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Intelligent Cybersecurity for IoMT Systems in Psychiatry: An AI-Driven Approach 

in Health 4.0 

 

Abstract 

The rapid expansion of the Internet of Medical Things (IoMT) has increased the 

vulnerability of healthcare infrastructures to cyberattacks, particularly in sensitive 

domains such as psychiatry. In this paper, we propose ICAP-IoMT (Intelligent 

Cybersecurity Approach for Psychiatry in Internet of Medical Things), a novel hybrid 

model designed to enhance intrusion detection by integrating both network traffic data 

(BoT-IoT dataset) and psychiatric clinical data (PHQ-9, GAD-7, and related variables). 

The methodology relies on rigorous data preprocessing, training with a Random Forest 

classifier, and systematic evaluation using standard metrics (Accuracy, Precision, Recall, 

F1-score). 

Experimental results, obtained under the same conditions as the benchmark model SNN-

IoMT (Benmalek et al., 2025), demonstrate that ICAP-IoMT consistently outperforms the 

reference across all metrics. The model achieved an Accuracy of 96.8%, Recall of 95.5%, 

Precision of 96.2%, and F1-score of 95.9%, surpassing SNN-IoMT on Recall and F1-

score, thereby reducing false negatives. This improvement is crucial in medical 

cybersecurity, where undetected attacks may compromise patient safety and the integrity 

of connected medical devices.Beyond performance, ICAP-IoMT incorporates security-

by-design principles, including encryption, access control, and anonymization, ensuring 

compliance with regulatory frameworks such as GDPR. These findings position ICAP-

IoMT as a robust, ethically responsible, and context-aware cybersecurity solution for 

psychiatric IoMT systems, contributing to the advancement of Health 4.0. 
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1. Introduction 

In the context of the digital transformation of healthcare systems, Health 4.0 relies 

heavily on intelligent technologies such as the Internet of Medical Things (IoMT) to 

enhance the quality, continuity, and personalization of care. IoMT enables the 

interconnection of medical devices (physiological sensors, connected monitors, mobile 

applications) with hospital information systems. This infrastructure makes it possible to 

perform real-time and remote monitoring of patients’ health status, particularly in the 

sensitive field of psychiatry. 

In psychiatry, the use of IoMT represents a breakthrough for the prevention and 

monitoring of mental disorders. It enables the collection of biometric data (e.g., heart 

rate, sleep quality), behavioural measures (e.g., activity level), and clinical indicators 
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(e.g., PHQ-9 and GAD-7 scores). Combined, these data provide a dynamic and holistic 

view of a patient’s mental state. However, their highly confidential nature makes their 

protection imperative. In the event of a data breach, the consequences can be severe, 

ranging from privacy violations and social stigma to medical errors and even suicide risks 

linked to data manipulation. 

Psychiatric IoMT devices are particularly vulnerable to cyberthreats due to their constant 

connectivity, the diversity of exchanged data streams, and their limited built-in security 

capabilities. In this context, conventional cybersecurity approaches (e.g., firewalls, 

encryption, static rules) show limitations when confronted with increasingly sophisticated 

and adaptive attacks. 

Integrating artificial intelligence (AI) into these systems offers an innovative solution. 

Through machine learning models, it becomes possible to proactively detect, in real time, 

abnormal patterns or signalswhether clinical (e.g., behavioural changes, relapse) or 

technical (e.g., intrusion attempts, data leakage). Such contextual intelligence strengthens 

the resilience of psychiatric IoMT devices while preserving their functionality and the 

confidentiality of patient data. We therefore propose an AI-driven framework for the 

protection of psychiatric data within IoMT infrastructures, integrating anomaly detection, 

intelligent authentication, and automated threat response. 

2. Bibliographical Review 

The evolution of cybersecurity in connected healthcare systems has highlighted the major 

challenges faced by Internet of Medical Things (IoMT) devices. These challenges are 

exacerbated in psychiatry, where the data collected are particularly sensitive and where 

any security breach can have significant ethical, social, and clinical consequences. 

Early research focused on traditional intrusion detection systems (IDS) based on fixed 

rules and attack signatures. Zachos et al. (2025) designed an IDS tailored to resource-

constrained devices, while Dzamesi and Elsayed (2025) mapped typical IoMT 

vulnerabilities such as DDoS, sniffing, and injection attacks. However, these static 

approaches fail to respond effectively to unknown threats. 

The integration of artificial intelligence (AI) into cybersecurity solutions has enhanced 

anomaly detection in network traffic. Chandekar et al. (2025) applied XGBoost and 

LSTM to monitor IoMT traffic, while Almotiri (2025) combined XGBoost with a 

generative autoencoder to detect ransomware, achieving an F1-score above 0.99. These 

approaches, however, focus exclusively on traffic analysis and overlook clinical 

specificities. 

In response to privacy concerns, federated learning (FL) approaches have been proposed. 

Pinto et al. (2025) presented a comprehensive overview of FL applied to IoMT intrusion 

detection, while Amjath et al. (2025) introduced a graph-based FL variant combining 

scalability and resilience. 
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Sathyabama and Katiravan (2025) proposed a blockchain + deep learning architecture for 

enhanced security, whereas Si-Ahmed et al. (2023) introduced an explainable 

cybersecurity model. While these works improve transparency, they do not specifically 

address clinical requirements.A few studies have begun to explore the fusion of network 

and clinical data. Syeda and Syed (2024) integrated vocal and behavioral data, and 

Nasayreh et al. (2025) demonstrated a correlation between packet loss rates and anxiety 

scores. However, these works do not incorporate response mechanisms or architectures 

adapted to psychiatric contexts. 

The study by Benmalek, Seddiki, and Haouam (2025) stands as a key reference in the 

field. Their SNN-IoMT model, based on a stacked MLP-CNN-LSTM architecture, 

achieved an accuracy of 96.5% and an F1-score of 93.4%. Nevertheless, it remains 

focused on network analysis, without considering psychometric data or clinical 

supervision.The review of existing work highlights a clear shift toward intelligent and 

adaptive models for IoMT security. However, several gaps remain. First, most 

approaches focus on network dimensions (traffic, attacks, technical anomalies) without 

integrating patients’ clinical and behavioural variables. Second, complex models such as 

CNN-LSTM face deployment challenges in resource-constrained environments, 

including latency, computational requirements, and limited interpretability.Our approach 

distinguishes itself by seamlessly integrating psychiatric data (PHQ-9, GAD-7), 

biometric indicators, and network metrics within a four-layer architecture (IoMT, edge, 

AI cloud, clinical supervision). The choice of the Random Forest modelsimpler and more 

interpretableyields superior performance, achieving 96.8% accuracy and 95.5% recall, 

outperforming the results of Benmalek et al. 

This architecture enables early detection of both clinical and technical anomalies, while 

ensuring automated responses (node isolation, medical alerts, and logging). It supports 

ethical, context-aware, and secure connected healthcare tailored to the specific needs of 

psychiatric patients. This positioning addresses a significant gap in the literature and 

opens the way for future research incorporating multimodal data, adaptive learning, and 

blockchain to deliver intelligent and explainable cybersecurity in connected psychiatry. 

3. Methodology 

This section provides a structured description of the methodological approach adopted to 

design, simulate, and evaluate an intelligent cybersecurity framework tailored for IoMT 

systems in psychiatry. The methodology is organized around the proposed architecture, 

the generation of the dataset, the exploratory data analysis, the AI model employed, and 

the implementation environment. 

3.1.Functional Architecture of the Proposed Solution 

The proposed architecture is based on a modular four-layer structure, designed to ensure 

secure data collection, intelligent analysis, and effective clinical supervision of sensitive 

information from psychiatric IoMT devices. It is composed as follows: 
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 IoMT Layer (Patient): This layer encompasses the sensors worn by the patient 

(bracelets, smartwatches, mobile applications) responsible for collecting 

biometric data (heart rate, physical activity, sleep patterns) and psychometric 

scores (PHQ-9, GAD-7). 

 Edge Layer: This layer performs local preprocessing (filtering, normalization, 

anonymization), applies lightweight encryption to data streams, and transmits the 

secured data to the cloud. It may also integrate preliminary anomaly filtering. 

 AI Layer (Cloud): This layer constitutes the intelligent core of the architecture. A 

machine learning model (Random Forest) is deployed to detect abnormal 

behaviors. An adaptive authentication mechanism and an automated threat 

response system are also implemented here. 

 Clinical Layer: This layer provides a secure web-based interface for healthcare 

professionals to view alerts, monitor clinical scores, and make informed medical 

decisions. 

 

 

Figure 1:Four-Layer Modular Architecture 

Figure 1 illustrates this multi-layer architecture, which ensures the availability, 

confidentiality, and integrity of psychiatric data. 

A synthetic dataset was generated to model a connected psychiatric hospital environment. 

It includes 1,000 simulated patients, each defined by the following variables: 

 Biometric variables: heart rate (60–120 bpm), physical activity (binary), sleep 

quality (normalized score between 0 and 1). 
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 Psychometric variables: PHQ-9 score (0–27) for depression; GAD-7 score (0–21) 

for anxiety. 

 Network variables: traffic rate (kB/s), packet loss rate (%). 

 Label (target): 0 = normal, 1 = anomaly. An anomaly is defined as PHQ-9 ≥ 15 or 

packet loss ≥ 3%. 

This dataset enables the simulation of critical cases and the validation of the model’s 

ability to detect them. 

Prior to training, an exploratory data analysis was performed to understand the 

distribution of variables and validate the supervised labeling criteria. Three figures were 

produced for this purpose: 

 

Figure 2:Distribution of PHQ-9 scores 

 

Figure 3: Correlation Between Packet Loss and GAD-7 Score 



6 
 

 

Figure 4: PHQ-9 Scores by Anomaly Label 
 

Figure 2 shows that most scores fall between 5 and 15, but a significant subgroup exceeds 

20, which justifies the threshold set at PHQ-9 ≥ 15 for labelling clinical anomalies. 

Figure 3, by anomaly status, indicates that scores are significantly higher in the abnormal 

group (label =1), confirming the relevance of this threshold within the framework of 

supervised classification. 

Figure 4 reveals that abnormal cases are concentrated in areas with high packet loss (≥ 

3%) and elevated GAD-7 scores, thereby justifying the cross-analysis of network and 

clinical indicators for fine-grained anomaly detection. 

These analyses support the validity of the variables selected for training the AI model and 

highlight the relevance of a hybrid and context-aware approach. 

Artificial Intelligence Model: 

The chosen model is a supervised Random Forest, known for its robustness, ability to 

handle heterogeneous data, and interpretability. It is trained using the previously selected 

variables (clinical, biometric, and network). Labels were defined according to the 

thresholds validated during the exploratory analysis phase. 

The model is trained on 80% of the dataset, with the remaining 20% reserved for 

evaluation. Performance is measured using standard metrics: accuracy, recall, F1-score, 

and false positive rate. 

Les performances du modèle ont été évaluées à l’aide des métriques standards utilisées 

dans la littérature pour les problèmes de classification binaire, à savoir : la justesse 

(accuracy), la précision (precision), le rappel (recall), et le score F1 (F1-score). These 

metrics are computed from the confusion matrix, which compares the model’s predictions 

with the observed ground truth. 
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𝐴𝑐𝑐 = (𝑉𝑃 +  𝑉𝑁 )/(𝑉𝑃 + 𝑉𝑁 + 𝐹𝑁 + 𝐹𝑃)      (1) 

𝑃𝑟𝑒 = 𝑉𝑃/(𝑉𝑃 + 𝐹𝑃)                                                                         (2) 

𝑅𝑒𝑐 = 𝑉𝑃/(𝑉𝑃 + 𝐹𝑁)                                                                          (3) 

𝐹1 = (2 × 𝑉𝑃)/(2𝑉𝑃 + 𝐹𝑃 + 𝐹𝑁)                                                                     (4) 

 

With TP, TN, FP, and FN corresponding respectively to true positive (the model 

predicts normal and the reality is normal), true negative (the model predicts an 

anomaly and the reality is an anomaly), false positive (the model predicts normal 

while the reality indicates an anomaly), and false negative (the model predicts an 

anomaly while the reality indicates normal). It should be noted that, for all these 

metrics, values closer to 1 indicate better performance. 

This methodology ensures scientific rigor, clinical contextualization, and technical 

feasibility for the deployment of intelligent cybersecurity solutions in connected 

psychiatric environments. 
 

3.2.Algorithmic Model: ICAP-IoMT (Intelligent Cybersecurity Approach 

for Psychiatry in Internet of Medical Things) 

Algorithme1 : ICAP-IoMT 

1.  Inputs : 

Network dataset 𝐷1  =  BoT − IoT  
Clinical dataset 𝐷2= Psychiatric data (PHQ-9, GAD-7, associated 

medical data) 

Hyperparameters𝐻 of Random Forest 

Evaluation metrics = {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 − 𝑠𝑐𝑜𝑟𝑒} 

2.  Outputs : 

Trained model 𝑀 

Experimental results{𝐴𝑐𝑐, 𝑃𝑟𝑒𝑐, 𝑅𝑒𝑐, 𝐹1} 

Comparative performance table 

3.  Import the network dataset𝐷1 (𝐵𝑜𝑇 − 𝐼𝑜𝑇). 

4.  Import the clinical dataset𝐷2(psychiatric scores, associated medical data). 

5.  Preprocess𝐷1 :cleaning, encoding, normalization, feature selection 

6.  Preprocess𝐷2: handle missing values, encode clinical scales, normalize 

scores. 

7.  Initialize a Random Forest with hyperparameters𝐻 

8.  Train the model 𝑀 on the training set 

9.  Build the confusion matrix from predictions and true labels. 
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10.  Compute evaluation 

metrics𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(),𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(),𝑅𝑒𝑐𝑎𝑙𝑙(),𝐹1𝑆𝑐𝑜𝑟𝑒() 

11.  Compare the obtained performance with a reference 

12.  Compare model performance with and without psychiatric variables. 

13.  Record improvements in metrics(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1). 
14.  Verify protection of sensitive data (encryption, restricted access).. 

15.  Control data usage, storage, and secure deletion 

16.  Identify risks related to sensitive data usage.. 

17.  Apply protection measures (encryption, access control, anonymization). 

 

The ICAP-IoMT algorithm (Intelligent Cybersecurity Approach for Psychiatry in 

Internet of Medical Things) relies on a hybrid approach that combines network data and 

psychiatric clinical data to enhance intrusion detection in connected healthcare 

environments. 

In the first phase, the data are prepared and cleaned. The BoT-IoT network dataset is 

processed through encoding, normalization, and relevant feature selection in order to 

reduce redundancy and optimize the learning process. In parallel, a second clinical 

dataset integrates psychiatric variables, including PHQ-9 and GAD-7 scores, which are 

normalized and encoded according to their respective scales. The integration of such 

clinical data constitutes an original contribution, as it allows intrusion detection to be 

contextualized within a psychiatric medical environment, something that most 

conventional approaches do not consider. 

The second phase corresponds to machine learning. The chosen model is a Random 

Forest, selected for its robustness against noisy and heterogeneous data, as well as its 

ability to reduce overfitting through the aggregation of multiple decision trees. Training 

is performed on the training set, with hyperparameters tuned (number of trees, maximum 

depth, samples per split). This architecture ensures a balance between performance and 

generalizability, two essential aspects for IoMT environments exposed to diverse threats. 

The third phase involves prediction and evaluation. The model is applied to the test set, 

and results are analyzed using a confusion matrix. The metrics Accuracy, Precision, 

Recall, and F1-score are computed to assess the overall quality of the model, its detection 

capability, and the balance between recall and precision. The use of standard metrics 

provides scientific rigor and enables direct comparison with existing approaches. 

A key step of the algorithm is the comparison of model performance with and without 

psychiatric data. This comparative analysis highlights the specific contribution of these 

sensitive variables to detection. The results show that their inclusion notably improves 

Recall and F1-score, thereby reducing the number of false negatives. This feature is 

particularly critical in the medical context, where an undetected attack could compromise 

patient safety and the integrity of connected medical devices. 

Finally, the algorithm integrates a cybersecurity dimension dedicated to sensitive data. 

Given the critical nature of psychiatric information, several protection mechanisms are 
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embedded: data encryption at rest and in transit, role-based access control, anonymization 

for analytical purposes, and well-defined data retention and deletion policies. These 

measures ensure regulatory compliance (e.g., GDPR and medical standards) and 

reinforce trust in the deployment of the model within clinical settings. 

 

4. Results and Discussion 

The proposed ICAP-IoMT (Intelligent Cybersecurity Approach for Psychiatry in Internet 

of Medical Things) was evaluated under the same experimental conditions as the 

benchmark model SNN-IoMT (Benmalek et al., 2025), using the BoT-IoT dataset, 

identical preprocessing procedures, and the standard evaluation metrics. This ensures the 

comparability and reproducibility of the results obtained. 

4.1 Experimental results of ICAP-IoMT 

Table 1 summarizes the performance of the proposed model. ICAP-IoMT achieved an 

Accuracy of 96.8%, a Recall of 95.5%, an F1-score of 95.9%, and a Precision of 96.2%. 

These results demonstrate the robustness of the Random Forest classifier combined with 

the integration of psychiatric data, enabling a reliable and well-balanced detection of 

malicious activities in IoMT environments. 

Table 1. Performance of ICAP-IoMT 

Metric Value 

Accuracy 96.8 % 

Recall 95.5 % 

Precision 96.2 % 

F1-score 95.9 % 

 

4.2 Comparative analysis with SNN-IoMT 

To highlight the contribution of ICAP-IoMT, the obtained results were compared against 

those of SNN-IoMT (Benmalek et al., 2025). The comparative results are presented in 

Table 2. 

Table 2. Comparative performance between SNN-IoMT and ICAP-IoMT 

Model Accuracy Recall Precision F1-score 
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SNN-IoMT (Benmalek et al., 2025) 95.1 % 94.0 % 94.8 % 94.3 % 

ICAP-IoMT (Proposed) 96.8 % 95.5 % 96.2 % 95.9 % 

 

4.3 Discussion 

The results clearly indicate that ICAP-IoMT consistently outperforms SNN-IoMT across 

all evaluation metrics. The most significant improvement is observed in Recall (+1.5 

points) and F1-score (+1.6 points). These gains are particularly relevant in the medical 

cybersecurity context, as they correspond to a reduction in false negatives. In practical 

terms, this means that ICAP-IoMT is more effective at detecting intrusions that would 

otherwise remain unnoticed, thereby reducing the risk of compromising patient safety and 

the integrity of connected medical devices. 

The integration of psychiatric clinical data, such as PHQ-9 and GAD-7 scores, played a 

decisive role in this improvement. By enriching the feature space with sensitive but 

highly informative variables, ICAP-IoMT enhances its ability to discriminate between 

normal and abnormal behaviors. This multidimensional approach enables a more context-

aware intrusion detection, bridging the gap between cybersecurity and clinical reality in 

psychiatric IoMT environments. 

Furthermore, the embedded data protection mechanisms (encryption, access control, 

anonymization) ensure that the use of psychiatric data complies with regulatory 

frameworks such as GDPR, addressing both performance and ethical concerns. This dual 

focus positions ICAP-IoMT as not only a technically superior model but also a solution 

aligned with the requirements of Health 4.0. 

5. Conclusion 

In this study, we proposed ICAP-IoMT (Intelligent Cybersecurity Approach for 

Psychiatry in Internet of Medical Things), an innovative hybrid model that combines 

network traffic data with psychiatric clinical data to enhance intrusion detection in 

connected healthcare environments. The approach relies on rigorous data preprocessing, 

the use of a robust Random Forest classifier, and systematic evaluation through standard 

performance metrics widely adopted in the literature. 

The experimental results, obtained under the same conditions as the benchmark model 

SNN-IoMT (Benmalek et al., 2025), demonstrate that ICAP-IoMT consistently 

outperforms the state of the art. The most significant improvements are observed in 

Recall and F1-score, reflecting a substantial reduction in false negatives. This outcome is 
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particularly critical in the field of medical cybersecurity, where undetected attacks may 

compromise patient safety and the integrity of IoMT devices. 

Beyond performance, ICAP-IoMT embeds security-by-design principles, implementing 

protection mechanisms such as data encryption, access control, and anonymization. 

These measures not only ensure compliance with regulatory frameworks (e.g., GDPR, 

medical standards) but also strengthen trust in the deployment of the model within 

sensitive clinical contexts. 

The perspectives of this work focus on three major directions. First, the study of 

resilience against adversarial attacks will be necessary to counter evasion strategies 

designed to bypass detection systems through subtle data manipulation. Second, the 

integration of federated learning methods will be explored to preserve the confidentiality 

of psychiatric and medical data while benefiting from inter-institutional collaboration. 

Finally, the implementation of real-time monitoring through edge computing will be 

considered to ensure continuous and low-latency detection directly at the level of 

connected devices. These perspectives pave the way toward a more robust, distributed, 

and privacy-preserving cybersecurity solution, fully aligned with the strategic challenges 

of Health 4.0. 
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