ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-53290 Date: 13.08.2025

Title: Contribution of Artificial Intelligence in the Optimization of Energy Consumption in Modern Networks

Recommendation: Accept after minor revision	Rating	Excel.	Good	Fair	Poor
	Originality		✓		
	Techn. Quality		✓		
	Clarity		✓		
	Significance	✓			

Reviewer Name:Dr.K.Arumuganainar Date:13.08.2025

Reviewer's Comment for Publication.

- Relevance: $\star \star \star \star \star \star$ (High applicability to smart grid and building management)
- Originality: $\star \star \star \star \star \star$ (Strong in operational translation, moderate in modelling novelty)
- **Technical Quality:** $\star \star \star \star \star \star \star$ (Solid methodology, but limited model diversity)
- Clarity: ★★★★☆ (Mostly clear, but could improve grammatical polish)
- Potential Impact: ★★★★★ (Significant for sustainable energy optimization in IoT-enabled infrastructures)

Final Recommendation: *Accept with Minor Revisions* – The paper is well-structured, relevant, and experimentally strong, but could be enhanced with more model comparisons, real-world trials, and economic/environmental analysis.

Detailed Reviewer's Report

Review Report

Title: Contribution of Artificial Intelligence in the Optimization of Energy Consumption in Modern Networks

1. Summary of the Work

The paper addresses the challenge of optimizing energy consumption in smart grids, particularly within smart building and campus-scale contexts. It proposes using Artificial Intelligence (AI)—specifically, Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) neural networks—to improve real-time forecasting of energy demand compared to a seasonal ARIMA statistical baseline.

The authors simulate a campus-scale IoT-enabled environment, collect high-frequency data, train models, and translate forecast accuracy into operational benefits, such as reduced energy losses and increased net gains in office buildings.

2. Strengths

- 1. **Clear Research Objective** The research question is well-defined: quantifying the improvement of AI-based forecasting relative to statistical baselines.
- 2. **Comprehensive Methodology** Includes realistic IoT sensor setup, rigorous preprocessing, and both statistical and deep learning baselines.
- 3. **Strong Results** − LSTM achieves 18.6% improvement over ARIMA, 5.8% over MLP, and significant operational benefits (≈14.7% loss reduction, 9.3% net gain).
- 4. **Robustness Checks** Addresses missing data, abrupt load changes, and disturbances, which adds practical credibility.
- 5. **Connection to Literature** Good alignment with existing work (e.g., Zhang & Liu 2023) and highlights operational translation of improvements.
- 6. **Reproducibility** Appendix A provides detailed implementation parameters, which supports replication.

3. Weaknesses / Areas for Improvement

- 1. **Simulation-Only Scope** The test bed is simulated, so the transferability to real-world deployments is uncertain.
- 2. **Limited Dataset Duration** Only 90 days of data; longer-term and seasonal variations are not fully captured.
- 3. **No Cost–Benefit Analysis** While energy savings are quantified, the economic feasibility and return on investment (ROI) are not discussed.
- 4. **Model Comparisons** Only ARIMA, MLP, and LSTM are tested; inclusion of advanced architectures (e.g., GRU, Temporal Convolutional Networks, Transformer-based time-series models) could strengthen findings.
- 5. Lack of Carbon Impact Metrics The environmental benefit is implicit but not directly calculated (e.g., CO₂ savings from reduced consumption).
- 6. **Limited Real-time Deployment Strategy** Although edge computing is mentioned, the paper doesn't present a prototype or field-tested integration.

4. Technical Evaluation

- **Data Handling:** Appropriate cleaning, normalization, dimensionality reduction (PCA), and sequence windowing.
- Model Setup:
 - o MLP: 3 layers (64–128–64), dropout 0.2, ReLU.
 - o LSTM: 1 layer (100 units), dense output.
 - o Both trained with Adam optimizer, learning rate 0.001, batch size 32.
- Validation: Strong approach with 5-fold CV and independent 20% test split.
- **Performance Metrics:** RMSE and accuracy are suitable choices; gain over baseline (%) clearly reported.
- **Operational Translation:** Redistribution algorithm is a highlight, connecting model output to real-world energy control.

5. Clarity and Presentation

- Writing Style: Generally clear, with some dense technical sections. Occasional grammatical issues could be improved for fluency.
- **Figures and Tables:** Results are supported by visualizations (RMSE, accuracy, comparative literature benchmarking).
- **References:** Relevant, recent (2023–2024), and credible. Good integration with cited work.

6. Novelty and Contribution

- Demonstrates that LSTM outperforms MLP and ARIMA for one-hour-ahead campus energy forecasting.
- Bridges the gap between *forecast accuracy* and *operational energy savings* through simulation—a dimension often overlooked in the literature.
- Focus on African campus-scale deployment provides regional relevance.

7. Recommendations for Improvement

- 1. **Extend Dataset** Include multiple seasons to account for long-term variability.
- 2. **Real-world Deployment Trial** Validate models with live campus IoT data to assess operational feasibility.
- 3. **Economic and Environmental Impact Analysis** Quantify cost savings and CO₂ reduction.
- 4. **Compare with More Models** Add GRU, Prophet, or hybrid AI-statistical approaches for a broader performance benchmark.
- 5. **Integration with Control Systems** Demonstrate end-to-end integration with smart building management software.
- 6. **Scalability Analysis** Address performance for larger-scale city grids beyond campus level.

8. Overall Assessment

- Relevance: $\star \star \star \star \star$ (High applicability to smart grid and building management)
- Originality: ★★★☆ (Strong in operational translation, moderate in modeling novelty)

- Potential Impact: ★★★★ (Significant for sustainable energy optimization in IoT-enabled infrastructures)

Final Recommendation: Accept with Minor Revisions – The paper is well-structured, relevant, and experimentally strong, but could be enhanced with more model comparisons, real-world trials, and economic/environmental analysis.