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Abstract

This study introduces an advanced Fractional-Order Proportional-
Integral-Derivative (FOPID) control system for aircraft landing gear
shock absorption, demonstrating significant improvements over
conventional  approaches.  Through rigorous simulation and
experimental validation, the proposed controller achieves an 80.3%
reduction in settling time and a 43.1% decrease in overshoot compared
to traditional PID systems, while maintaining 90% energy absorption
efficiency. The research establishes that fractional-order control
principles enable superior management of nonlinear landing dynamics,
as evidenced by substantial reductions in velocity peaks and structural
stress transmission. A comprehensive two-degree-of-freedom model
combined with frequency-domain optimization techniques forms the
theoretical foundation for these advancements. Experimental results
confirm the system's robustness under variable loading conditions, with
Monte Carlo analysis validating performance consistency. This work
contributes to aviation safety by demonstrating how adaptive damping
control can simultancously enhance touchdown stability, passenger
comfort, and mechanical component longevity. The findings position
FOPID control as a transformative solution for next-generation landing
gear systems, offering measurable performance gains that address
critical limitations of existing tec hnologies.
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Highlights:

*  Novel FOPID controller achieves 80.3% faster settling time than conventional PID

*  Demonstrates 43.1% overshoot reduction and 90% energy absorption efficiency

*  Hybrid simulation-experimental validation confirms real-time implementation feasibility
e Advanced two-degree-of-freedom model captures nonlinear landing dynamics

*  Monte Carlo analysis verifies robustness under operational variability

INTRODUCTION

Aircraft landing gear systems are among the most critical subsystems in aviation, designed to absorb and dissipate
the tremendous kinetic energy generated during touchdown. Conventional solutions such as passive hydraulic
dampers and Proportional-Integral-Derivative (PID) controllers have long been employed to regulate these
dynamics. However, their reliance on fixed parameters and limited adaptability often leads to suboptimal
performance when faced with varying aircraft weights, unpredictable runway conditions, and extreme operating
scenarios [1,2]. These limitations not only affect passenger comfort but also compromise the structural integrity and
service life of the landing gear assembly [3]. Modern aviation operations demand more resilient, adaptive, and
intelligent control approaches capable of rsspuud@g to nonlinear and uncertain landing dynamics in real time. To
address this challenge, this study introduces a Fractional-Order PID (FOPID) controller, which leverages the
principles of fractional calculus to extend the flexibility of classical PID control. By incorporating fractional
differentiation and integration orders (i, p), the FOPID design provides finer tuning capabilities and enhanced
adaptability to nonlinear system responses compared with integer-order methods [4]. In particular, our approach
bridges gaps in prior research by quantifying FOPID’s superiority in energy dissipation, achieving up to 90%
absorption efficiency and reducing settling times by more than 80% relative to conventional PID control [5,6]. To
ensure practical feasibility, Oustaloup’s recursive approximation is integrated for hardware-realizable
implementation of fractional operators [7], while performance is validated through a hybrid methodology combining
high-fidelity simulations with scaled experimental tests. Collectively, this research not only demonstrates the
potential of FOPID for improving landing gear energy management but also establishes a foundation for real-world
deployment in next-generation aviation systems.




1. MOTIVATION AND LITERATURE GAP

Although control of landing gear dynamics has received considerable research attention, most studies remain
anchored in traditional PID frameworks or passive damping systems. While these methods are widely adopted in
industrial practice, they exhibit inherent limitations that hinder optimal performance under dynamic landing
scenarios [8,9]. Specifically, fived-parameter PID controllers suffer from excessive overshoot reaching up to

1.77% and prolonged seftling times averaging 0.795 ds when subjected to sudden impact loads [10], thereby
compromising both comfort and safety. Furthermore, the majority of existing research on fractional-order
control has been confined to theoretical domains, with limited application to aviation-specific challenges such as

dare

weight variability, harsh runway c or real-time comp I constraints [11,12]. Another major
shortcoming of prior studies is the lack of comprehensive energy-hased analyses, where the interplay between
kinetic and potential energy during touchdown is seldom quantified, leaving a critical knowledge gap in
understanding frue system efficiency [13]. To overcome these challenges, the present research advances the state
of the art by proposing a two-degree-of-freedom (2DOF) FOPID model specifically tuned for aircraft landing
d) thereby bling improved adaptability te diverse operating environments. Our Monte Carlo-based
validation demonstrates the controller’s ability to achieve 43.1% lower overshoot while absorbing approximately
90% of the impact energy, outperforming conventional approaches by a significant margin [14]. In addition, the
introduction of scaled prototype experiments with microcontroller-based implementation bridges the gap bemween
theory and practice, offering a viable pathway for integration into commercial aviation systems [15]. By directly
addressing the gaps in adaptability, validation, and energy optimization, this work contributes both a technical
advancement and a practical solution to the persistent challenges of landing gear control.

Table 1. Performance Metrics for PID vs. FOPID: The performance of PID and FOPID controllers in aircraft
landing gear systems can be evaluated using several key metrics.

Metrics

PID

FOPID

Displacement

Typically results m higher peak
displacement during landing due to
its limited ability to adapt to varying

conditions

Achieves lower peak displacement,
providing smoother landings by

better adapting to dynamic changes

Velocity

May exhibit higher velocity peaks,

leading to increased impact forces

Reduces velocity peaks, thereby
minimizing the forces transmitted to

the aircraft structure.

Kinetic Energy

Higher kinetic energy levels during
touchdown can result in greater
stress on the landing gear and

airframe

More effectively dissipates kinetic
energy, reducing  stress  and

enhancing safety

Potential Energy

Less efficient in managing potential
energy, which can lead to higher

rebound effects

Better controls potential energy.
reducing rebound and 1mproving

overall landing smoothness




Figure 1: Schematic of landing gear.

Table 2 highlights the controller tuning parameters and approximations. This table outlines the parameters and

tuning techniques for both PID and FOPID controllers.

Table 2. Controller Tuning Parameters and Approximations

Controller | Kp | Ki | Kd ﬁ p Approximation Order (N) | Frequency Limits (wl, oH)
PID 8 10 | 10 N/A | NIA N/A
FOPID 8 (10|15 |05 |5 0.01, 100

Table 3 presents the simulated system response comparison. This table compares the step and non-step responses

for PID and FOPID controllers.

Table 3. Simulated System Resp Comparison
Response Type PID FOPID
StepResponseOvershoot (%) 1.770 1.008
Settling Time (s) 0.795 0.156
Non-StepResponseOvershoot (%) 1.900 1.050
Settling Time (s) 0.800 0.160
2. METHODOLOGY

The study employed a structured methodology combining theoretical modeling, controller design, simulation, and
experimental validation to evaluate landing gear performance under dynamic touchdown conditions. A two-degree-
of-freedom (2DOF) mass-spring-damper model was developed, with state-space equations and transfer functions
derived to represent landing dynamics. A Fractional-Order PID (FOPID) controller in orating fractional
differentiation and integration orders (A, p) was designed to enable adaptive damping, with Oustaloup’s recursive
approximation applied to implement fractional operators in the frequency domain. MATLAB/Simulink simulations
compared the performance of conventional PID and FOPID controllers using realistic aircraft parameters, while
genetic algorithms were employed to optimize controller gains (Kp, Ki, Kd) by minimizing overshoot and settling
time. For validation, a scaled landing gear prototype was constructed and integrated with an Arduino Mega for real-
time FOPID implementation, tested across nominal and overload impact scenarios. Key performance metrics,




including displacement, velocity, settling time (0.156 s), overshoot (1.008%), and energy dissipation efficiency
(90%) were quantified, confirming the superiority of FOPID control over traditional approaches.

3. FOPID CONTROL DESIGN AND SYSTEM MODELLING

e Fractional Order Proportional-Integral-Derivative (FOPID) controller is an advanced control strategy that
extends the traditional PID controller by incorporating fractional calculus. This allows for more flexible and precise
control, making it particularly suitable for complex systems like aircraft landing gear suspension (See Figure 1).
The proposed FOPID model aims to enhance the performance of landing gear systems by optimizing shock
absorption and damping characteristics, thereby improving touchdown safety and smoothness Figure 5.
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simplified to that of a conventional PID controller in parallel form.

The overall system overview 1s illustrated in Figure 2.

Table 4. Aircraft Numerical Simulation Parameters

-gescripri on

Symbol | Value Units
Adircraft fuselage mass m 8800 Kg
Landing gear tire mass e 2600 Kg
Landing gear shock strut stiffness ki 4.08¢e5 N/m
Landing tire stiffness ka2 .08e5 N/m
Landing gear shock strut damping coefficient c 41944 N.s/m
Table 5. The Proposed FOPID and PID controllers' setting parameters
Parameters PID FOPID

Kp 8 8

KI 10 10

Kd 10 10

lambda | e 1.5

me | e 0.5

Parameters of Oustaloup’s approximation

Fractional order r 0.5
rder of approximation N 5

Low frequency limit w L 0.01

High frequency limit w_H 100

Table 6. The Performance metrics of the proposed FOPID and PID controllers

Controller Types Settling time Overshoot
PID 0.7950 1.7701
FOPID 0.1561 1.0082
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4. RESULTS AND DISCUSSION

This section presents the experimental and simulation results validating the superiority of the proposed FOPID
controller over conventional approaches. Through quantitative analysis of settling time, overshoot, and energy
dissipation metrics, we demonstrate how fractional-order control enhances landing gear performance. The
discussion contextualizes these findings within aviation safety requirements, emphasizing the contoller’s
adaptability to dynamic impact conditions. Key comparisons with PID systems highlight the FOPID’s ability to
reduce structural stress while maintaining passenger comfort

Egure 3 shows the step response of a PID-controlled system over 10 s for two reference inputs. The left plot
demonstrates a rapid rise with slight overshoot settling at 1, while the right plot, responding to a higher reference of
1.5, initially undershoots and gradually stabilizes, highlighting the PID’s ability to track step changes with
characteristic transient and steady-state behavior.
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Figure 3: PID Controller step (left) and non-step (right) response plots.

Figure 4 presents the step response of an FOPID-controlled system over 10 s for two reference inputs. The left plot
shows rapid tracking of the reference at 1 with minimal overshoot, while the right plot demonstrates near-perfect
matching for a higher reference of 1, highlighting the FOPID controller’s precise, stable, and robust performance.
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Figure 4: FOPID Controller step (left) and non-step (right) response plots.

Figure 5 illustrates the 20-second displacement of two masses in a dynamic system, with Mass 1 (blue) and Mass 2
(red) showing oscillations of differmg amplitudes and phases, and Mass 2 reaching higher peaks. The bottom plot
presents a single waveform oscillating between —2 and 0 m, highlighting steady, periodic motion and emphasizing
the comparative dynamic behavior of the masses over time.
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Figure 5: Displacement of masses (above), and relative displacement between the masses (below).

Figure 6 illustrates the displacement (left) and velocity (right) responses of the FOPID-controlled system over 5 s,
where oz and os show larger initial values and slower decay, while o1 and especially a3 converge faster to zero with
reduced oscillations, confirming the FOPID controller’s effectiveness in enhancing stabilization and demonstrating
that transient dynamics depend on each configuration’s mass, stiffness, and damping characteristics.
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Figure 6: Displacement (left) and Velocity (right) for Different Mass (m), Stiffness (k), and Damping (c) with the
proposed FOPID controller.

Figure 7 demonstrates the energy dissipation characteristics of the FOPID-controlled system, where kinetic (left)
and potential (right) energy plots over 5 s reveal well-damped oscillatory decay across four parameter sets (ou—os);




«a achieves optimal damping with minimal peaks (12.1 J, 8.5 J) and fastest settling (t = 0.68 s), oz shows the largest
peaks (38.6 J, 24.3 J) and slowest dissipation (t = 1.82 s), while & and o4 exhibit intermediate behavior, confirming
the controller’s robust stabilization and predictable energy—damping correlation (R*= 0.93).
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Figure 7: Kinetic Energy (left) and Potential Energy (right) for Different Masses

Figure 8 illustrates the system dynamics via dual analyses, where the Bode plot (left) confirms mecond-order low-
pass filter with a -40 dB/decade roll-off beyond we = 12.5 rad/s and a phase shift from 0° to -180°, while the energy
dissipation profile (right) shows oscillatory cycles of 0-0.25 kJ at 2.5 s intervals, achieving 85% energy recovery
through damping.
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Figure 8: Left: Frequency Response Analysis. Right: Energy Dissipation Over Time.

Table 7. Comparative Performance Metrics of Passive, PID, and FOPID Systems

Metric Passive System | PID Controller | FOPID Controller
Peak Displacement (m) High Moderate Low
Settling Time (s) Long 0.795 0.156
Overshoot (%) Significant 1.770 1.008
Peak Velocity (m/s) High Moderate Low




Kinetic Energy Dissipation (%) Inefficient Moderate Efficient

Potential Energy Rebound (%) High Moderate Low

Table 8. Energy Dissipation Metrics for Different Systems

Energy Type Passive System | PID Controller | FOPID Controller
Kinetic Energy Dissipation (J) Low Moderate High

Potential Energy Management (J) | Poor Moderate Excellent

Energy Absorption Efficiency (%) | 50% 70% 90%

5. CONCLUSION

This study demonstrated that the Fractional-Order PID (FOPID) controller outperforms conventional PID and
passive damping systems in aircraft landing gear shock absorption by reducing settling time by 80.3%, overshoot by
43.1%, and achieving 90% energy absorption. Its adaptability, enabled through fractional calculus, was validated via
simulations, experimental testing, and real-time microcontroller implementation. Future work should focus on full-
scale FAA-certified testing, integration with machine learning for adaptive tuning, evaluation under extreme
environments, and computational optimization for efficient embedded deployment.
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