ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-53323 Date: 15.08.2025

Title: Intelligent Dual-Leg Wearable for Early Arthritis Screening via Gait Analysis and On-Device

Machine Learning

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept after minor revision	Originality	✓			
	Techn. Quality		✓		
	Clarity		✓		
	Significance		✓		

Reviewer Name:Dr.K.Arumuganainar Date: 15.08.2025

Reviewer's Comment for Publication.

Recommendation: **Minor Revision** (for a conference/journal submission at prototype stage)

- The work is technically sound, relevant, and novel.
- Needs more experimental validation to strengthen claims.
- Minor improvements in clarity and additional testing would make the work more robust for publication.

Detailed Reviewer's Report

Review Report

Title

"Intelligent Dual-Leg Wearable for Early Arthritis Screening via Gait Analysis and On-Device Machine Learning"

1. Summary of the Paper

The paper presents the design, development, and initial evaluation of a **low-cost**, **dual-leg** wearable device that uses bilateral knee-mounted accelerometers and on-device machine learning (TinyML) to classify gait patterns into three categories: *No Arthritis*, *Moderate Arthritis*, and *Major Arthritis*. The system streams real-time data via Bluetooth Low Energy (BLE), provides multimodal biofeedback (vibration, buzzer, LED), and aims to support athome screening and rehabilitation for arthritis patients.

A **proof-of-concept pilot study** demonstrated:

- Stable bilateral gait sensing
- Real-time inference with 89.8% accuracy
- Feasible biofeedback for self-management

2. Strengths

- Novelty & Relevance: Integrates gait sensing, embedded classification, and biofeedback into a single wearable—addressing gaps in current arthritis monitoring solutions.
- Low-Cost & Accessibility: Uses affordable components (Arduino Nano 33 BLE, ADXL335 accelerometer) and 3D printing for enclosures.
- **On-Device Processing**: Eliminates dependency on external servers, improving privacy and reducing latency.

- **Detailed Methodology**: Includes product design, calibration process, machine learning training pipeline, and performance metrics.
- Real-Time Biofeedback: Immediate, multimodal cues promote corrective gait changes.
- **Strong Literature Review**: Cites relevant works on gait analysis, wearable devices, and biofeedback.

3. Weaknesses / Limitations

- Small Pilot Dataset: Limited number and diversity of participants reduce generalisability.
- **Sensor Limitation**: Uses accelerometers only—no gyroscope or pressure sensor data for richer gait features.
- **Single Walking Context**: Tested mainly in controlled indoor settings; lacks outdoor and varied surface testing.
- **Model Ambiguity**: Adjacent class misclassifications (Moderate vs Major) remain high due to overlapping gait patterns.
- **No Longitudinal Data**: Lacks evidence on device performance over extended periods and progressive arthritis changes.

4. Originality & Contribution

The device combines:

- 1. **Bilateral knee-level sensing** (rare in consumer wearables)
- 2. On-device arthritis severity classification
- 3. Immediate, multimodal gait correction feedback
- 4. Low-cost, open, and customisable design

This integrated approach is **innovative** and can potentially enable **early arthritis detection at home**, reducing reliance on clinical facilities.

5. Methodology & Analysis Quality

- **Design & Development**: Clearly describes component selection, enclosure design, PCB layout, and firmware functions.
- Calibration Process: Well-documented multi-step alignment and synchronisation ensures signal reliability.

• Data Collection & ML Pipeline:

- o 2–4s window segmentation with 50% overlap
- o Feature extraction (RMS, variance, cadence, frequency)
- o Training using Google Tiny Motion Trainer with augmentation
- Quantisation for microcontroller deployment
- **Performance Metrics**: Reports accuracy, precision, recall, F1-score, and confusion matrix analysis.
- Validation: Appropriate for a prototype stage but lacks large-scale trials.

6. Clarity & Organisation

- **Well-structured**: Introduction, related works, methodology, results, and conclusions are logically arranged.
- **Figures & Diagrams**: Clear product images, block diagrams, calibration graphs, and confusion matrix enhance understanding.
- Readable Language: Technical terms explained well; some sentences are long and could be more concise.

7. Suggestions for Improvement

- 1. **Expand Dataset**: Include more participants across age, gender, arthritis severity, and walking conditions.
- 2. **Add More Sensors**: Incorporate gyroscopes or foot pressure sensors for richer gait analysis.
- 3. **Outdoor Testing**: Evaluate performance on varied terrains and speeds.

- 4. **Model Refinement**: Explore feature selection and hybrid models to reduce confusion between adjacent severities.
- 5. **Longitudinal Trials**: Test device performance over weeks/months to assess reliability and responsiveness to rehabilitation.
- 6. **Battery Optimisation**: Provide detailed battery life statistics under continuous operation.
- 7. **Ethics & Data Privacy**: Add a section on ethical considerations and data security for at-home use.

8. Overall Recommendation

Recommendation: Minor Revision (for a conference/journal submission at prototype stage)

- The work is technically sound, relevant, and novel.
- Needs more experimental validation to strengthen claims.
- Minor improvements in clarity and additional testing would make the work more robust for publication.

9. Overall Evaluation

Criterion	Score (out of 5)
Originality	4.5
Technical Quality	4.0
Clarity of Presentation	4.0
Practical Relevance	4.5
Experimental Validation	3.5
Overall	4.1