

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-53404 Date: 19.08.2025

Title: Numerical study of the effect of the magnetic field on magnetoconvective flow of a Newtonian fluid confined between two vertically offset hemispheres

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept after major revision	Originality			✓	
	Techn. Quality			✓	
	Clarity				✓
	Significance			✓	

Reviewer Name: Dr.K.Arumuganainar Date: 19.08.2025

Reviewer's Comment for Publication.

Strengths of the Paper

- Clear numerical modeling framework.
- Consistent results aligned with established studies.
- Insightful visualizations of magnetoconvective flow.
- Strong coverage of magnetoconvection literature.

Weaknesses of the Paper

- Limited novelty claim and weak articulation of research gap.
- Validation restricted to one prior study.
- Repetition in discussion and abstract.
- Lack of practical application emphasis.

Detailed Reviewer's Report

Review Report

Title: Numerical study of the effect of the magnetic field on magnetoconvective flow of a Newtonian fluid confined between two vertically offset hemispheres.

1. Title & Abstract

• Strengths:

- o The title is precise and technical, clearly reflecting the study's scope.
- The abstract concisely explains the methodology (finite difference method in bispherical coordinates, FORTRAN code) and findings (effect of Hartmann number on convection and Nusselt number).

• Weaknesses:

- The abstract is overly dense and could benefit from clearer segmentation (problem, methods, results, implications).
- Some phrases are repetitive ("results show that magnetic field has an effect...").
- **Recommendation:** Simplify wording and highlight the novelty more clearly.

2. Introduction

• Strengths:

- Provides a strong background on magnetoconvection with broad applications (geophysics, astrophysics, medicine, etc.).
- Well-referenced with a wide range of studies [1–21].

Weaknesses:

- The research gap is not explicitly highlighted—why this specific geometry (two eccentric hemispheres) is novel compared to prior works.
- Flow between spheres and hemispheres has been studied before, so emphasis
 on the *unique contribution* is missing.

• **Recommendation:** Add a clear statement of novelty and research objectives.

3. Literature Review

• Strengths:

- o Comprehensive, covering spherical, cylindrical, and other geometries.
- o Good linkage between convection, Rayleigh, and Hartmann numbers.

• Weaknesses:

- Some references are outdated (1968, 1989, 1993), while more recent computational fluid dynamics studies could be included.
- The integration of literature into a critical review is limited; the text feels more like a listing.
- **Recommendation:** Include recent papers (post-2020) on MHD convection in complex geometries and numerical simulation techniques.

4. Methodology

• Strengths:

- o Clearly defined problem geometry and boundary conditions.
- o Well-structured mathematical modeling using bispherical coordinates.
- Appropriate numerical methods (finite difference, ADI, SOR).

Weaknesses:

- o Justification for grid size selection (51×51) is minimal, though tested.
- o Validation only against [20]—limited comparative analysis.
- **Recommendation:** Expand on grid independence testing, include additional validation cases, and discuss computational efficiency.

5. Results & Discussion

• Strengths:

- Results systematically presented: mesh/time step validation, Nusselt number comparison, effect of Hartmann number.
- Visualization of isotherms and streamlines is clear and insightful.
- o Findings are consistent with physical expectations: low Ha → enhanced convection; high Ha → suppression of convection.

Weaknesses:

- Figures could be quantitatively compared to benchmark results rather than qualitatively described.
- The discussion repeats conclusions (e.g., effect of low vs. high Hartmann numbers) without deeper physical explanation.
- **Recommendation:** Provide dimensionless correlations or scaling laws, and compare findings with experimental/numerical results in similar setups.

6. Conclusion

• Strengths:

- Summarizes key findings well: influence of Hartmann number on convection,
 Nusselt number, wall temperature.
- Results consistent with literature.

Weaknesses:

- No mention of practical applications or implications (e.g., in engineering, astrophysics, or energy systems).
- Lacks suggestions for future research directions.
- **Recommendation:** Include broader impact and propose extensions (e.g., turbulent regimes, nanofluids, 3D simulations).

7. Language & Formatting

• Strengths:

o Technical terminology is used correctly.

Weaknesses:

- Minor grammatical issues ("the results show that the magnetic field has an effect..." could be more precise).
- Some long sentences reduce readability.
- **Recommendation:** Refine English expression, shorten long sentences, and follow a consistent journal style.

8. Strengths of the Paper

- Clear numerical modeling framework.
- Consistent results aligned with established studies.
- Insightful visualizations of magnetoconvective flow.
- Strong coverage of magnetoconvection literature.

9. Weaknesses of the Paper

- Limited novelty claim and weak articulation of research gap.
- Validation restricted to one prior study.
- Repetition in discussion and abstract.
- Lack of practical application emphasis.

10. Final Recommendation

- Decision: Major Revision
- **Reasoning:** The paper is technically sound and presents a well-structured numerical analysis. However, improvements are needed in clarity of abstract, novelty justification, expanded validation, critical discussion, and highlighting real-world relevance. With revisions, it could be suitable for publication.