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This work consists of 

numerically studying the effect 

of a uniform oblique magnetic 

field on the magnetoconvection 

of an electrically conductive 

Newtonian fluid. The system 

studied is a hemispherical cavity 

formed by two vertically 

eccentric hemispheres. The 

inner hemisphere is subjected to 

a constant density flow, while 

the outer hemisphere is 

maintained at a fixed 

temperature. The thermal and electrical boundary conditions of the 

system under study are combined to find the critical values of the 

parameters that indicate the onset of instability. The equations 

governing this fluid instability are first projected into a bispherical 

coordinate system and then discretized using the finite difference 

method. This made it possible to develop a computer code in 

FORTRAN. This code was used to determine the growth rates for 

different values of the Hartmann number. The eccentricity, Rayleigh 

number, radius ratio, and magnetic field inclination angle remain fixed 

in numerical simulations. The results show that the magnetic field has 

an effect on this transfer mode.  

If the Hartmann number is low, the magnetic field is weak and the 

transfer is more convective, leading to an extended and chaotic 

convection structure, thus increasing the Nusselt number. A weak 

magnetic field has very little effect on magnetoconvective isotherms 

and isocurrents. On the other hand, when the Hartmann number is high, 

the magnetic field inhibits convection, thereby reducing the Nusselt 

number. Magnetoconvective isotherms and isocurrents are strongly 

affected, with a decrease in the size of the vortex and 

magnetoconvective motion.              The results obtained at the end of 

the study are consistent and agree with those found in the literature. 
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Introduction: - 
The phenomenon of magnetoconvection, which describes the convective motion of an electrically conductive fluid 

subjected to both convective and magnetic forces, has been the subject of numerous studies in recent decades [1], 

[2]. These materials are of interest because of their implications in many natural and applied phenomena [3]. 

According to [4], magnetoconvection has various applications in fields such as geophysics, astrophysics, plasma 

physics, missile technology, medicine, and biology, among others. Consequently, numerous experimental and 

numerical studies have been carried out on the magnetoconvection of a fluid confined in enclosures of various 

configurations, in parallel with studies on pure natural convection [5]. These enclosures often have varied 

geometries, which can be parallelepiped [6], [7], cylindrical [8-9], or even spherical [10], [11], [12], [13]. 
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Correlations giving the Nusselt and Rayleigh numbers are sometimes proposed. An increase in these numbers, 

reflecting an intensification of natural convection or the magnetic field, can influence the viscosity of the fluid and 

the stability of the flows depending on the geometry of the walls [14], [15]. In this context, modeling studies of 

magnetoconvection have shown that, in addition to stabilizing the main convection roll, a horizontal magnetic field 

leads to an increase in kinetic energy and heat transfer rate compared to a study without a magnetic field [7]. 

Furthermore, an analysis of the Hall effects of magnetoconvective instability and heat transfer conducted by [16] 

studies the parameters that can influence the flow field and temperature distribution. According to the results 

obtained, it can be seen that Hall currents significantly reduce the flow field. The studies conducted by references 

[17] and [18] sought to obtain a comprehensive and essential understanding of the characteristics of flows and heat 

transfer in an enclosure in the presence of a magnetic field, demonstrating that this magnetic field reduces the heat 

transfer rate. The impact of the magnetic field on mixed convection with an exponential temperature distribution, as 

well as on internal thermal and viscous dissipation, was examined by [19]. It was observed that increasing the 

Prandtl number decreases the skin friction coefficient, while increasing the magnetic field increases the local Nusselt 

number. A study conducted by [10] examined the transient regime of natural convection of a non-conductive 

Newtonian fluid between two vertical eccentric spheres, with the inner sphere exposed to a constant heat flux and 

the outer sphere maintained at a constant temperature. Their results show that increasing the modified Rayleigh 

number allows the steady state to be reached more quickly, and that eccentricity has a negligible influence on the 

establishment of equilibrium. Convective motion is amplified by positive eccentricities. Heat exchange, 

characterized by the Nusselt number, increases with the modified Rayleigh number. A study conducted by [20] 

focused on the case of a hemisphere, and the results indicate that the center of the vortex moves upward with greater 

eccentricities.The Nusselt number also increases with the modified Rayleigh number. When the latter increases, the 

temperature decreases for a given eccentricity. This extensive literature highlights the importance and scientific 

scope of thermal convection in an electrically conductive fluid subjected to a magnetic field [21]. It is precisely with 

this in mind that the present study was initiated. Our study focuses on natural convection between two eccentric 

hemispheres of a conductive fluid subjected to a magnetic field. In this study, we explore the dynamic interactions 

between magnetism and convection, highlighting the influences of the magnetic field on circulation and heat transfer 

patterns. By analyzing these phenomena, we seek to deepen our understanding of the underlying mechanisms and 

identify the practical implications of magnetoconvection in various contexts. 

Materials and methods: 

- Formulation of the problem 

Figure 1 shows the displacement of an electrically conductive fluid with constant viscosity (ionized air) under the 

influence of an oblique magnetic field, which is located in an annular space bounded by two vertically eccentric 

hemispheres. The radii of the inner and outer hemispheres are denoted Ri and Re, respectively. The distance 

between the centers of the two hemispheres, called eccentricity e', is defined as the algebraic value of this distance. 

The temperature inside and on the walls of the enclosure is uniform at the start. A heat flux (q') of constant density is 

applied to the inner hemisphere, while the temperature of the outer hemisphere remains constant (T'). The walls 

separating the two hemispheres at angles θ=0 and θ=π are adiabatic. The temperature difference between the two 

hemispheres will cause transient natural convection of the conductive fluid, which will develop inside the domain.  
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Figure 1 Geometry of the problem [2] 

The physical properties of the fluid are constant, except for its density in the gravity term of the equation of motion, 

where it varies linearly with temperature according to Boussinesq's law. The fluid is Newtonian and the flow is 

laminar, incompressible, and two-dimensional. It is assumed that the magnetic field is constant and that the induced 

field is negligible. The viscous dissipation function, radiative effects, and pressure term are neglected. The 

boundaries of the system under study are considered to be electrically insulating. The walls of our enclosure are 

composed of two spherical parts and two others offset from the vertical. To simplify the boundary conditions, it is 

therefore necessary to find a curved coordinate system in which the boundaries of our domain are determined by 

lines of constant coordinates. Thus, given the geometry of the enclosure, the bispherical coordinate system is the 

most appropriate. For two-dimensional flow, the transition from Cartesian coordinates (x,y) to bispherical 

coordinates is given by relation (1):  

𝑥 =
𝒂 𝐬𝐢𝐧 𝜽

𝒄𝒉𝜼−𝒄𝒐𝒔𝜽
       ;    𝑦 =

𝒂𝒔𝒉𝜼

𝒄𝒉𝜼−𝒄𝒐𝒔𝜽
         (1) 

Along the vertical axis are two walls identified by θ = 0 and θ = π. The inner and outer hemispheres are represented 

by the coordinate lines h=hi and h=he, respectively. After introducing simplifying assumptions and the vorticity-

current function formalism, we establish the various dimensionless equations needed to solve the problem 

considered in this study. The vortex-flux functions (vortex flow) are translated by the equations of momentum and 

heat translated by relation (2): 

𝜕𝑡𝐹 + 𝐴 𝑈 𝜕𝜂𝐹 + 𝐵 𝑉 𝜕𝜃𝐹 = 𝑃 𝜕𝜂
2𝐹 + 𝜕𝜃

2𝐹 + 𝑆 𝐺2𝜕𝜂𝑇 − 𝐺1𝜕𝜃𝑇  + 𝑅 𝜕𝜂𝐵1 − 𝜕𝜃𝐵2  (2) 

The different values of variables F, A, B, P, S, and G are given in Table 1. 
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Table 1: Variables in the heat and vorticity equation 

Equation 𝐹 A(U) B(V) P S R 

Heat 𝑇 1

𝐻
 𝑈 −

𝐺2

𝐾
  

1

𝐻
 𝑉 +

𝐺1

𝐾
  

1

𝐻2
 

0 0 

Movement Ω

𝐾
 

1

𝐻
 𝑈 −

3𝑃𝑟𝐺2

𝐾
  

1

𝐻
 𝑉 +

3𝑃𝑟𝐺1

𝐾
  

𝑃𝑟

𝐻2
 

𝑅𝑎. 𝑃𝑟

𝐾𝐻
 

𝐻𝑎2 . 𝑃𝑟

𝐾𝐻2
 

With: 

𝐵1 = 𝐻 𝑈𝐵𝜂𝐵𝜃 − 𝑉𝐵𝜂
2       ;       𝐵2 = 𝐻  𝑉𝐵𝜂𝐵𝜃 − 𝑈𝐵𝜃

2      (3) 

𝐵𝜂 =
𝐵𝜂
∗

𝐵0
= 𝐺2 𝑐𝑜𝑠𝜑 + 𝐺1 𝑠𝑖𝑛𝜑         𝑎𝑛𝑑       𝐵𝜃 =

𝐵𝜂
∗

𝐵0
= 𝐺2  𝑠𝑖𝑛𝜑 − 𝐺1  𝑐𝑜𝑠𝜑     (4) 

Where the quantities U, V, G1, G2, K, H are defined by equations (5), (6) and (7) 

𝑈 =
1

𝐻𝐾
𝜕𝜃𝛹       ;       𝑉 = −

1

𝐻𝐾
𝜕𝜂𝛹        (5) 

G1 =
1−cos θchη

chη−cos θ
        ;        G2 = −

sin θshη

chη−cos θ
       (6) 

𝐾 =
𝑎𝑠𝑖𝑛𝜃

𝐷(𝑐ℎ𝜂−𝑐𝑜𝑠𝜃 )
   ;      𝐻 =

𝑎

𝐷(𝑐ℎ𝜂−𝑐𝑜𝑠𝜃 )
        (7) 

The incompressibility condition is verified by the equation of the current function given by relation (8): 

Ω =
1

𝐾2𝐻
 𝐺2𝜕𝜂Ψ − 𝐺1𝜕𝜃Ψ −

1

𝐾𝐻2  𝜕𝜂
2Ψ + 𝜕𝜃

2Ψ        (8) 

In addition to these different equations, there are boundary conditions and initial conditions. 

At t = 0, the conditions are expressed by equation (9): 

Ω=Ψ=T=U=V=0            (9) At t 

> 0, the boundary conditions are expressed by equations (10), (11), and (12) depending on the location of the wall.  

 On the inner spherical surface (η = ηi) 

𝛹 = 𝑈 = 𝑉 = 0 ;  𝛺 = −
1

𝐾𝐻
𝜕𝜂

2𝛹 ; 𝜕𝜂𝑇 = 𝐻𝑖 =
𝑐ℎ𝜂 𝑖

𝑠ℎ2𝜂 𝑖
      (10) 

 On the outer spherical surface (η=ηe) 

𝛹 = 𝑈 = 𝑉 = 0 ;  𝛺 = −
1

𝐾𝐻
𝜕𝜂

2𝛹 ; 𝑇 = 0        (11) 

 On the two vertical walls (θ = 0, θ = π)  
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Ψ = 𝑈 = 𝑉 = 0;  Ω = −
1

𝐾𝐻
𝜕𝜃

2Ψ ; ∂𝜂𝑇 = 0        (12) 

The Nusselt number represents the thermal energy transmitted by a spherical wall. The local Nusselt number Nu and 

the average Nusselt number 𝑁𝑢    on spherical walls are defined by equations (13) and (14). 

 For the inner spherical wall 

𝑁𝑢𝑖 =
1

𝑇𝑖,𝑚
    ;       𝑁𝑢𝑖

     =
1

𝑆𝑖
 𝑁𝑢𝑖𝑑𝑆𝑖         (13) 

 For the outer spherical wall  

𝑁𝑢𝑒 =
1

𝐻𝑒𝑇𝑖,𝑚
𝜕𝜂𝑇      ;      𝑁𝑢𝑒

     =
1

𝑆𝑒
 𝑁𝑢𝑒𝑑 𝑆𝑒        (14) 

- Numerical analysis 

For the development of a numerical code simulating the magnetoconvection of a Newtonian fluid confined in an 

annular space, we used the following methods: 

- The implicit alternating direction method (ADI) for the temporal resolution of the momentum and heat equations; 

- The finite difference method for spatial integration.  

The THOMAS algorithm will be used to solve the system of linear equations obtained by the ADI method. 

However, for the flow function equation, the solution will be obtained using the successive overrelaxation (SOR) 

method with an optimal relaxation parameter. In the iterative loop, the calculated result Znew for a quantity to be 

determined will be considered a convergent solution only if it satisfies the following relation (15) with the old value 

Zold.  

 𝒁𝒏𝒆𝒘−𝒁𝒐𝒍𝒅 𝒎𝒂𝒙

 𝒁𝒏𝒆𝒘 
≤ 10−5         

 (15)Steady state is only achieved if this relative error between two consecutive time steps for all quantities 

obeys relation (16): 

 𝑍𝑛+1−𝑍𝑛  
𝑚𝑎𝑥

 𝑍𝑛+1 𝑚𝑎𝑥
≤ 10−5          (16)Z

n
 

represents Ω, Ψ, or T for the n
th

 time step. 

Results and discussion  

In this section, in order to better understand the effect of the magnetic field on magnetoconvective flow, we will 

discuss the results obtained by numerical simulations. 

-Calculation conditions 
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The choice of a 51 x 51 grid and a 10
-4

-time step was based on tests we conducted on the influence of these factors. 

The results of these simulation tests are presented in Tables 2 and 3 and prove that our choices are, among other 

things, a good compromise.  

Table 2: Effects of time steps on the Nusselt number of the thermal wall for Ha=1, Ra=10
5
, e=0, ∆t=10

-4
 and the 

grid system is 51x51 

 Time steps 

10
-3

 10
-4

 10
-5

 

Nu 4.7337 4.7298 4.7296 

Difference (%) 0.087 0.004 0 

Time computing (min) 5 124 802 

 

Table 3: Effects of mesh refinement on the Nusselt number of the thermal wall for Ha=1, Ra=10
5
, e=0, and ∆t=10

-4
 

 Mesh grid 

21*21 21*41 41*41 41*51 41*81 51*51 51*81 81*81 

Nu 4.8750 4.8871 4.7515 4.7503 4.7502 4.7298 4.7297 4.7060 

Difference (%) 3.59 3.85 0.97 0.94 0.94 0.51 0.50 0 

Time computing (min) 9 97 225 261 362 348 447 604 

 

-Validation 

In the absence of a magnetic field, our problem is reduced to that of natural laminar convection. The data presented 

in Table 4 provide the values of the average Nusselt number calculated for different Rayleigh numbers. We 

compared our results with those from the study of transient laminar convection between two vertically offset 

hemispheres, as referenced in [20]. These comparisons indicate a relative difference of 2.72% for all situations 

examined, demonstrating excellent agreement between the results.  

 

 

Table 4: Comparison of the average Nusselt number in the case of e = 0 
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 Ra 

10
3
 10

4
 10

5
 10

6
 10

7
 

Nusselt number (our results) 2.0673 3.0379 4.8920 7.7680 11.708 

Nusselt number (results of [20]) 2.125 3.0651 4.982 7.6874 11.671 

Difference (%) 2.72 0.89 1.81 1.05 0.32 

 

-Influence of Hartmann's number 

For this study, apart from the Hartmann number, which is directly proportional to the magnetic field, all other 

parameters are fixed. The eccentricity is set at 0.5, the magnetic field is inclined at an angle φ = π/3, and the 

Rayleigh number is set at Ra=10
5
. 

--Isotherms and current lines 

Figures 2, 3, 4, and 5 show the temporal variations of isotherms and streamlines for different values of the Hartmann 

number (0.1, 1, 10, and 100). When the magnetic field is weak (Ha=0.1), the isotherms, as shown in Figure 2, are 

mainly distorted by fluid movements and temperature differences. Consequently, the magnetic effect has a relatively 

weak influence compared to other factors such as viscous flow and thermal convection, and the streamlines are only 

slightly affected by the magnetic field. The magnetic forces are therefore insufficiently powerful to cause significant 

disruption to the streamlines, although they do distort them slightly. 

When the Hartmann number is equal to 1, Figures 3 show that the isotherms are influenced by both electromagnetic 

forces and convective forces in equal proportions. For example, in a free convection regime, where convective 

forces dominate, the isotherms may be more curved and distorted than those observed in a strictly electromagnetic 

regime. The Hartmann number also slows down convection and enhances magnetic diffusion. Current lines also 

undergo reorientation and deformation. The magnetic field suppresses vertical convection in the fluid, leading to 

more horizontal and less vertical current lines. This results in a more regular organization of the current lines. For a 

Hartmann number greater than 1 (Ha=10 or Ha=100), the isotherms in Figures 4 and 5 appear more uniform and less 

distorted. The magnetic field tends to suppress convective motions in directions perpendicular to its orientation. 

Thus, the isotherms align with the magnetic field, meaning that they are parallel to the magnetic lines of force. This 

results in a specific organization of isotherms, with elongated structures in the direction of the magnetic field. In 

addition, the current lines are also modified. The effects of the magnetic field lead to the suppression of turbulent 

convective motions and the formation of more organized convective cells, aligned along the magnetic field lines, 

which are more regular and less chaotic than in the case where the Hartmann number is less than 1.  
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t = 2.10
-2 

            t =8.10
-2

 

 

t = 5.10
-1

               t = 1 

Figure 2: Streamlines and isotherms for Ra = 10
5
; e = 0.5; Ha = 0.1; φ = π/3 

 

t = 2.10
-2 

            t =8.10
-2

 

 

t = 5.10
-1

                       t = 1 

Figure 3: Streamlines and isotherms for Ra = 10
5
; e = 0.5; Ha = 1; φ = π/3 
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t = 2.10
-2 

            t =8.10
-2

 

 

t = 5.10
-1

                       t = 1 

Figure 4: Streamlines and isotherms for Ra = 10
5;

 e = 0.5; Ha=10; φ = π/3 

 

t = 2.10
-2 

           t =8.10
-2

 

 

t = 5.10
-1

                     t = 1 

Figure 5: Streamlines and isotherms for Ra = 10
5;

 e = 0.5; Ha = 100; φ = π/3 
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--Minimum current function, Nusselt number, and internal wall temperature 

Based on the observed evolution of the Nusselt number on the heated inner wall of the hemisphere in Figure 6, we 

can conclude that the Hartmann number has a significant influence on the Nusselt number in our magnetoconvection 

problem. Indeed, the Nusselt number decreases as the Hartmann number increases. This is because the magnetic 

field exerts a force on the charged particles in the fluid, which counteracts the natural convection motion. As a 

result, convection is inhibited and heat transfer becomes less efficient. When the Hartmann number is low, the 

magnetic field is also weak, thus promoting convection and leading to an extended and chaotic convection structure, 

which increases the Nusselt number. On the other hand, as the Hartmann number increases, the magnetic field 

inhibits convection, thus reducing the Nusselt number. 

Furthermore, in the same figure, we can see that the Hartmann number influences the average temperature of the 

heated wall in a magnetoconvection problem. As the Hartmann number increases, the temperature of the heated wall 

also increases, probably due to a decrease in heat transfer efficiency caused by the magnetic field. Thus, the 

presence of the magnetic field has a more pronounced warming effect on the inner wall of the hemisphere. 

The evolution of the minimum current function over dimensionless time also proves that this function is influenced 

by the Hartmann number. Initially, the minimum current function decreases before stabilizing for a long period, but 

it increases for high Hartmann number values. This sharp decrease observed for low Hartmann numbers is due to the 

fact that the initial fluid movements may be more turbulent, thus causing a loss of magnetic energy in the system. 

However, as the Hartmann number increases, the magnetic force becomes more predominant than convection. This 

has the effect of stabilizing the currents and organizing the convection structure. In other words, the magnetic field 

tends to suppress turbulent movements and promote more regular and orderly currents. 

 

Figure 6: Influence of the Hartmann number on the various parameters 
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Conclusion 

In this paper, we used numerical methods to study the magnetoconvection of a Newtonian fluid, in this case humid 

air, confined between two eccentric hemispheres. The hemispherical cavity studied is subject to thermal and 

electrical boundary conditions in order to determine the critical values of the parameters that mark the onset of 

instability. The objective is to highlight the impact of the Hartmann number on magnetoconvective transfer. To do 

this, a constant heat flux density is imposed on the inner hemispherical wall and a constant temperature on the outer 

hemisphere. The equations governing magnetoconvection are expressed in bispherical coordinates. Discretization 

using the finite difference method enabled the development of a computer code in Fortran. The equations are solved 

using the ADI and SOR methods. Assumptions are made about the vorticity and flux function variables. For very 

weak magnetic fields, magnetoconvection reduces to a natural convection problem. The results obtained at the end 

of the study are consistent and significant. The geometry of the system studied reveals that different values of the 

Hartmann number have effects on the magnetoconvection of a fluid subjected to a constant oblique magnetic field. 

For a low Hartmann number (Ha=0.1), convection dominates and the magnetoconvective isotherms and isocurrents 

are similar to those obtained without a magnetic field. 

For a large Hartmann number (Ha=10 or Ha=100), the magnetic field dominates and the isotherms and 

magnetoconvective isocurrents are strongly affected, with a decrease in the size of the vortex and 

magnetoconvective motion. 

When the Hartmann number is low, the magnetic field is weak and the transfer is more convective, leading to an 

extended and chaotic convection structure, thus increasing the Nusselt number. On the other hand, when the 

Hartmann number is high, the magnetic field inhibits convection, thus reducing the Nusselt number. 

The Hartmann number also affects the temperature of the heated wall in this magnetoconvection problem. As Ha 

increases, the temperature of the heated wall increases, due to a decrease in heat transfer efficiency caused by the 

magnetic field. 

For a low Hartmann number, the minimum current function decreases rapidly over time, then increases before 

stabilizing when steady state is reached. This decrease becomes smaller as the Hartmann number increases, meaning 

that the minimum current function increases with the Hartmann number because the magnetic field reduces the 

convection current. Furthermore, our results are in agreement with solutions available in the literature, such as [10], 

[20], etc. 
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Nomenclature 

Latin Greek 

a, parameter of the torus pole (m) 

e, eccentricity  

g, gravitational intensity (m.s
-2

) 

Coefficients g1 and g2 

H and K: dimensionless metric coefficient  

B0: magnetic field intensity (N.A
-1

.m
-2

) 

Ha: Hartmann number 

Nue, Nusselt number for the outer hemisphere 

Nui: Nusselt number for the inner hemisphere 

Oi and Oe: center of the inner and outer hemispheres, 

respectively 

Pr: Prandtl number  

q: heat flux density (W.m
-2

) 

Ri and Re: radius of the inner and outer hemispheres, 

respectively 

Ra: Rayleigh number 

t: dimensionless time 

t’: dimensional time (s) 

T: dimensionless temperature 

U and V: dimensionless components of velocity in the 

transformed planes 

x and y, Cartesian coordinates, (m) 

α, thermal diffusivity, (m².s
-1

) 

β, thermal   expansion    coefficient, (K
-1

) 

σ, electrical conductivity, (A.m.V
-1

) 

Δt, time step, (s) 

ΔT, temperature difference between the two 

hemispheres, (K) 

η and θ, bispherical coordinates, (m) 

λ, thermal conductivity, (W.K
-1

.m
-1

) 

ν, kinematic viscosity, (m
3
.s

-1
) 

Ψ, dimensionless flux function, 

Ψ′, dimensional flux function, (m
3
.s

-1
) 

Ω, dimensionless vorticity,  

Ω', dimensional vorticity, (m
3
.s

-2
) 
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