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The phenomenon of magnetoconvection, which g:scribes the convective motion of an electrically conductive fluid
subjected to both convective and magnetic forces, has been the subject of numerous studies in recent decades [1],
[2]. These materials are of interest because of their implications in nm’ natural and applied phenomena [3].
According to [4], magnetoconvection has various applications in fields such as geophysics, astrophysics, plasma
physics, missile technology, medicine, gag biology, among others. Consequently, numerous experimeng and
numerical studies have been carried out on the magnetoconvection of a fluid confined in enclosures of various
configurations, in parallel with studies on pure natural convection [5]. These enclosures often have varied
geometries, which can be parallelepiped [6], [7], cylindrical [8-9], or even spherical [10], [11], [12], [13].




gjrrelatiﬂns g/ing the Nusselt and Rayleigh numbers are sometimes proposed. Apgncrease in these numbers,

‘Ec viscosity of the fluid and
the stability of the flows depending on the geometry of the s [14], [15]. In this context, modeling studies of
magnetoconvection havegghown that, in addition to stabilizing the main convection roll, a horizontal magnetic field
leads to an increase inm s energy and heat transfer rate compared to a study without a magnetic field [7].
@c effects of magnetoconvective instability and heat transfer conducted by [16]
studies the parameters that can l%uem:e the flow field and temperature distribution. According to the results
obtained, it can be seen that Hall currents signifmantly reduce the flow field. The studies conducted by references

reflecting an mtensification of natural convection or the magnetic field, can influence

of

Furthermore, an analysi

[17] and [18] sought to obtain a comprehensive and essential understanding of the characteristics of flows and heat
transfer in a losure in the presence of a magnetic field, demonstrating that this magnetic field reduces the heat
transfer rate.r@: impact of the magnetic field on mixed convection with an exponential temperature distributiongas
well as on internal thermal and viscous dissipation, was examined by [19]. It was observed that increasing Ee
Prandtl number decreases the skin friction coefficient, while increasing the magnetic field increases the local Nusselt
number. A study conducted by [10] examined the rrarE*nr regime of natural convection of a non-conductive
Newtonian fluid between two vertical eccentric spheres, with the inner sphere exposed to a constant heat flux and
the outer sphere maintained at a constant temperature. Their results show that increasing the modified Rayleigh
number allows the steady state to be reached more quickly, and that eccentricity has a negligible influence on the
establishment oquuilibrium, Convective motion is amplified by positive eccentricities. Heat exchange,

e Nusselt number, increases with the modified Rayleighgmmber. A study conducted by [20]
focused on the case of a hemisphere, and the results indicate that the center of the vortex moves upward with greater
eccentricities, The Nusselt number also increases with the modified Rayleigh number. When the latter increases, the
temperatgge decreases for a given eccentricity. This extensive literature highlights the importance and scientific

characterized by

scope of thermal convection in an electrically conductive fluid subjected w magnetic field [21]. It is precisely with
this in mind that the present study was initiated. Our study focuses on natural convection between two eccentric
hemispheres of a conductive fluid subjected to a magnetic fieldpin this study, we explore the dynamic interactions
between magnetism and convection, highlighting the influences of the magnetic field on circulation and heat transfer
patterns. By analyzing these phenomena, we seek to deepen our understanding of the underlying mechanisms and
identify the practical implications of magnetoconvection in various contexts.

Materials and methods:

- Formulation of the problem

Figure 1 shoys the displacement of an electrically conductive fluid with constant viscosity (ionized air) under the
influence of an oblique magnetic field, which is located in an annular space bounded by two vertically eccentric
hemispheres. The radii of the inner and outer hemispheres are denoted Ri and Re, respectively. The distance

tween the centers of the two hemispheres, called eccentricity ¢, is defined as the algebraic value of this distance.

¢ temperature inside and on the walls of the enclosure is uniform at the start. A heat flux (q') of constant density is
applied to the inner hemisphere, while the temperature of the outer hemisphere remains constant (T'). The walls
separating the two herrﬁnheres at angles 0=0 and O=n are adiabatic. The temperature difference between the two

hemispheres will cause fransient natural convection of the conductive fluid, which will develop inside the domain.




ggure 1 Geometry of the problem [2]

qle physigal properties of the fluid are constant, except for its density in the gravity term of the equation of motion,
where it varies linearly with temperature according to Boussinesg's law. The fluid is Newtonian and the flow is
laminar, incompressible, and two-dimensional. It is assumed that the magnetic field is constant and that the induced
field is negligible. ﬁlc viscous dissipation function, radiative effects, and pressure term are neglected. The
boundaries of the system under study are considered to be electrically insulating. The walls of our enclosure are
composed of two spherical parts and two others offset from the vertical. To simplify the boundary conditions, it is
therefore necessary to find a curved coordinate system in which the boundaries of our domain are determined by
lines of constant coordinates. Thus, given the geometry of the enclosure, the bispherical coordinate system is the
most appropriate. For rgﬂ)-dimﬂnsionﬂ] flow, the transition from Cartesian coordinates (x,y) to bispherical
coordinates is given by relation (1):

asinf@ _ _ashp

x= : =
chi—cos8 ¥ chn—-cos8

(8]

gong the vertical axis are two walls identified by 8 = 0 and 8 = «. The inner and outer hemispheres are represented
by the coordinate lines h=hi h=he, respectively. After introducing simplifying assumptions and the vorticity-
current function formalism, we establish the various dimensionless equations needed to solve the problem
considered in this study. The vortex-flux functions (vortex flow) are translated by the equations of momentum and

heat translated by relation (2):
8,F + A(U)8,F + B(V)3gF = P(3ZF + 83F) + S(628,T — G48,T ) + R(8,B; — 355,) 8

The different values of variables F, A, B, P, S, and G are given in Table 1.




Table 1: Variables in the heat and vorticity equation

Equation F A(U) B(V) P 5 R
Heat T 1 G, 1 [ G1] 1 0 0
—lu-=2 —fr+2 —
H[ K H + K H?
Movement Q 1 u 3PrG, 1 v 3PrG, Pr Ra.Pr Ha?. Pr
K E[ Tk ] E[ + K ] H? KH KH?
With:
B, = H(UB,Bs —VB}) :; B,=H (VB,By —UB}) 3)
By = %i = Gz cosp + Gy sing and By = % = (G, sing — Gy cosg 4)

Where the quantities U, V, G, Gg,E H are defined by equations (5), (6) and (7)

1 1
U—ﬁas‘!f ; V——Eﬂ,’qf (5)
_ 1-cosBchy . _ sinBshn
G, = chn—-cos@ ! G, = chn—cos@ (©)
asinf a
K= D(chn—cos8) ' H= D(chn—cos8) M

The incompressibility condition is verified Dy the equation of the current function given by relation (8):

1= (G W — G105W) —— (3FW + O¥) ®)

Q=
In addition to these different equations, there are boundary conditions and initial conditions.

At t=0, the conditions are expressed by equation (9):

Q=¥=T=U=v=0 (9) At t
> 0, the boundary conditions are expressed by equations (10), (11), and (12) depending on the location of the wall.

*  Onthe inner spherical surface (1= ni)

—y=V=0-0=_21 . — =
W—U—V—O:ﬂ—‘ﬁar?l!":anT—HI—Shgm (10)
. 911 the outer spherical surface (n=ne)
U=V =0-0=—"02w.T =
Y=USV=0;0=— W T=0 (11

. gn the two vertical walls (0=0, 0 =n)




— U=V =0 0=—-Lg2y- = a
W—U—V—O,Q——HOGW,ﬂHT—U )
The Nusselt number represents the thermal energy transmitted by a spherical wall. The local Nusselt number Nu and
the average Nusselt number Nuon spherical walls are defined by equations (13) and (14).

*  For the inner spherical wall

Nuj=— ; W:i]Nuidsi (13)

*  For the outer spherical wall

N = Witz =+ [ Nud s, (14)

1
HeTim 0,? ’
- Numerical analysis

Er the development of a numerical code simulating the magnetoconvection of a Newtonian fluid confined in an

annular space, we used the following methods:
- The implicit alternating direction method (ADI) for the temporal resolution of the momentum and heat equations;
- The finite difference method for spatial integration.

The THOMAS algorithm will be used g solve the system of linear equations obtained by the ADI method.
However, for the flow function equation, the solution will be obtained using the successive overrelaxation g}R)
method with an optimal relaxation parameter. In the iterative loop, the calculated result Znew for a quantity to be
determined will be considered a convergent solution only if it satisfies the following relation (15) with the old value

Zold.

Znew—E .
|Znew—Zotd|lmax <105

1Znew!
a)Steady state is only achieved if this relative error between two consecutive time steps for all quantities
obeys relation (16):
—_— ) ]
lzmlm’:“* <1075 (16)z"

represents €, 'F, or T for the n" time step.

Results and discussion

In this section, in order E}eﬁer understand the effect of the magnetic field on magnetoconvective flow, we will

discuss the results obtained by numerical simulations.

—Ealculation conditions




a:e choice of a 51 x 51 grid and a 10-*-time step was based on tests we conducted on the influence of these factors.
e results of these simulation tests are presented in Tables 2 and 3 and prove that our choices are, among other

things, a good compromise.

Table 2: Effects of time steps on the Nusselt number of the thermal wall for Ha=1, Ra=10%, =0, A=10"* and the
grid system is 51x51

Time steps
107 10+ 10°
Nu 4.7337 4.7298 4.7296
Difference (%) 0.087 0.004 0
Time computing (min) 5 124 802

Table 3: Effects of mesh refinement on the Nusselt number of the thermal wall for Ha=1, Ra=107%, e=0, and At=10~

Mesh grid
21%21 | 21%41 41%41 41*%51 | 41%81 51%51 51*81 | 81%81
Nu 4.8750 | 4.8871 47515 4.7503 | 4.7502 47298 | 47297 | 4.7060
Difference (%) 3.59 3.85 0.97 0.94 0.94 0.51 0.50 0
Time computing (min) 9 97 225 261 362 348 447 604
-Validation

mhe absence of a n@ndie field, our problem is reduced to that of natural l'rﬂinar convection. The data presented
c

in Table 4 provide the values of the average Nusselt number calculated Tor different Rayleigh numbers. We
compared our results with those frﬁ the study of transient laminar convection between two vertically offset
hemispheres, as referenced in [20]. These comparisons indicate a relative difference of 2.72% for all situations

examined, demonstrating excellent agreement between the results.

Table 4: Comparison of the average Nusselt number in @cas@ ofe=0




Ra
10° 10¢ 10° 106 107
gusselt number (our results) 2.0673 3.0379 4.8920 7.7680 11.708
Nusselt number (results of [20]) 2.125 3.0651 4.982 7.6874 11.671
Difference (%) 272 0.89 1.81 1.05 0.32

-Influence of Hartmann's number

For this study, apart from the Hartmann number, which is directly proportional to the magnetic ﬁy; all other

parameters are fixed. The eccentricity is set at 0.5, the magnetic field is inclined at an angle ¢ = /3, and the

Rayleigh number is set at Ra=10°
—-Isotherms and current lines

Figures 2, 3,4, and 5 show the temporal variationsgsothenns and streamlines for different values of the Hartmann
number (0.1, 1, 10, and 100). When the magnetic field is weak (Ha=0.1), the isotherms, as shown in Figure 2, are
mainly distorted by fluid movements and temperature differences. Consequently, the magnetic effect has a relatively
weak influence compared to other factors such as viscous flow and thermal convection, and the streamlines are only
slightly affected by the magnetic field. The magnetic forces are therefore insufficiently powerful to cause significant

disruption to the streamlines, although they do distort them slightly.

When the Hartmann number 1s equal to 1, Figures 3 show that the isotherms are influenced by both electromagnetic
forces and convective forces in equal proportions. For example, in a free convection regime, where convective
forces dominate, the isotherms may be more curved and distorted than those observed in a strictly electromagnetic
regime. The Hartmann number also slows down convection and enhances magnetic diffusion. Current lines also
undergo reorientation and deformation. The magnetic field suppresses vertical convection in the fluid, leading to
more horizontal and less vertical current lines. This results in a more regular organization of the current lines. For a
Hartmann gumber greater than | (Ha=10 or Ha=100), the isotherms in Figures 4 and 5 appear more uniform and less
distorted. ﬂa magnetic field tends to suppress convective motions in %&ctious perpendicular to its orientation.
Thus, the isotherms align with the magnetic field, meaning that they are paggllel to the magnetic lines of force. This
results in a specific organization of isotherms, with _elongated structures ﬁhe direction of the magnetic field. In
addition, the current lines are also modified. The effects of the magnetic field lead ¢ suppression of turbulent

convective motions and the formation of more organized convective cells, aligned along the magnetic ficld lines,

which are more regular and less chaotic than in the case where the Hartmann number is less than 1.
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—plinimum current function, Nusselt number, and internal wall temperature

Based on the gbserved evolution of the gusse]t number on the heated inner wall of the hemisphere in Figure 6, we
can conclude gat the ann number has a significant influence on the Nusselt number in our magnetoconvection
problem. Indeed, the @:s:lt number decreases as the Hartmann number increases. This is because the magnetic
field exerts a force on the charged particles in the fluid, which counteracts the natural convection motion. As a
result, convection is inhibited and heat transfer becomes less efficient. %Eﬂ the Hartmann number is low, the
magnetic field is also weak, thus promoting convection and leading to an extended and chaotic convection structure,
which increases the Nusselt number. On the other hand, as the Hartmann number increases, the magnetic field

inhi

s convection, thus reducing the Nusselt number.

Furthermore, in the same figure, we can see that the Hartmann number inﬂue‘nc@he average gmperature of the
heated wall in a magnetoconvection problem. As the Hartmann number increases, perature of the heated wall
also increases, probably due to a decrease in heat transfer efficiency caused by the magnetic field. Thus, the

presence of the magnetic field has a more pronounced warming effect on the inner wall of the hemisphere.

The evolution of the minimum current function over dimensionless time also proves that this function is influenced
by the Hartmann number. Initially, the minimum current function decreases before stabilizing for a long period, but
it increases for high Hartmann number values. This sharp decrease observed for low Hartmann numbers is due to the
fact that tla'nitial fluid movements may be more turbulent, thus causing a loss of magnetic energy in the system.
However, as the Hartmann number increases, the magnetic force becomes more predommant than convection. This
has the effect of stabilizing the currents and organizing the convection structure. In other words, the magnetic field

tends to suppress turbulent movements and promote more regular and orderly currents.
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Figure 6: Influence of the Hartmann number on the various parameters




Conclusion

In thig paper, we used numerical methods to study the magnetoconvection of a Newtonian fluid, in this case humid

confined between two eccentric hemispheres. The hemispherical cavity studied 1s subject to thermal and

electrical boundary conditions in order to determine the critical values of the parameters that mark the t of
instability. The objective is to highlight the impact of the Hartmann number on magnetoconvective n'ansf:.rﬁ do
this, a constant heat flux density is imposed on the inner hemispherical wall and a constant temperature on the outer
hemisphere. The equations governing magnetoconvection are expressed in bispherical coordinates. Discretization
using the finite difference method enabled the development of a computer code in Fortran. The equations agg solved
using the ADI and SOR methods. Assumptions are made about the vorticity and flux function variables. For very
weak magnetic fields, magnetoconvection reduces to a natural convection problem. The results obtained at the end

of the study are consistent and s‘@ﬁcant. The geometry of the system studied reveals that different values of the

Hartmann number have effects on the magnetoconvection of a fluid subjected to a constant oblique magnetic field.

For a low Hartmann number (Ha=0.1), convection dominates and the magnetoconvective isotherms and isocurrents

are similar to those obtained without a magnetic field.

For a large Hartmann number (Ha=10 or Ha=100), the magnetic field dominates and the isotherms and
magnetoconvective isocurrents are strongly affected, with a decrease in the size of the vortex and

magnetoconvective motion.

When the Hartmann number is low, !Ee magnetic field is weﬁnd the transfer is more convective, leading to an
extended and chaotic convection structure, thus increasing the Nusselt number. On the other hand, when the

Hartmann number is high, the magnetic field inhibits convection, thus reducing the Nusselt number.

The Haltn@'n number also affects Ec temperature of the heate(?va]l in this magnetoconvection problem. As Ha

increases, the temperature of the heated wall increases, due to a decrease in heat transfer efficiency caused by the
magnetic field.

3
For a low Hartmann number, the minimum current function decreaseg, rapidly over time, then increases before

stabilizing when steady state is reached. This decreage becomes smaller as the Hartmann number increases, meaning
that the minimum current function iEI'eases with the Hartmann number because the magnetic field reduces the
convection cumrent. Furthermore, our results are in agreement with solutions available in the literature, such as [10],

[20], etc.




Nomenclature

Latin Greek
a, parameter of thegrus pole (m) a, thermal diffusivity, (m*.s™)
e, eccentricity B, thermal expansion coefficient, (K)
g, gravitational intensity (m.s?) o, electrical conductivity, (A.m. V')
Coefficients g and g At, time step, (s)
H and K: dimensionless metric coefficient AT, temperature difference between the two
Bq: magnetic field intensity (N.A".m?) hemispheres, (K)
Ha: Hartmann number 1 and 0, bispherical coordinates, (m)
Nu,, Nusselt number for the outer hemisphere &, thermal conductivity, (W.K'.m™)
Nu;. Nusselt number for the inner hemisphere v, kinematic viscosity, (m*.s™')

Oi and Oe: center of the inner and outer hemispheres, | ‘¥, dimensionless flux function,

respectively ¥, dimensional flux function, (m*s™)
Pr: Prandtl number Q, dimensionless vorticity,
q: heat flux density (W.m) Q' dimensional vorticity, (m*.s%)

Ri and Re: radius of the inner and outer hemispheres,
respectively

Ra: Rayleigh number

t: dimensionless time

t’: dimensional time (s)

T: dimensionless temperature

U and V: dimensionless components of velocity in the
transformed planes

x and y, Cartesian coordinates, (m)
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