

evaluation: 153 

 Scope: we emulate a campus with heterogeneous spaces (classrooms, labs, offices), whereas 154 

[5] centers on individual buildings; this increases variability and tests generalization. 155 

 Operational translation: in addition to error metrics, we simulate operational gains (loss 156 

reduction, net gain), bridging forecast accuracy to actionable savings—a dimension rarely 157 

quantified in [5]. 158 

 Robustness checks: we explicitly probe missing data and disturbance scenarios relevant to 159 

emerging deployments. Overall, our findings support and extend [5] by demonstrating that 160 

LSTM gains translate into meaningful operational benefits in a campus-scale context. 161 

 162 

5.3 Relation to Control-Oriented AI 163 

DRL frameworks [4] and hybrid neural controllers [8] target decision policies under uncertainty. Our 164 

supervised LSTM focuses on forecasting, but the improved predictions could feed DRL or MPC 165 

layers, potentially compounding benefits (e.g., demand response, peak shaving). Literature on urban 166 

AI management [3], [7] emphasizes integration challenges data quality, interoperability that we also 167 

observed. 168 

 169 

 170 

 171 
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5.4 Practical Implications for African Campuses 172 

Given resource constraints, open hardware (ESP32), lightweight servers, and modular deployments 173 

can yield tangible savings. Training local technicians and standardizing data schemas are pivotal for 174 

scalable roll-out [6], [7]. 175 

5.5 Limitations and Threats to Validity 176 

Data quality and coverage remain decisive; transferability to non-simulated infrastructures requires 177 

careful calibration. Computational demands of LSTM may be non-trivial for fully embedded 178 

inference; model compression or edge-cloud splits can help. Finally, while our test protocol includes 179 

cross-validation, a broader multi-season dataset and multi-site validation would strengthen external 180 

validity. 181 

6. Conclusion and Future Work 182 

We demonstrated that LSTM-based forecasting of IoT-derived building loads improves accuracy by 183 

18.6% over ARIMA and 5.8% over MLP on a campus-scale simulation, and that these gains translate 184 

into ≈15% loss reduction and measurable net energy savings when coupled to predictive redistribution. 185 

These outcomes substantiate AI’s role in supporting energy transition in urban infrastructures and 186 

provide an actionable blueprint for university campuses and public facilities in Côte d’Ivoire and 187 

beyond. 188 

Future work will integrate exogenous data (weather, schedules), explore multi-step horizons, and 189 

couple forecasting with optimal control (e.g., DRL [4]) for end-to-end autonomous energy 190 

management. We will also evaluate model compression and edge deployment strategies suitable for 191 

constrained environments. 192 
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 215 

Appendix A : Implementation Details (Reproducibility) 216 

 Environment: Ubuntu 22.04, Python 3.11, TensorFlow 2.14, scikit-learn 1.4, InfluxDB 217 

(time-series storage). 218 

 Hyperparameters: Adam lr=0.001; batch=32; epochs=50; early-stopping patience=10; 219 

LSTM=100 units; MLP=64-128-64 with dropout 0.2. 220 

 Pre-processing: IQR outlier filtering; linear interpolation + 5-min rolling mean; min–max 221 

scaling; PCA with >95% variance; 60-min windows → 1-hour ahead target. 222 

 Validation: 5-fold CV; independent 20% test split; seasonal ARIMA baseline. 223 
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