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Abstract 4 

The marine ecosystems of India are rich in red (Rhodophyta) and brown (Phaeophyceae) 5 
algae, which offer a wealth of bioactive compounds with immense pharmacological potential 6 
from sustainable sources. These macroalgae are capable of synthesizing structurally diverse 7 
secondary metabolites, including sulfated polysaccharides (e.g., carrageenan, fucoidan), 8 

phlorotannins, polyphenols, sterols, and flavonoids. Recent investigations have unveiled their 9 
strong biological activities, such as anticancer, antidiabetic, antioxidant, anti-inflammatory, 10 

antimicrobial, neuroprotective, antihypertensive, and anti-obesity. This review summarizes 11 

and evaluates the therapeutic efficacy of Indian red and brown algae with a special emphasis 12 
on species-specific bioactivities and mechanisms of action. Specific importance is given to 13 
algae, which include Gracilaria edulis, Kappaphycus alvarezii, Turbinaria conoides, and 14 
Padina tetrastromatica. We also consider the pharmacological rationale of these actions and 15 
current challenges in clinical validation, standardization, and bioavailability. The review 16 

highlights the importance of further in vivo and translational research and modern 17 

biotechnological methodologies that would enable the exploitation of these marine sources to 18 
develop drugs. The sustainable availability of Indian algae with their biochemical richness is 19 
requisite for future pharmaceutical and nutraceutical approaches. 20 
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1. Introduction 23 

Marine algae have been utilized traditionally in food, agriculture, and traditional medicine for 24 

a long time in the coastal areas of the world. In the last decades, scientific research has 25 
highlighted that red (Rhodophyta) and brown (Phaeophyceae) seaweeds are sources of 26 
powerful bioactive substances with several beneficial effects. Among others, these are 27 

represented by sulfated polysaccharides, including carrageenan and fucoidan, phlorotannins, 28 
phenolic compounds, and other secondary metabolites such as flavonoids, terpenoids, sterols, 29 

and peptides【1–4】. The compounds have shown antioxidant, anti-inflammatory, 30 

anticancer, antidiabetic, antimicrobial, antithrombotic, neuroprotection, and antihypertension 31 

activities in the preclinical models【2,5】. 32 

India, having a vast coastline of over 7500 km and various marine ecosystems, is home to 33 
hundreds of red and brown algal species. Some of the notable species are Gracilaria edulis, 34 
Gelidiella acerosa, Hypnea musciformis (red algae), and Sargassum wightii, Turbinaria 35 
conoides, and Padina tetrastromatica (brown algae), showing excellent pharmacological 36 

prospective【6–8】. With the growing resistance to synthetic drugs and awareness of the 37 

need for eco-friendly therapeutic agents, Indian marine algae are now touted as a potential 38 

source of new drug candidates and functional food products【9】. 39 

Despite numerous in vitro and in vivo studies confirming their efficacy, the commercial and 40 
clinical translation of algal-based therapies remains limited. Challenges such as variability in 41 



 

 

metabolite content, lack of standardized extraction protocols, poor bioavailability, and 42 

insufficient clinical validation hinder their pharmaceutical development【10,11】. 43 

The present review tries to present an overall summary of the biological activities of Indian 44 

red and brown algal species, particularly focused on their pharmacological mechanisms and 45 
therapeutic potentials. Furthermore, it highlights important research gaps and plans for the 46 
development of medicinal alternatives to synthetic drugs for chronic diseases. 47 

2. Anticancer Activity 48 

Cancer is an erosion disorder with multiple etiologies, which has been linked to the abnormal 49 
growth of cells and their ability to penetrate the surrounding organs and eventually migrate to 50 

different places. It remains one of the top killers globally, accounting for 10 million deaths 51 
and over 19 million new cases in 2020. Of these, breast, lung, colorectal, prostate, skin, and 52 

stomach cancer are the most common cancers in the world, and cervical cancer is still a 53 

significant health issue in many developing countries 【12】. 54 

Various treatment protocols have contributed to the improvement of the prognosis of cancer, 55 

including those such as surgery, chemotherapy, radiotherapy, immunotherapy, targeted 56 

therapy, and stem cell transplantation, as the most available form in the world today. 57 
Nevertheless, most of these therapies have strong side effects, are toxic, expensive, and 58 
generate resistance to agents, which drives the need to find safer and more effective agents 59 

【13】.Nature remains a rich reserve of anticancer drugs, as many chemotherapeutic agents 60 

(e.g., paclitaxel, vincristine, doxorubicin, and actinomycin D) have been identified from 61 

plants and microbes. Marine organisms, too, have known in recent years an increasing 62 

interest due to their peculiar chemical scaffolds and bioactivities. Among them, red and 63 
brown macroalgae are promising sources rich in sulfated polysaccharides, phlorotannins, and 64 

sterols with cytotoxic, antiproliferative, and pro-apoptotic activities in different cancer cell 65 

lines 【14,15】. 66 

This section discusses the anticancer activities of some of the Indian red and brown algae 67 
species, focusing on the molecular mechanisms of action and their relevance to drug 68 

discovery. 69 

2.1 Anticancer Activities of Red Algae 70 

In preclinical studies, several Indian red seaweeds have shown potent anticancer activities, 71 
which include induction of apoptosis, reduction in cell proliferation, modulation of signaling 72 
pathways, and generation of reactive oxygen species (ROS). 73 

Gracilaria edulis has antiproliferative effects on A549 human lung adenocarcinoma cells 74 

both in vitro and in vivo without systemic toxicity 【16】. Zinc oxide nanoparticles (ZnO-75 

NPs) prepared from its extract exhibit specific cytotoxicity toward cervical cancer cells 76 

(SiHa) through the induction of ROS-mediated apoptosis 【17】. Similarly, the sterol-rich 77 

fraction of Porphyra dentata has been shown to reduce tumor growth in 4T1 breast cancer 78 
models by suppressing myeloid-derived suppressor cell (MDSC) activity, with β-sitosterol 79 

and campesterol as key active compounds 【18,19】. 80 



 

 

Porphyra umbilicalis dietary supplementation significantly decreased the formation of 81 

dysplastic skin lesions in HPV16 transgenic mice, suggesting protective effects against virus-82 

induced tumorigenesis 【20】. Gelidium amansii exerted anti-adipogenic and antioxidant 83 

activities in 3T3-L1 cells and is expected to inhibit cancer-related metabolic disorder 【21】. 84 

Kappaphycus alvarezii and its sulfated polysaccharides (carrageenans) have shown 85 
antiproliferative effects in breast, colon, and liver cancer cells, suggesting their potential use 86 

as chemopreventive agents 【22】. And Laurencia papillosa extracts also showed dose-87 

dependent cytotoxic effect on human breast cancer cell line MCF-7, and caused apoptosis via 88 

apoptotic signaling cascades 【23】. 89 

Novel ceramides were proved from the methanolic extract of Hypnea musciformis and 90 

exhibited appreciable cytotoxicity against MCF-7 cells in vitro as well as anticancer activity 91 

against EAC by down-regulating VEGF-B and midkine growth factor 【24】.  Inhibition of 92 

the PI3K/Akt pathway, activation of GSK3β, and apoptosis were induced by Gracilaria 93 
acerosa extract. It also exhibited antimetastatic function through the down-regulation of 94 
MMP2, implying its bivalency in tumorigenesis suppression and metastasis inhibition. 95 

【25】.The methanol extract of Acanthophora spicifera exhibited cytotoxic activity against 96 

Dalton's ascitic lymphoma (DAL) cells, and the crude polysaccharides of Gracilariopsis 97 

lemaneiformis induced apoptosis of breast, liver, and lung cancer cells 【26,27】 98 

2.2 Anticancer Activities of Brown Algae 99 

Indian brown algae are known to possess a wide variety of bioactive compounds, viz., 100 

fucoidans, phlorotannins, terpenes, polyphenols, sterols, and alkaloids, some of which have 101 

exhibited significant anticancer bioactivity in vitro as well as in vivo. 102 

The most expedient aspects of the Fucoidan from Sargassum ilicifolium are a very potent 103 

cytotoxic activity in the cell lines, indicating its possibility as a natural anticancer 104 

chemotherapeutic agent 【28】. As well, the extracts of Padina tetrastromatica significantly 105 

decreased the number and survival of tumors in EAC models in a dose-dependent manner, 106 

corroborating its apoptotic and antiproliferative effect【29】. 107 

The seaweed Dictyopteris australis is a source of a specific combination of C11-108 
hydrocarbons, sulfur-containing compounds, quinone derivatives, and terpenoids that are all 109 

related to cytotoxicity or chemoprevention【30】. Turbinaria ornata, commercially rich 110 

with fucoxanthin, fucosterol, polyphenols, saponins, and terpenes, also demonstrates 111 

widespread anticancer activity due to the synergistic action of the metabolites【31】. 112 

Hormophysa cuneiformis is a brown alga and exhibits a strong inhibitory effect against 113 

various cancer cells, including HepG2, HL60, A549, and HCT116, with low IC50 values such 114 

as 44.6µg/mL, showing strong cytotoxicity against different types of tumors 【32,33】. In a 115 

recently conducted research, the ethanolic extract of Stoechospermum marginatum was found 116 
to induce concentration- and time-dependent apoptosis in cancer cells, and exhibited 117 

comparable cytotoxicity with that of quercetin, a standard antioxidant compound【34】. 118 

Extracts from Cystoseira indica suppressed the proliferation of MCF-7 human breast 119 
adenocarcinoma cells, while organic extracts of Colpomenia sinuosa decreased the viability 120 

of cervical, breast, and colon cancer cell lines, especially HCT-116, in a dose and time-121 



 

 

dependent manner【35,36】. Antiproliferative activity was also reported for Spatoglossum 122 

asperum, which inhibited 35% growth in Huh7 (liver) and 26% in HeLa (cervical) 123 

cells【37】. 124 

All these findings highlight the wide pharmacological capability of Indian brown algae, 125 
which can provide the basis of further studies on the development of advanced anticancer 126 
treatments. 127 

3. Antidiabetic Activity 128 

Diabetes mellitus is a group of chronic metabolic diseases characterized by defects in insulin 129 

secretion, insulin action, or both, resulting in increased blood glucose. Global health data 130 

indicate that the main disease is diabetes, and more than 324 million people are expected to 131 

have diabetes by 2025【38】. Some chemical drugs provide palliative treatment with 132 

undesirable long-term side effects, such as toxicity of the liver and possible 133 

carcinogenesis【39,40】. This has raised a growing interest in natural products, in particular 134 

of marine origin, because they are safe, cheap, and efficacious. 135 

 Seaweeds, particularly red and brown macroalgae, are rich in various bioactive compounds, 136 
including sulfated polysaccharides, phlorotannins, sterols, flavonoids, and peptides. These 137 

compounds have shown potential in the treatment of diabetes in vitro and in vivo by 138 

inhibiting enzymes, insulin sensitizing, and antioxidant effects【41,42】. 139 

3.1 Antidiabetic Activities of Red Algae 140 

The potential of red algae for diabetes management is highlighted, mainly by inhibiting 141 
carbohydrate-hydrolyzing enzymes and pancreatic function. 142 

The hypotensive and antihyperglycemic effects of Hypnea cornuta have been attributed to its 143 

polysaccharide content, which was found to cause a significant decrease in postprandial 144 

blood glucose levels and anti-β-cell damage in animal models【43,44】. Moreover, high α-145 

amylase inhibition activity was also revealed in the Gracilaria corticata, which was 146 
attributed to the presence of its polyphenolic compounds, supporting their involvement in the 147 

control of carbohydrate digestion【45】. 148 

Stigmasterol, a phytosterol with antioxidant and α-amylase inhibitory activities, was isolated 149 

from Gelidium spinosum. In vivo studies proved that stigmasterol considerably lowered blood 150 

glucose, urea, and creatinine levels in streptozotocin-induced diabetic rats【46】. Laurencia 151 

dendroidea ethyl acetate extracts also showed high antioxidant activity (DPPH IC50 = 152 

312.09μg/mL) and hypoglycemic effect in diabetic models【47】. Jania rubens extracts 153 

enhance glucose metabolism and insulin sensitivity; therefore, they are useful for type 2 DM 154 

management【48】. Portieria hornemannii has been shown to inhibit important diabetic 155 

enzymes, viz., α-amylase, α-glucosidase, and DPP-IV, resulting in preventing glucose release 156 

and absorption【49】. 157 

 158 

Table 1 Bioactivities of Indian red algae 159 



 

 

S.No Algal Species Type Bioactive 

Compounds 

Reported 

Bioactivities 

 References 

1 Gracilaria 

edulis 

Red Sulfated galactans, 

polyphenols 

Anticancer, 

Antidiabetic, 

Antioxidant, 

Antithrombotic, 

Analgesic, 

Neuroprotective 

【16,17,106】 

2 Gelidiella 

acerosa 

Red Sulfated 

polysaccharides, 

phytol 

Antioxidant, 

Anticancer, 

Neuroprotective, 

Antihypertensive, 

Antithrombotic 

【25,98,28】  

3 Hypnea 

musciformis 

Red Ceramides, 

carotenoids, 

sulfated galactans 

Anticancer, 

Antioxidant, 

Antidiabetic, Anti-

obesity, 

Antihypertensive 

【24, 69,105】. 

4 Kappaphycus 

alvarezii 

Red Carrageenan Anticancer, Anti-

obesity, 

Antihypertensive, 

Neurotrophic 

【22,168,228】 

5 Laurencia 

papillosa 

Red Diterpenes, 

acetogenins, 

sterols 

Anticancer, 

Antioxidant, 

Neuroprotective 

【23,161,162】 

6 Acanthophora 

spicifera 

Red Apigenin, sterols Anti-inflammatory, 

Antithrombotic, 

Antioxidant 

 【26,101】 

7 Gracilaria 

corticata 

Red Phenolics, 

galactans 

Antioxidant, 

Antibacterial, 

Antidiabetic 

 【27,97】 

8 Hypnea 

valentiae 

Red Carrageenan Antioxidant, 

Antidiabetic, 

Antimicrobial 

 【69】 

9 Gelidium 

pusillum 

Red Agar, flavonoids Antioxidant, 

Neuroprotective 
【29】 

10 Jania rubens Red Calcium carbonate, 

terpenoids 

Antioxidant, 

Antithrombotic, 

Antihypertensive 

【30,119】 

Acanthopora muscoides reduced blood glucose levels and ameliorated haematological and 160 

biochemical indices of DM by enzyme inhibition【50】. The antioxidant and the 161 

hypocholesterolemic activities of the sulfated galactans of Spyridia hypnoides could be of 162 

interest for the therapy of diabetes-associated sequelae【51】. The antioxidant status and 163 

immune-related gene expression of fish models were enhanced by Galaxaura oblongata, 164 

indirectly indicating its metabolic regulatory role【52】. 165 

3.2 Antidiabetic Activities of Brown Algae  166 



 

 

Evidence from some Indian brown algae has shown that inhibition of carbohydrate-digesting 167 

enzymes, antioxidant activity, and glucose modulation mechanisms can be promising for the 168 
antidiabetic activity of the extracts. 169 

Crude extracts of Turbinaria conoides strongly suppressed α-amylase, α-glucosidase, and 170 
dipeptidyl peptidase-IV (DPP-IV), which are involved in the postprandial hyperglycemia 171 

through the digestion of complex carbohydrate to glucose【53】. Another research group 172 

found that Sargassum polycystum extract decreased blood glucose as well as plasma insulin 173 
levels in diabetic obese mice, suggesting the systemic hypoglycemic effect of the 174 

extract【54】. Cystoseira trinodis exhibited the highest activity as an enzyme inhibitor, and 175 

its ethyl acetate extract was the most active in terms of α-amylase inhibition, while the 176 
methanolic extract was the most potent in terms of α-glucosidase inhibition. In addition, 177 

Cystoseira trinodis significantly decreased the fasting blood glucose in alloxan-induced 178 

diabetic hyperglycemic mice, demonstrating their antidiabetic potential in vivo 【55,56】. 179 

Subsequently, Dictyopteris australis and Dictyopteris hoytii have been investigated for their 180 
α-glucosidase inhibitory potential. Two bromobenzene inhibitors were obtained from D. 181 
hoytii, and Dictyopteris polypodioides produced zonarol, a marine hydroquinone that 182 

displayed α-glucosidase inhibitory activity involving both competitive and mixed inhibition 183 

modes【57,58】. The protein hydrolysates from Padina tetrastromatica by subcritical water 184 

hydrolysis showed α-amylase inhibitory activity. Moreover, its antioxidant potential, 185 

particularly H2O2 scavenging, also reinforces its possible role in the prevention of oxidative 186 

stress-associated diabetic complications【59,60】. 187 

That extracts of Hydroclathrus clathratus can reduce biochemical markers in alloxan-induced 188 

diabetic rats, probably via its antioxidant and anti-inflammatory activities【61】. Strong α-189 

glucosidase inhibition (IC50 = 3.50±0.75 μg/mL) was exhibited by the 80% methanolic 190 
extract of the Colpomenia sinuosa at a higher potency than the reference drug acarbose (IC50 191 

= 160.15±27.52 μg/mL). Sirophysalis trinodis extracts markedly reduced postprandial blood 192 

glucose in diabetic rats【62】. Another brown macroalga, Padina pavonica, has been 193 

described to have antioxidative capacity, which may combat oxidative stress, one of the 194 

factors contributing to the pathogenesis of diabetic complications【63】. 195 

4. Antioxidant Activity 196 

Oxidative stress, triggered by the imbalance between reactive oxygen species (ROS) and the 197 

antioxidant system of the organism, is a fundamental cause of chronic diseases such as 198 

cancer, neurodegeneration, cardiovascular diseases, and skin aging. Antioxidants are 199 
bioactive substances that can neutralize free radicals and protect cellular components such as 200 
DNA, proteins, and lipids against oxidative damage. 201 

Indian red and brown macroalgae are rich in natural antioxidants such as polyphenols, 202 
flavonoids, carotenoids, phlorotannins, and sulfated polysaccharides. These agents work 203 
through various pathways, including ROS scavenging, metal ion chelation, increasing activity 204 
of endogenous antioxidant enzymes, or modulation of oxidative signaling pathways. 205 

Moreover, recent studies have demonstrated that algae extracts can greatly reduce oxidative 206 
stress, making them very attractive for the development of drugs, nutraceuticals, and 207 

cosmeceuticals【64】. 208 



 

 

4.1 Antioxidant Activities of Red Algae 209 

Gracilaria corticata showed significant antioxidant activity, having phenolic and flavonoid 210 
content of 4.00±0.35mg GAE/g and 3.33±0.12mg CE/g, respectively. Its DPPH and ABTS 211 

scavenging activities were 20.32% and 32.65% revealing its ROS-scavenging 212 

capacity【65】. Gelidiella acerosa and Gelidium pusillum showed prominent antioxidant 213 

effects by various mechanisms such as metal chelation and inhibition of oxidative enzymes. 214 
G. pusillum was linked with a higher total antioxidant activity than Hypnea musciformis due 215 

to its higher level of phenolics【66,67】. 216 

The DPPH and OH radical scavenging of the carrageenan-rich Hypnea valentiae extracts 217 
showed scavenging activities of 65.74% and 65.72%, respectively. The carrageenan of this 218 

species showed an antioxidant activity of 70.1% at 250 µg/mL【68】.  Methanol extract of 219 

Gracilaria filicina reduced 82% DPPH radical activity and 65% of superoxide anion, which 220 

were two-fold higher than positive controls BHT and a-tocopherol, indicating the strong free 221 

radical scavenging power【69】. 222 

Halymenia porphyraeformis was found to induce the Nrf2 signaling pathway, which 223 
increases the levels of endogenous antioxidant enzymes, demonstrating the possible gene-224 

regulatory MoA【70】. Despite demonstrating cytotoxicity in brine shrimp bioassay by LC50 225 

at 635.47µg/mL (acute) and 275.72µg/mL (chronic), Acanthopora spicifera exhibited 226 

potential to regulate oxidative damage【71】. Extracts of Asparagopsis taxiformis 227 

(methanol, chloroform, petroleum ether, ethyl acetate) exhibited radical scavenging 228 
properties, where the methanol extract exhibited 85% of superoxide inhibition and strong 229 

FRAP activity, a likely consequence of its polyphenolic content【72】. 230 

Eucheuma denticulatum ethyl acetate extract (EDEE) was found to have strong antioxidant 231 

and free radical scavenging activity with a total phenolic content of 81.34±0.99mg GAE/g 232 
and flavonoid content of 5.64±0.12mg QE/g. The DPPH IC50 value was 1031.5 ppm, and 233 

thus it can be an effective potential candidate for modulation of oxidative stress【73】. 234 

4.2 Antioxidant Activities of Brown Algae 235 

Sargassum wightii crude extract has as high DPPH scavenging activity as that of gallic acid 236 

and rutin at 200 µg/mL【74】. The highest antioxidant activity of DPPH (64.14%) and 237 

ABTS inhibition (15.02%) for Turbinaria ornata further justifies its activity in reducing 238 

oxidative stress【75,76】. The methanolic extracts of Padina tetrastromatica showed clearly 239 

the phenolic (85.61mg GAE/g) and the flavonoid (41.77mg QE/g) contents, the highest in 240 

brown algae. It showed 77.07% and 77.65% of DPPH and ABTS activities, respectively, and 241 
strong scavenging activities of H2O2 (67.89%) and nitric oxide (70.64%). The IC50 of DPPH 242 

inhibition was 0.96µg/mL, i.e., strong antioxidant capacity【77,78】. 243 

 The diterpenoids from Dictyota dichotoma displayed powerful antioxidant activity in the 244 
ABTS assay. Its most abundant component, fucoxanthin, had 13.5-fold higher hydroxyl 245 

radical scavenging activity than vitamin E【79】. The ethyl acetate extract of Turbinaria 246 

conoides exhibited strong DPPH-radical scavenging activity, which was due to its high 247 

phenolic content (105.97mg GAE/g)【80】.  248 



 

 

 Colpomenia sinuosa dichloromethane: methanol extract exhibited remarkable antioxidant 249 

activity, and was also cytotoxic toward colon cancer cells, which may be attributed to the 250 

presence of phenolic compounds, diterpenes, and carotenoids 【81】. Sulfated 251 

polysaccharide (fucan) fraction from Lobophora variegata was highly active in both the 252 

phosphomolybdate and radical scavenging assays (EC for hydroxyl radicals = 253 

0.12mg/mL)【82】. Finally, the ethyl acetate extract of Gracilaria edulis showed high 254 

antioxidant potentials in a range of assays (FRAP, DPPH, ABTS, and metal chelation), 255 

thereby validating the potential secondary metabolites【83】. 256 

5. Anti-inflammatory Activity 257 

Inflammation is a dynamic and complex biological response that involves the action of 258 

immune cells such as macrophages and neutrophils to pathogens, tissue injury, or irritants. 259 
This process is characterized by the release of pro-inflammatory mediators, including TNF-α, 260 

interleukins, and prostaglandins, and activation of signaling molecules COX-2, iNOS, and 261 
NF-κB. Although acute inflammation helps in tissue healing, chronic inflammation promotes 262 
the pathogenesis of several disorders, including arthritis, cardiovascular diseases, and 263 

cancer【84-86】. 264 

 Marine macroalgae, especially red and brown algae, are important sources of bioactive 265 
secondary metabolites such as halogenated diterpenes, acetogenins, sulfated polysaccharides, 266 

and phlorotannins. Several studies have reported their potential to modulate inflammation by 267 
inhibiting significant signaling pathways such as NF-κB and MAPK, suppressing the 268 

production of pro-inflammatory cytokines, and inducing anti-inflammatory mediators【87-269 

90】. 270 

5.1 Anti-inflammatory Activities of Red Algae 271 

Gracilaria salicornia produced new drimane-type quinols that selectively exhibited 5-272 

lipoxygenase and COX-2 inhibition, as confirmed by in silico molecular modeling【91-93】. 273 

Laurencia majuscula provided the maneonene acetogenins and sesquiterpenes that highly 274 

decrease nitric oxide release from activated macrophages; compounds 5 and 18 were found to 275 

display the most potent inhibitory activity【94】. Gelidiella acerosa attenuated 276 

inflammation through suppression of NF-κB and via induction of IL-10. Its actions were 277 
similar to anti-inflammatory drugs, such as dexamethasone, and could be considered for the 278 

treatment of lung inflammation【95】. Eucheuma denticulatum has displayed remarkable 279 

anti-inflammatory activity in carrageenan-induced paw oedema models, especially at 280 

50mg/kg, which is probably associated with its phenolic constituents【96】. 281 

Apigenin, contained in the red seaweed Acanthophora spicifera, inhibited pain and 282 
inflammation in animal models through suppression of TNF-α, IL-1β, IL-6, and PGE2 283 

【97,98】. Pterocladiella capillacea had in vivo antinociceptive, anti-inflammatory, and 284 

antioxidant activities by inhibiting xanthine oxidase and bacterial agglutination, suggesting a 285 

broad therapeutic application for this alga【99–101】.  Extracts of Hypnea musciformis were 286 

found to inhibit inflammation up to 78.64% in vitro anti-inflammatory activity at a 287 

concentration of 200µg/mL【102】. Gracilaria edulis inhibited COX-2, PGE2 production, 288 

and NF-κB translocation in hepatitis C virus-infected cells, substantiating the 289 

immunomodulatory roles of its polyphenols and ascorbic acid【103,104】. 290 



 

 

Laurencia papillosa extracts exhibited a moderate cytotoxicity in leukemia cells, and 291 

bioactivity was affected by both seasonal variation and extraction solvents. The cytotoxicity 292 

occurred, but its mechanism still needs to be clarified【105】. 293 

 5.2 Anti-inflammatory Activities of Brown Algae 294 

Ascophyllan, an inhibitor of adipogenesis from the brown alga, Padina tetrastromatica, 295 
leading to a reduction in the inflammation in adipocytes and rats, demonstrating its 296 

antiobesity and anti-inflammatory activity【106,107】. Lipid extracts from Sargassum 297 

ilicifolium inhibited NO production and displayed potent radical scavenging and ferric-298 
reducing activity. It is a rich source of sterols, omega-3 PUFAs, and fucoxanthin, and has 299 

been demonstrated to be an important anti-inflammatory agent【108–110】. In addition, 300 

substituted 2H-pyrano [3, 2-c] pyranoids were obtained with selective activity toward little 301 

inflammatory mediators, demonstrating their therapeutic potentials【111】. 302 

Fucoidan isolated from Dictyota bartayresiana inhibited ROS, NF-κB activation, and 303 
induced apoptosis in an LPS-stimulated macrophage; therefore, fucoidan could be considered 304 

as a candidate drug【112】. The anti-inflammatory effect of fucoidan isolated from 305 

Sargassum swartzii was attributed to the inhibition of TLR-mediated MAPK and NF-κB 306 
signals. Non-polar lipophilic compounds of the same alga also revealed anti-inflammatory 307 

activity【113】. Sargassum wightii alginic acid lowered the expression of inflammatory 308 

markers in the collagen-induced arthritic model, which was supported by its flavonoids and 309 

sulfated polysaccharides【114】. Padina gymnospora showed anti-inflammatory and 310 

wound-healing effects as it can enhance the fibroblast migration and reduce the NO 311 

production, which led to the potent healing activity and exhibited foliage pattern from the 312 

fatty acid profile【115】. 313 

Cystoseira indica demonstrated potent phenolic contents and in vivo anti-inflammatory 314 

activity at 50mg/kg. A comparative study on fucoidans from some of the Cystoseira species 315 
also confirmed their antioxidant and anti-inflammatory potential [116]. Hyaluronidase, the 316 
important enzyme in allergic inflammation, was significantly inhibited by Sargassum 317 

tenerrimum phlorotannins, suggesting that this would be a potential natural agent for the 318 

treatment of allergies and inflammation【117】. Polysaccharides of Sargassum vulgare and 319 

S. macrocarpum, including fucans, have demonstrated anticoagulant, antioxidant, and anti-320 

inflammatory activity. Their water extracts also made substantial contributions to the anti-321 

inflammatory activity【118,119】. 322 

6. Antimicrobial Activities 323 

The increasing threat of antimicrobial resistance (AMR) has created an urgent need for new 324 
therapeutic agents that are safer and more effective than conventional drugs. Marine 325 
macrolagae red and brown have been shown to be a prolific source of antimicrobial 326 
compounds such as alkaloids, flavonoids, terpenoids, phenols, sulfated polysaccharides, fatty 327 

acids, and steroids 【120】. These bioactive metabolites have broad-spectrum antiviral, 328 

antifungal, and antibacterial properties. Disrupting membrane integrity, changing cellular 329 
permeability, preventing the synthesis of macromolecules, and interfering with replication 330 

and protein synthesis pathways are some of their antimicrobial mechanisms 【121, 122】. 331 



 

 

6.1 Antibacterial Activities of Red and Brown Algae 332 

Its dual antibacterial and antifungal potential is suggested by the methanolic extract of 333 
Gracilaria corticata, which has shown antibacterial effects against Bacillus subtilis and a 334 

variety of fungal pathogens, including Trichophyton mentagrophytes, Microsporum canis, 335 

and M. gypseum【123】. Cholesterol derivatives from Laurencia papillosa exhibited broad-336 

spectrum antibacterial activity against Gram-positive and Gram-negative bacteria, indicating 337 

their possible use in pharmaceuticals offers promise【124,125】. Gelidiella acerosa has 338 

antibacterial, antioxidant, and anticancer potential, and the nanoparticles silver and gold 339 

synthesized using this algal extract showed enhanced antibacterial efficacy【126-128】. 340 

The extracts from Padina tetrastromatica showed powerful antibacterial activity, where the 341 

ethyl acetate fraction was the most potent against Staphylococcus aureus and had the lowest 342 

effects against E.coli【129】. Methanol and ethyl acetate extracts of Turbinaria conoides 343 

inhibited Bacillus subtilis, E. coli, and other pathogens, E. faecalis, and P. aeruginosa. The 344 

ethyl acetate extract has shown results comparable to streptomycin【130,131】. Hexane 345 

extracts of Sargassum ilicifolium inhibited the growth of Gram-positive bacteria, reportedly 346 

due to the presence of sterols and polyphenols, considered the main active compounds.  347 
These extracts are also non-toxic and well-tolerated. These extracts can also be exploited for 348 

drug development【132,133】. Sulfated polysaccharides obtained from Sargassum swartzii 349 

showcase effective antibacterial activity, especially against E. coli strains, which were 350 

confirmed as promising antimicrobials【134】. 351 

6.2 Antifungal Activities of Red and Brown Algae 352 

Some species of red algae show strong antifungal activity. Gracilaria corticata has 353 
previously demonstrated activity against pathogenic yeast and other fungi by inhibiting 354 

fungal growth and mycelial formation in a human and plant model of pathogenicity【135】. 355 

Laurencia obtusa has been found to contain C12 acetogenins, halogenated metabolites, and 356 
antifungal sesquiterpenes. These compounds, such as palmitic acid methyl ester and 357 

trichloromethyloxirane, are active against many fungal species【136】. Halymenia floresii 358 

produced the non-toxic halymeniaol, a hydroxylated sterol that has shown antifungal as well 359 

as antimalarial activity, exhibiting promising activity against Plasmodium 360 

faliciparum【137】. 361 

Among the brown algae, Padina pavonica has exhibited cytotoxic and antifungal activities 362 

towards tumor and fungal cells 【138】. Sargassum polycystum showed activity against the 363 

fungus Candida albicans and has also been identified with hepatoprotective and antiviral 364 
activity. Nanoparticles of silver biosynthesized by it had increased antifungal activity towards 365 

some fungal strains【139,140】. 366 

 367 

 368 

6.3 Antiviral Activities of Red and Brown Algae 369 



 

 

Sulfated polysaccharides from red algae have been extensively investigated for antiviral 370 

activity. Zinc oxide Nanoparticles, synthesized using Halymenia pannosa, exhibited 371 

promising antiviral activity against Coxsackie B4 and HSV-1【141】. Algal Sulfated 372 

polysaccharides appear to be promising candidates in the search for new drugs, as Laurencia 373 

obtusa crude extract was also highly inhibitory against the Hepatitis C virus at 82.36% 374 

inhibition【142】. Sulfated galactans isolated from the red algae Gracilaria corticata have 375 

previously shown effectiveness in the prevention of infection of various viruses, including 376 
HSV, HIV, Influenza, and even SARS-CoV-2, proving the versatility of red algal 377 

polysaccharides' therapeutic potentials【143】. 378 

In silico docking studies of Sargassum polycystum, a brown alga, indicated its potential as an 379 
anti-COVID agent through inhibitory effects on the SARS-CoV-2 PLpro 380 

enzyme【144,145】. Though some of the compounds obtained from Turbinaria conoides did 381 

not show significant activity against viruses, the existence of bioactive structures could 382 

justify further investigation【146】. Aqueous extracts of Lobophora variegata also strongly 383 

inhibited HIV-1 replication in vitro and were non-toxic, supporting its application in anti-384 

HIV therapies, irrespective of being elaborated from local algae【147】. 385 

7. Neuroprotective Activities 386 

Neurodegenerative diseases (NDs), including Alzheimer’s Disease (AD), Parkinson's disease 387 

(PD), Huntington's Disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis, are 388 
classically defined as disorders involving the progressive loss of neuronal structure and 389 
function in the central nervous system (CNS). These diseases are typically associated with 390 

permanent motor disability and cognitive decline that is largely mediated by oxidative stress, 391 

neuroinflammation, protein misfolding, and mitochondrial dysfunction【148,149】. 392 

Currently, neurodegenerative diseases impact about 50 million individuals worldwide, and 393 
this number is predicted to exceed 115 million by 2050 due to the increasing world 394 

population age【150,151】. As no definitive cure exists, this has created an increasingly 395 

urgent need for measures that are protective at the level of the neuron. Red and brown marine 396 

algae have recently been identified as prospective natural sources of neuroprotective 397 
compounds with antioxidant, anti-inflammatory, anti-amyloidogenic, and cholinesterase-398 

inhibitory activity 【152-153】. 399 

7.1 Neuroprotective Activities of Red Algae 400 

  Laurencia papillosa, a red algae, exerts neuroprotective properties mainly through its 401 
antioxidant and anti-inflammatory bioactives, such as diterpenes, bromophenols, and 402 

polyphenols, which protect oxidative and inflammatory injury to neuron【154,155】. 403 

Gracilaria edulis, which shows AChE inhibitory and antioxidant activity, is indicative of 404 

possible cognitive advantages in AD and similar neurodegenerative conditions【156】. 405 

Hypnea valentiae was found to have both AChE and butyrylcholinesterase (BuChE) 406 
inhibitory activity as well as antioxidant activity. The fact that its inhibition mechanism is of 407 

mixed-type behavior advocates cholinergic therapeutic advantage in AD【157】. Gelidiella 408 

acerosa provides neuroprotection through free radical scavenging, anti-apoptotic activity, and 409 
inhibition of cholinesterase, among other mechanisms. Compounds of this nature, such as 410 

phytol, act to further bolster this activity of neuroprotection against amyloid beta toxicity and 411 



 

 

neuronal degeneration 【158,159】. Inhibition of oxidative damage, inflammation, and 412 

AChE activity, all relevant to Alzheimer’s and Parkinson’s pathologies, by polyphenols and 413 
brominated metabolites found in Asparagopsis taxiformis also contributes to 414 

neuroprotection【160】. The carrageenophyte Kappaphycus alvarezii also possesses 415 

neurotrophic activity since it stimulates neurite outgrowth, a process fundamental for neuron 416 
development and regeneration. Surface samples incubated for 45 days presented even higher 417 
activity than those cultivated at a deeper level, as well as a higher neurotrophic potential 418 

when compared to K. striatum and Eucheuma denticulatum【161】. 419 

7.2 Neuroprotective Activities of Brown Algae 420 

Ample evidence has supported the neuroprotective efficacy of Sargassum wightii in 421 

Parkinson’s disease, where the seaweed was shown to ameliorate dopamine levels, mitigate 422 
oxidative stress, and protect mitochondria from impairment in rats treated with rotenone 423 

【162】. Turbinaria ornata’s myricetin and fucoidan are both capable of alleviating 424 

oxidative stress as well as the destruction of dopaminergic neurons and thus cell death, and 425 

making it a useful candidate in PD treatment【163】. The neuroprotective effects of Padina 426 

tetrastromatica are attributed to its rich content of fucoxanthin, sulfated polysaccharides, and 427 
phenolic compounds. These provide antioxidant and enzyme inhibitory properties, which 428 
may be valuable in mitigating neuroinflammatory and neurodegenerative processes. 429 

Diterpenes, phlorotannins, and sulfated polysaccharides found in Dictyota dichotoma support 430 
multiple mechanisms of antioxidant, anti-inflammatory, and cholinesterase-inhibiting activity 431 

that are important for neuroprotection and slowing neurodegeneration progression. 【164】. 432 

8. Anti-Obesity Activities 433 

Obesity is defined as a body mass index (BMI) greater than 30 kg/m 2, and is characterized 434 

by excessive fat accumulation affecting health, and is becoming a pandemic threat to global 435 
health. It is particularly associated with increased risk of type 2 diabetes, cardiovascular 436 
disease, dyslipidemia, non-alcoholic fatty liver disease (NAFLD), and hypertension, as well 437 

as certain cancers. Among them, genetic predisposition, hypothalamic dysfunction, 438 
psychogenic stress, and overconsumption of calories in childhood are major contributors. 439 

Based on data collected from over 200 countries, obesity is projected to affect 6% of the male 440 

and 9% of the female global population by 2025【165-167】. While anti-obesity 441 

medications do exist, their use is restricted due to side effects such as increased risk of stroke 442 

and cardiovascular conditions【168】. These facts led to growing interest in the use of 443 

marine-derived natural compounds as safer and more natural alternatives to the treatment of 444 

obesity. 【169】Molecules from seaweed, including alginates, fucoxanthin, fucoidan, and 445 

phlorotannins, have shown future possibilities for antiobesity action via mechanisms such as 446 
inhibition of enzymes involved in fat absorption, regulation of lipid and lipid metabolism, 447 
and appetite and satiety control. 448 

8.1 Anti-Obesity Activities of Red Algae 449 

Hypnea musciformis has also been found to ameliorate lipid metabolism, lower oxidative 450 
stress, and decrease levels of cholesterol. A diet rich in it could therefore be supportive in 451 

preventing the sequelae associated with obesity-related conditions【170-172】. Gracilaria 452 

edulis exhibits hypoglycemic and antioxidant activity that aid in the control of blood glucose 453 



 

 

and oxidative stress, respectively, which can assist in the anti-obesity potential of this 454 

seaweed【173-175】. 455 

Table 2 Bioactivities of Indian Brown Algae 456 

S.No Algal Species Type Bioactive 

Compounds  

Reported 

Bioactivities  

Reference 

1 Turbinaria 

conoides 

Brown Fucoxanthin, 

terpenes, 

fucoidans 

Anticancer, 

Antioxidant, Anti-

inflammatory, 

Anti-obesity, 

Antipyretic 

【31,76,115】 

2 Sargassum 

wightii 

Brown Fucoidan, 

polyphenols, 

alginates 

Antioxidant, 

Antidiabetic, 

Antihypertensive, 

Anti-obesity, 

Antimicrobial 

【112,118】 

3 Padina 

tetrastromatica 

Brown Phlorotannins, 

sterols, sulfated 

polysaccharides 

Antioxidant, Anti-

inflammatory, 

Neuroprotective, 

Anti-obesity, 

Antipyretic 

 【78,79,110】 

4 Dictyota 

dichotoma 

 

Brown Diterpenes, 

fucoxanthin 

Antioxidant, Anti-

obesity, 

Antithrombotic 

【80,213】 

5 Hormophysa 

cuneiformis 

Brown Alkaloids, 

phenolics, 

sulfated 

polysaccharides 

Anticancer, 

Antioxidant 
【32,33】 

6 Colpomenia 

sinuosa 

Brown Polyphenols, 

diterpenes, 

carotenoids 

Anticancer, 

Antioxidant, 

Antidiabetic 

【35,62】 

7 Sargassum 

tenerrimum 

Brown Fucoidans, 

flavonoids 

Antioxidant, 

Antidiabetic, Anti-

inflammatory 

【36,73】 

8 Padina 

boergesenii 

Brown Sterols, tannins Anti-

inflammatory, 

Antioxidant, 

Antibacterial 

【37,99】 

9 Turbinaria 

ornate 

Brown Phytosterols, 

polyphenols 

Antioxidant, 

Antidiabetic 
【38,120】 

10 Sargassum 

polycystum 

Brown Fucoidan, 

mannitol 

Antioxidant, 

Neuroprotective 
【39,103】 

Gracilaria dura inhibits the activity of α-amylase and α-glucosidase, leading to decreased 457 
carbohydrate absorption. It's polyphenols and flavonoids also help fight inflammation and 458 

oxidative stress associated with obesity【176,177】. Hypnea cervicornis has been shown to 459 

have enzyme-inhibitory, lipid-modulating, and antioxidant activity in preclinical models. 460 

Regulatory activity on appetite has also been suggested, although human studies are still 461 



 

 

lacking【178-180】. Similar anti-obesity mechanisms, such as inhibition of enzymes or 462 

antioxidant activities, are also portrayed by Gelidiella acerosa. It could also be involved in 463 

appetite control and satiety【181,182】. Kappaphycus alvarezii is also promising via gut 464 

microbiota modulation, digestive enzyme inhibition, and lipid metabolism regulation. Plus, 465 
its anti-oxidative and anti-inflammatory effects also favor its employment in the control of 466 

obesity【183-185】. 467 

8.2 Anti-Obesity Activities of Brown Algae 468 

Sargassum wightii has been identified as a promising agent for functional foods in combating 469 
obesity due to the presence of polyphenols and fucoxanthin, which modulate lipid 470 

metabolism, promote insulin sensitivity, and mitigate inflammation【186-188】. In rats fed a 471 

high-fat diet, Sargassum polycystum decreased weight gain and fat storage, suggesting its use 472 

as a dietary supplement【189,190】.  473 

In hypertrophied 3T3-L1 adipocytes, Padina tetrastromatica has been demonstrated to inhibit 474 

lipogenesis and to enhance thermogenesis. Padina tetrastromatica and barley combinations 475 

were safe and effective in mouse models 【191,192】. Fucoxanthin and fucoidan contained 476 

in Turbinaria ornata have been shown to affect adipocyte differentiation and lipid 477 

metabolism. It also shows potent protective effects in related scenarios associated with 478 

oxidative stress due to obesity【193,194】. From Turbinaria conoides, they have obtained a 479 

derivative of the oxygenated fucosterol with strong binding affinity for fat mass and obesity-480 
associated protein (FTO). Sulfated polysaccharide bioactivity from this algae has also been 481 

related to antioxidant activity involved in obesity mitigation【195,196】. 482 

Fucoxanthin and phenolic compounds are present in Dictyota dichotoma with significant 483 

antioxidant activity. They have been associated with their anti-obesity benefits as well as 484 

being a natural therapeutic agent 【197,198】. Fucus vesiculosus has been used medicinally 485 

for centuries. Its fucoxanthin and phlorotannins have anti-obesity, antidiabetic, and 486 
thermogenic effects. Extracts high in phlorotannins have also exhibited antihyperlipidemic 487 

effects, contributing to the prevention of atherosclerosis 【199,200】. Lobophora variegata 488 

is rich in sulfated polysaccharides and phlorotannins. Though the direct evidence of anti-489 
obesity is limited, its antioxidant and anti-inflammatory activity suggests therapeutic 490 

potential【201,202】. 491 

9. Antihypertensive Activity 492 

 High blood pressure is a major global health concern as well as one of the primary risk 493 
factors for cardiovascular diseases, stroke, and kidney failure. Mainly Red (Rhodophyta) and 494 

brown (Phaeophyceae) marine macroalgae are being increasingly recognized for their 495 
potential as natural sources of antihypertensive agents. Many have bioactive compounds, 496 
including sulfated polysaccharides, peptides, phlorotannins, polyphenols, and have beneficial 497 

angiotensin-converting enzyme (ACE) inhibition, vasodilation, and antioxidant effects, 498 

among other mechanisms of action【203,204】. 499 

Among red algae, Gracilaria and Hypnea are known to contain inhibitory peptides and 500 

antioxidant compounds. The same applies to brown algae, as is the case for species of 501 

Sargassum, Ecklonia, and Fucus, which are rich in phlorotannins and other compounds that 502 



 

 

protect the vascular tissues 【205】. These results indicate that marine algae are potential 503 

candidates for functional foods and drugs for the control of hypertension【206】. 504 

9.1 Antihypertensive Activity of Red Algae 505 

 The high content of antihypertensive phenolics and carotenoids with ACE-inhibitory and 506 
antioxidant activity in Hypnea musciformis is of interest because it suggests a potential use 507 

for the seaweed as an antihypertensive agent. Though only limited in vivo documentation 508 
exists, its ethanolic extracts have been demonstrated to exert an antioxidant effect and to 509 

improve endothelial dysfunction【207】. Gracilaria edulis has been found to have ACE-510 

inhibitory and antioxidant activities, which are presumably attributed to its sulfated 511 

polysaccharides. They decrease oxidative injury to vascular tissue and are proposed to play a 512 

role in blood pressure homeostasis【208】.G.verrucosa has been demonstrated to directly 513 

lower blood pressure in rats. Its ethanol extract also lowered systolic and diastolic blood 514 
pressure by about 14.6% and 15.1% at a dose of 125mg/kg, possibly due to inhibition of 515 

ACE【209】. 516 

Gracilaria dura contains polyphenols and terpenoids known for their antioxidant and ACE-517 
inhibitory activity, consistent with its proposed vascular protective and antihypertensive 518 

activity 【210】. Gelidiella acerosa has sulfate-rich polysaccharides and peptides, which are 519 

involved in the ACE-inhibiting and antioxidant mechanisms of action, highlighting its 520 

function in the ability to reduce hypertension. Kappaphycus alvarezii, which is rich in kappa-521 
carrageenan, promotes blood pressure regulation indirectly by exerting anti-inflammatory and 522 

antioxidant activities on the vascular endothelium【211,212】. 523 

9.2 Antihypertensive Activity of Brown Algae 524 

Chloroform extract of Sargassum wightii has been reported to have a potential activity as an 525 

ACE-inhibitor with an IC50 of about 0.084 mg/mL. Its fractions also exhibit strong anti-526 
inflammatory properties through COX and 5-LOX inhibition and have been noted to protect 527 

the vasculature【213】. Phlorotannins from Ecklonia stolonifera, such as eckol, dieckol, and 528 

phlorofucofuroeckol A, have shown ACE inhibitory activities with IC50 values of 70.82 μM, 529 
34.25 μM, and 12.74 μM, respectively. Dieckol acts as a non-competitive inhibitor 530 

supporting the long-term regulation of the vascular tone【214】. Ecklonia cava has ACE 531 

inhibitory properties and also nitric oxide (NO) release from endothelial cells, resulting in 532 
vasodilation and reduction of blood pressure. The dieckol derived from this species is a 533 

strong ACE-inhibitor that stimulates the endothelium 【215】. Peptides from the enzymatic 534 

hydrolysis of Undaria pinnatifida (wakame) that inhibit ACE have been demonstrated to 535 
decrease systolic blood pressure in humans, confirming their potential for clinical 536 

application【216】. Phlorotannins and enzymatically hydrolyzed compounds derived from 537 

Fucus spiralis show important ACE-inhibitory effects (IC50~0.5 mg/mL). These double-538 
action molecules would implicate vascular protection and its importance in functional food 539 

development【214】. 540 

 541 

 542 



 

 

10. Anticoagulant and Antithrombotic Activities 543 

Cardiovascular diseases are among the most prevalent causes of death in the world, and 544 
thrombosis and abnormal blood coagulation are key contributors to their pathogenesis. The 545 

risks of traditional anticoagulant and antithrombotic drugs, including bleeding, toxicity, etc., 546 
have prompted the search for safer natural alternatives. Red (Rhodophyta) and brown 547 
(Phaeophyceae) algae have been identified as rich sources of bioactive molecules with 548 
anticoagulant and antithrombotic potential. These algae are particularly rich in sulfated 549 
polysaccharides such as carrageenans, agarans, and fucoidans, which are thrombin inhibitors, 550 

retards coagulation, and increase fibrinolysis, acting like heparin but with less negative side 551 

effects 【217,218】. 552 

10.1 Anticoagulant and Antithrombotic Activities of Red Algae 553 

Several species of red algae are potent blood thinners. Gracilaria corticata has shown dose-554 

dependent anticoagulant effects through thrombin and factor Xa inhibition, with a significant 555 

increase in aPTT that would indicate a heparin-like action 【219】. Hypnea valentiae also 556 

presented powerful antithrombotic activity by means of inhibiting platelet aggregation and 557 

fibrin formation; its sulfated galactans were successful in preventing thrombus formation in 558 

preclinical assays 【220】. The sulfated polysaccharides content of Gelidiella acerosa has 559 

been shown to have anticoagulant and anti-platelet effects, as it extends coagulation time and 560 

affects thrombin activity【221,222】. In the same way, Grateloupia indica exhibits aPTT 561 

and inhibits thrombin, so its galactans probably behave as low-MW heparins 【223】. 562 

Portieria hornemannii, found in tropical waters in India, is the species that profiles the best 563 

anti-coagulant characteristics, since it increases protein C activity and also inhibits thrombin 564 

【224】. Acanthophora spicifera is known to affect the intrinsic pathway of blood 565 

coagulation, exhibiting prolonged clotting times in vitro and in vivo 【225】. Halymenia 566 

floresii acts on intrinsic and extrinsic factors of the coagulation cascade, as its sulfated 567 

polysaccharides are also able to decrease the binding of fibrinogen and the ultimate strength 568 

of the clot 【226】. 569 

10.2Anticoagulant and Antithrombotic Activities of  brown algae 570 

Fucoidans with anticoagulant potential are especially abundant in brown seaweeds. Another 571 

example is the fucoidan-rich extract from Sargassum tenerrimum, which showed a prominent 572 

effect on thrombin formation as well as fibrinolytic capabilities 【227】. Turbinaria ornata 573 

presented excellent anticoagulant and fibrinolytic action, as well as blocking platelet 574 

activation and enhancing the body's anticoagulant activity because of the high sulfation levels 575 

found in its fucoidans 【228】. Sargassum wightii has fucoidans that are active at both the 576 

thrombin and factor Xa level, capable of significantly extending PT and aPTT, suggesting 577 

their potent antithrombotic utility【229】. The sulfated fucans extracted from the tropical 578 

brown macroalga Turbinaria conoides, which is widely distributed, have also been shown to 579 

reduce the strength of fibrin clots and favor fibrinolysis 【230】. 580 

Padina tetrastromatica demonstrates medium levels of anti-coagulation through the 581 

inhibition of thrombin and stimulation of tissue plasminogen activator (tPA) to support clot 582 



 

 

breakdown【231】. Dictyota dichotoma, which has been shown to have dose-dependent 583 

anticoagulant properties owing to its polysaccharides of high fucosa content 【232】. 584 

Additionally, Stoechospermum marginatum also has anticoagulant effects by inhibiting the 585 

interactions between fibrinogen and thrombin, delaying the formation of clots 【233】. 586 

11. Analgesic and Antipyretic Activities 587 

Analgesic and antipyretic properties are necessary for the symptomatic management of 588 
inflammation and infection. Natural products remain a prominent source of these 589 
therapeutics, and red and brown taxa of marine macroalgae sourced from the Indian Ocean 590 
have received increasing attention as a source of such agents. The bioactive compounds of 591 

these seaweeds, including terpenoids, sulfated polysaccharides, flavonoids, and phenolics, 592 

have all been found to exert effects by influencing the synthesis of prostaglandins, levels of 593 
inflammatory mediators, or nociceptive signaling in animals. The metabolites derived from 594 

algae show low toxicity, thus being more biocompatible and eco-sustainable alternatives to 595 
chemical synthetic drugs, and thus represent a promising frontier in alternative 596 

medicine【234,235】. 597 

11.1 Analgesic and Antipyretic Activities of Red Algae 598 

Hypnea musciformis has shown significant analgesic and antipyretic activity in preclinical 599 
studies. Mice exhibiting less writhing in the acetic acid model and increased latency in hot-600 
plate tests following methanolic extracts showed evidence of peripheral and central pain 601 

reduction. It also exhibited antipyretic activity in animal models of yeast-induced pyrexia, 602 

probably due to blocking the synthesis of prostaglandins. The analgesic and antipyretic 603 
activity of Gracilaria dura was found to be comparable to standard reference drugs. In vivo 604 
models have shown it to reduce pain and fever due to its high levels of terpenoids and 605 

phenolic compounds with known anti-inflammatory activity.  Kappaphycus alvarezii showed 606 
moderate antipyretic activity and mild analgesic activity in rodents. These bioactivities have 607 

been related to the presence of sulfated galactans【234】. 608 

The seaweed Gracilaria corticata collected from the coast of Tamil Nadu has been shown to 609 
exhibit antipyretic activity in rats with induced pyrexia. Its methanolic extract was shown to 610 
have an antipyretic, similar to paracetamol, activity that is dose dependent, a property that 611 

indicates this plant as a possible febrifuge【236】. 612 

11.2 Analgesic and Antipyretic Activities of brown algae 613 

Both acetic acid-induced writhing and hot-plate tests have demonstrated potent dose-614 
dependent analgesic activity of Sargassum ilicifolium. This extract also exhibited central and 615 
peripheral antinociceptive and antipyretic activity, as demonstrated by reduced paw edema 616 

induced by carrageenan as well as fever by yeast 【235】. Sargassum wightii showed 617 

notable anti-inflammatory and antipyretic activity. Fucoidan fractions obtained from the 618 
algae were able to impede prostaglandin-mediated hyperthermia and decrease nociceptive 619 

measures in rodents【237】. 620 

The presence of flavonoids and sterols in Padina tetrastromatica is suggestive of its 621 
traditional use as a remedy for fever and pain. These active constituents were also identified 622 

by phytochemical screening, supporting interest in the plant as a potential pharmacological 623 



 

 

development 【238】. Turbinaria conoides has traditionally been employed as a febrifuge in 624 

children. Inhibition of pro-inflammatory mediators has been supported experimentally by 625 
models that show a significant reduction in body temperature by cyclohexane extracts 626 

(P<0.01) 【239】. The anti-inflammatory activity of Stoechospermum marginatum might be 627 

responsible, at least in part, for the analgesic and antipyretic activity. GC-MS screening 628 
shows the presence of some bioactive compounds that have the potential to modulate pain 629 

and fever pathways 【240】. 630 

Conclusion 631 

Macroalgae have been identified as a good collection of bioactive compounds such as 632 

sulfated polysaccharides, phlorotannins, polyphenols, carotenoids, sterols, and peptides with 633 

structural diversity, including Indian red and brown macroalgae. A broad spectrum of 634 

pharmacological properties has been observed in vitro and in vivo, including anticancer, 635 

antidiabetic, antioxidant, anti-inflammatory, antimicrobial, and neuroprotective. Anti-obesity, 636 

antihypertensive, anticoagulant, analgesic, and antipyretic activities. These bioactive 637 

compounds work through different mechanisms on molecular levels that include redox 638 

modulation, inhibition of enzymes or other biologically relevant ligands, triggering anti- and 639 

pro-apoptotic responses, inhibition of the inflammatory pathway, and metabolic regulation. 640 

Most importantly, these marine resources are sustainably available along the Indian coast and 641 

can provide biocompatibility and wide-ranging therapeutic and, underscoring their promise as 642 

auspicious candidates for pharmaceutical, nutraceutical, and cosmeceutical development. 643 

Unfortunately, translating these results into clinical practice is constrained by limitations such 644 

as variability in bioactive compound yield, the absence of standardized extraction protocols, 645 

low bioavailability, and a lack of human trials. 646 

Future Prospects 647 

Recent challenges that hinder the clinical and commercial translation of Indian red and brown 648 

macroalgae demand inclusion in future studies. To improve reproducibility and consistency 649 

in the yield of bioactives by season and location, extraction and purification protocols must 650 

be standardized. Development of formulation technology, including nanoencapsulation and 651 

targeted delivery systems, could significantly increase stability and bioavailability of algal 652 

derivatives, enhancing their therapeutic potential. By employing a combinatorial approach 653 

using omics-based approaches such as genomics, metabolomics, and proteomics, the 654 

identification of new compounds and their mechanisms of action is likely feasible. Further 655 

studies incorporating in vivo verification coupled with methodical clinical studies for 656 

determining the effectiveness, safety, and proper dosing in humans are warranted, and work 657 

is already in progress. Future industrial needs for these compounds will require large-scale 658 

aquaculture or sustainable methods of biotechnological growth, while minimizing depletion 659 

of natural resources. Furthermore, the application of these bioactive-rich seaweeds in the 660 

preparation of functional foods, nutraceuticals, and cosmeceuticals could represent a 661 

preventive healthcare model. Thus, Indian red and brown algae have the potential to emerge 662 

as vital contributors to marine-based drug discovery and global health solutions by bridging 663 

the current gap between laboratory research and applied product development. 664 
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