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Related research article 11 

Even though AI is developing quickly in the healthcare industry, there are still significant barriers to its use 12 

for services tailored to specific disabilities. First, there are serious privacy risks associated with the 13 

centralized nature of many AI models, such as the possibility of data leakage and re-identification 14 

(Haripriya et al., 2025). Second, static algorithmic models are unable to continuously adjust to users' 15 

changing engagement patterns or health statuses. Individual variability, such as variations in motor 16 

coordination or cognitive fatigue, is not taken into account by the majority of current systems, which 17 

function on a one-size-fits-all basis (Rathee et al., 2025). Third, usability across a wide range of disabilities 18 

is limited by the absence of assistive interfaces, such as voice input for the visually impaired or simplified 19 

text for users with dyslexia (Alowais et al., 2023).This exacerbates healthcare disparities for already 20 

marginalized populations by producing biased or non-generalizable AI outcomes (Gao & Li, 2024). 21 

Objectives 22 

This review aims to: 23 

1. Critically evaluate the role of Generative AI, Reinforcement Learning, and Federated Learning in 24 

enhancing healthcare systems for individuals with disabilities. 25 

2. Propose a secure and adaptive AI framework that integrates the three technologies to deliver 26 

privacy-preserving, real-time, and personalized care. 27 

3. Identify existing gaps in research and practice, with a focus on ethical, technical, and regulatory 28 

challenges, particularly in data protection, accessibility, and clinical integration. 29 

In the context of disability healthcare, there is still a noticeable lack of integration between the 30 

three paradigms, despite the fact that the individual contributions of federated learning, 31 

reinforcement learning, and generative artificial intelligencehaveallbeenthoroughly examined. 32 

Fewstudies offer a cohesivearchitecturethat capitalizes on the advantages of each paradigm, 33 

specifically FL for privacy preservation, RL for real-time adaptation, and GenerativeAIfor 34 

accessibilityandpersonalization(Ratheeet al., 2025). Furthermore, themajority of frameworks 35 

have only been validated using simulations or artificial datasets, and there are few real-world 36 

deployment studies (Fan & Flint, 2025; Hafeez et al., 2025). 37 

Othernotablegapsinclude: 38 

● Limitedexplorationofdisability-39 

specifichealthchallenges,suchasspeechimpairments,cognitivedecline, or motor 40 

coordination issues. 41 



 
 

 

● Minimal attention to ethical compliance, particularly in long-term AI monitoring 42 

ofvulnerable populations. 43 

● Absence of cross-disciplinary frameworks that combine AI with social, behavioral, and 44 

clinical sciences for holistic care delivery. 45 

These gaps underline the urgency for research into composite frameworks that are secure, ethical, 46 

adaptive, and practically deployable in diverse healthcare settings for disabled individuals.  47 
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Abstract 58 

Artificial Intelligence (AI) is revolutionizing personalized healthcare by offering promising solutions for individuals 59 

with disabilities. However, persistent challenges remain—particularly in ensuring data privacy, real-time adaptability, 60 

and inclusivity. This review explores how combining three AI paradigms—Generative AI, Reinforcement Learning (RL), 61 

and Federated Learning (FL)—can address these limitations. Through thematic analysis of over 50 peer-reviewed 62 

studies published between 2018 and 2024, we identify the unique and synergistic contributions of these technologies 63 

in enhancing healthcare delivery for disabled populations. 64 

We propose a novel, secure, and adaptive framework that integrates: 65 

 Generative AI for inclusive multimodal interfaces and synthetic health data generation 66 

 Reinforcement Learning to enable real-time system adaptation based on user interaction 67 

 Federated Learning to ensure privacy-preserving, decentralized data processing 68 

The framework is illustrated with practical applications in mobility, sensory, and cognitive support. This review aims 69 

to guide future research toward building AI-driven healthcare systems that are secure, inclusive, and responsive to 70 

the diverse needs of the disabled community. 71 
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More specific subject area Secure Machine Learning Frameworks for Disability-Focused Healthcare 



 
 

 

Name of your method 
SAIF-D 
Secure, Adaptive, and Inclusive Framework for Disabilities 
 

Name and reference of original method 

Generative AI: Goodfellow et al., 2014; Brown et al., 2020 

Reinforcement Learning: Sutton & Barto, 2018 

Federated Learning: McMahan et al., 2017 

Generative AI 

 Goodfellow et al., 2014 – Original GAN paper 

Goodfellow, I. et al. (2014). Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS). 

https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f0649

4c97b1afccf3-Abstract.html 

 Brown et al., 2020 – GPT-3 and LLM foundation 

Brown, T. et al. (2020). Language Models are Few-Shot Learners. NeurIPS. 

https://arxiv.org/abs/2005.14165 

Reinforcement Learning 

 Sutton & Barto, 1998 / 2018 – Standard RL textbook 

Sutton, R.S., & Barto, A.G. (2018). Reinforcement Learning: An Introduction. 

MIT Press. 

http://incompleteideas.net/book/the-book-2nd.html 

Federated Learning 

 McMahan et al., 2017 – Original Federated Averaging (FedAvg) 

paper 

McMahan, H. B. et al. (2017). Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS. 

https://arxiv.org/abs/1602.05629 

 

Resource availability  

All data analyzed were derived from publicly available peer-reviewed 

literature between 2018 and 2024. A complete list of references can be 

provided upon request. 
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Background 100 

More than 1.3 billion people, or 16% of the world's population, live with some disability and experience 101 

significant barriers to accessing equitable and individualized healthcare, according to the World Health 102 

Organization (2023). Traditional healthcare systems, in many cases developed for the typical patient, do 103 

not consider the specific physiological, cognitive, or sensory requirements of disabled patients. 104 

Consequently, such populations are disproportionately likely to be given substandard or delayed medical 105 

services (Attar et al., 2024). 106 

Rising technologies in Artificial Intelligence (AI)—i.e., Generative AI, Reinforcement Learning (RL), and 107 

Federated Learning (FL)—provide paradigm-shifting capabilities to fill this gap. Generative AI has the 108 

potential to generate realistic patient information and create multimodal user interfaces to support visual, 109 

auditory, or motor disabilities (Paladugu et al., 2023; Baig et al., 2024). For example, Large Language 110 

Models (LLMs) such as GPT-4 have been redeveloped to offer voice-interactive systems for dyslexia or 111 

visually impaired users. 112 

Reinforcement Learning, meanwhile, supports learning directly from user feedback in real time. Examples 113 

involve RL-based prosthetics with dynamically changing grip force supported by electromyography (EMG) 114 

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1602.05629


 
 

 

signals (Fan & Flint, 2025), or wheelchair mobility that alters courses according to environmental changes 115 

(Abdellatif et al., 2023). Finally, Federated Learning maintains data privacy by supporting decentralized 116 

training of AI models across hospitals and devices without sharing sensitive patient information (Rieke et 117 

al., 2020; Hafeez et al., 2025). 118 

When combined, these technologies have the power to completely transform the way that individuals with 119 

disabilities are cared for by offering individualized, safe, and flexible solutions. 120 

 121 

 122 

Method details  123 

A revolutionary paradigm for providing individualized, safe, and adaptable healthcare to people with 124 

disabilities is provided by the integration of Generative AI, Reinforcement Learning (RL), and Federated 125 

Learning (FL) into a unified framework. This section suggests a three-layer architecture that incorporates 126 

strong security features and user-centric application interfaces to address issues with data privacy, 127 

accessibility, and continuous learning. 128 

Architecture 129 

Layer 1: Data Layer (Federated Learning) 130 

The Federated Learning (FL) data layer is at the core and is in charge of decentralized, privacy-preserving 131 

model training. Individual clients, such as hospitals, wearable assistive devices, and mobile health 132 

applications, train models locally and send only encrypted model updates to a central server, rather than 133 

gathering health data in centralized servers (McMahan et al., 2017; Rieke et al., 2020). 134 

The framework uses secure multiparty computation (SMPC) and homomorphic encryption to improve 135 

security by preventing data leaks during aggregation or transmission (Hafeez et al., 2025). Furthermore, 136 

differential privacy is used to introduce statistical noise into model gradients, making it impossible to 137 

reconstruct individual user data, even after numerous iterations (Haripriya et al., 2025). 138 

In reality, this layer makes it possible to train customized models on devices used by people with visual 139 

impairments (like smart glasses), mobility impairments (like wheelchairs or exoskeleton sensors), and 140 

cognitive impairments (like memory aid apps) without disclosing private medical information. 141 

Layer 2: Learning Layer (Reinforcement Learning) 142 

The RL-based learning layer sits above the FL layer and is intended to facilitate ongoing adaptation and 143 

real-time decision-making in response to user interaction. To optimize cumulative rewards from user 144 

engagement, this layer employs policy gradient algorithms like Soft Actor-Critic (SAC) and Proximal Policy 145 

Optimization (PPO) (Sutton & Barto, 2018; Abdellatif et al., 2023). 146 

Both explicit feedback—such as verbal confirmations or pain ratings—and implicit cues—such as task 147 

completion rates, session length, and physiological indicators—are used to generate the reward signals. 148 

These are gathered through human-in-the-loop interfaces, which allow policies to be tailored to the unique 149 

characteristics of each person with a disability (Fan & Flint, 2025). 150 

For example: 151 



 
 

 

● An AI-powered prosthetic limb can dynamically adjust grip force based on the user’s muscle signals 152 

and task success rate. 153 

● A cognitive support chatbot may adapt its dialog complexity based on a user’s historical 154 

engagement and memory scores (Naseer et al., 2025). 155 

Importantly, the RL models are trained locally within the FL ecosystem, ensuring that adaptive learning 156 

does not compromise data privacy. 157 

Layer 3: Application Layer (Generative AI) 158 

The Application Layer, the last layer, uses Generative AI models to create multimodal interfaces that meet 159 

accessibility standards, user-specific content, and synthetic medical data. 160 

By supplementing training datasets, particularly for rare diseases or underrepresented disability profiles, 161 

Generative Adversarial Networks (GANs) enhance downstream model performance without necessitating 162 

the collection of new data (Baig et al., 2024; Paladugu et al., 2023). 163 

Meanwhile, Large Language Models (LLMs) such as GPT-based architectures are deployed as personal 164 

health assistants, offering: 165 

● Voice-activated support for quadriplegic users. 166 

● Simplified or summarized health instructions for individuals with cognitive impairments. 167 

● Multilingual responses for diverse user populations (Rathee et al., 2025). 168 

The application layer directly interfaces with the end-user and is optimized to interpret reinforcement 169 

signals, incorporate FL-trained knowledge, and deliver context-aware, empathetic care through various 170 

modalities (text, speech, visual). 171 

Security Mechanisms 172 

Healthcare systems using AI are susceptible to a range of cyber threats, including inference attacks, model 173 

poisoning, and data reconstruction attacks. To secure the proposed framework, multiple defense layers 174 

are implemented: 175 

Threats Addressed 176 

● Model poisoning attacks: where malicious clients corrupt model weights during FL updates. 177 

● Inference attacks: where adversaries infer sensitive attributes from outputs or model parameters. 178 

Defensive Measures 179 

Byzantine-Robust Aggregation 180 

The use of Krum and Bulyan aggregation techniques helps eliminate malicious updates by selecting 181 

gradients that are statistically consistent with the majority of trusted nodes (Khan et al., 2024). 182 

Adversarial Training for Generative Models 183 

GANs and LLMs are fine-tuned using adversarial examples to increase robustness against 184 



 
 

 

manipulative inputs and bias propagation, especially in medical diagnosis and treatment 185 

recommendations (Paladugu et al., 2023). 186 

Blockchain-Inspired Logging 187 

Every decision made by the system—especially critical health recommendations—is hashed and 188 

stored in a tamper-proof blockchain-like log, containing metadata such as model version, 189 

timestamp, user consent, and input context. This ensures auditability, compliance, and 190 

trustworthiness (Attar et al., 2024). 191 

Explainability and Interpretability Tools 192 

Integration of SHAP values and attention visualization allows medical professionals and caregivers 193 

to interpret model decisions, verify correctness, and maintain human oversight (Alowais et al., 194 

2023). 195 

A comprehensive strategy for providing flexible, inclusive, and privacy-preserving healthcare solutions is 196 

represented by this multi-layered secure architecture. The framework is in line with the national vision of 197 

inclusive digital healthcare, particularly for underserved and disabled populations, by closely integrating 198 

Federated Learning, Reinforcement Learning, and Generative AI. The table 1 below shows comparison of AI 199 

techniques employed for disability care. 200 

Method validation 201 

 202 

Table 1: Comparison of AI techniques in disability care 203 

 204 

AI Technique Primary Role Disability Use Cases Strengths Limitations 

Generative AI Synthetic data 

generation and 

multimodal 

interface design 

Visual captioning, 

speech 

simplification, 

cognitive assistance 

Enhances accessibility; 

supports low-resource 

training; natural 

interfaces 

Ethical risks; 

hallucination; 

lack of 

explainability 

Reinforcement 

Learning (RL) 

Continuous 

adaptation based 

on real-time 

feedback 

Smart prosthetics, 

therapy bots, 

cognitive reminder 

systems 

Real-time 

personalization; self-

optimization through 

feedback 

Complex reward 

design; instability 

in training 

Federated 

Learning (FL) 

Privacy-preserving, 

decentralized 

model training 

Smart 

exoskeletons, 

hospital networks, 

hearing aids 

Protects user data; 

supports cross-device 

model learning 

Struggles with 

non-IID data; 

high 

communication 

costs 

 205 

 206 

Figure 1 given below shows the general architecture for the Personalized Healthcare system. The process 207 

from healthcare professional engagement till the patient engagement with the help of Generative AI 208 

model is displayed on the architecture 209 



 
 

 

 210 

Figure1: General architecture for the Personalized Healthcare system 211 

Limitations 212 
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Conclusion 241 

Delivering safe, individualized, and adaptive healthcare services to individuals with disabilities has become 242 

possible thanks to the integration of Generative Artificial Intelligence (AI), Reinforcement Learning (RL), 243 

and Federated Learning (FL). A three-tiered secure framework was introduced in this review, which 244 

combines FL at the data layer to protect privacy, RL at the learning layer to promote ongoing adaptation, 245 

and Generative AI at the application layer to facilitate multimodal, customized interactions. We used case 246 

studies on mobility support systems, real-time captioning tools, and cognitive assistance applications to 247 

demonstrate the framework's usefulness, drawing from more than 50 peer-reviewed sources (2018–2024). 248 

These illustrations show how AI technologies can greatly enhance the quality of life for people with visual, 249 

auditory, cognitive, and motor impairments when they are developed with inclusivity and privacy at their 250 

core.However, we pointed out important technical drawbacks, such as FL's difficulty with non-IID data, 251 

RL's latency in real-time adaptation, and Generative AI's susceptibility to bias. Furthermore, ethical and 252 

legal issues continue to be crucial to practical implementation, especially those pertaining to explainability, 253 

consent, and adherence to international privacy regulations. 254 

Future research must embrace low-power edge AI for deployment in home and clinical settings, blockchain-255 

assisted federated models, quantum-resistant privacy protocols, and human-in-the-loop learning in order to 256 

realize this vision. Transforming these innovations into scalable, reliable healthcare infrastructure requires a 257 

collaborative ecosystem that includes patients, clinicians, ethicists, and technologists. 258 

To sum up, the combination of generative AI, RL, and FL offers a paradigm shift toward digital healthcare 259 

that is secure, accessible to people with disabilities, and democratized. Coordination of regulations, ethical 260 

foresight, and an unwavering commitment to human-centered AI design are necessary to realize this vision. 261 

 262 

References 263 

 264 

 265 

1. Abdellatif, A., Mhaisen, N., Mohamed, A., Erbad, A., & Guizani, M. (2023). Reinforcement learning 266 

for intelligent healthcare systems: A review of challenges, applications, and open research issues. 267 

IEEE Internet of Things Journal, 10(24), 21982–22007. 268 

2. Alowais, S. A., Alghamdi, S. S., & Alsuhebany, N. (2023). Revolutionizing healthcare: The role of 269 

artificial intelligence in clinical practice. BMC Medical Education, 23, 689. 270 

3. Amran, Y. H., Amran, M., Alyousef, R., & Alabduljabbar, H. (2019). Renewable and sustainable 271 

construction in Saudi Arabia according to Saudi Vision 2030: Current status and future prospects. 272 

Journal of Cleaner Production, 247, 119602. 273 

4. Attar, R., Habes, M., Almusharraf, A., Alhazmi, A., & Attar, R. (2024). Exploring the impact of smart 274 

cities on improving the quality of life for people with disabilities in Saudi Arabia. Frontiers in Built 275 

Environment, 10, 80–71. 276 

5. Baig, M. M., Hobson, C., GholamHosseini, H., Ullah, E., & Afifi, S. (2024). Generative AI in improving 277 

personalized patient care plans: Opportunities and barriers towards its wider adoption. Applied 278 

Sciences, 14(23), 10899. 279 

6. Fan, F. (2025). FedRLHF: A convergence-guaranteed federated framework for privacy-preserving 280 

and personalized RLHF. Open Science Framework Preprints. 281 



 
 

 

7. Gao, J., & Li, Y. (2024). FedMetaMed: Federated meta-learning for personalized medication in 282 

distributed healthcare systems. IEEE International Conference on Bioinformatics and Biomedicine, 283 

6384–6391. 284 

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & 285 

Bengio, Y. (2014). Generative adversarial networks. Advances in Neural Information Processing 286 

Systems, 27. 287 

9. Hafeez, S., Mulkana, S., Imran, M., & Sevegnani, M. (2025). Federated deep reinforcement learning 288 

for privacy-preserving robotic-assisted surgery. arXiv Preprint. 289 

10. Haripriya, R., Khare, N., & Pandey, M. (2025). Privacy-preserving federated learning for 290 

collaborative medical data mining in multi-institutional settings. Scientific Reports, 15, 12482. 291 

11. Khan, S. B., Alojail, M., & Al Moteri, M. (2024). Advancing disability management in information 292 

systems: A novel approach through bidirectional federated learning-based gradient optimization. 293 

Mathematics, 12(1), 119. 294 

12. McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-efficient 295 

learning of deep networks from decentralized data. International Conference on Artificial 296 

Intelligence and Statistics, 1273–1282. 297 

13. Mishra, A., Majumder, A., Kommineni, D., Joseph, C. A., Chowdhury, T., & Anumula, S. K. (2025). 298 

Role of generative artificial intelligence in personalized medicine: A systematic review. Cureus, 299 

17(4), e82310. 300 

14. Naseer, F., Addas, A., Tahir, M., Khan, M. N., & Sattar, N. (2025). Integrating generative adversarial 301 

networks with IoT for adaptive AI-powered personalized elderly care in smart homes. Frontiers in 302 

Artificial Intelligence, 8, 1520592. 303 

15. Paladugu, P. S., Ong, J., Nelson, N., Kamran, S. A., Waisberg, E., Zaman, N., Kumar, R., Dias, R. D., 304 

Lee, A. G., & Tavakkoli, A. (2023). Generative adversarial networks in medicine: Important 305 

considerations for this emerging innovation in artificial intelligence. Annals of Biomedical 306 

Engineering, 51(10), 2130–2142. 307 

16. Rathee, G., Garg, S., Kaddoum, G., Alzanin, S., & Hassan, M. (2025). Enhanced healthcare using 308 

generative AI for disabled people in Saudi Arabia. Alexandria Engineering Journal, 124, 265–272. 309 

17. Rieke, N., Hancox, J., & Li, W. (2020). The future of digital health with federated learning. npj Digital 310 

Medicine, 3, 119. 311 

18. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. 312 

19. World Health Organization. (2023). Disability and health. WHO Fact Sheet. 313 

20. Aljanabi, A., & Aljawarneh, S. (2021). Federated learning and privacy in smart health systems. 314 

Computers, Materials & Continua, 67(2), 2023–2038. 315 

21. Dwivedi, R., & Srivastava, A. (2020). Role of explainable AI in medical diagnostics: A review. Journal 316 

of Medical Systems, 44(5), 98. 317 

22. Khurana, M., Jain, A., & Prasad, A. (2021). Edge AI in personalized healthcare for IoT systems. 318 

Procedia Computer Science, 185, 105–112. 319 

23. Sharma, T., & Khanna, S. (2022). Explainable reinforcement learning: Techniques and applications. 320 

Artificial Intelligence Review, 55, 1835–1863. 321 

24. Dubey, A., & Bansal, P. (2021). Human-in-the-loop frameworks for healthcare AI. Health Informatics 322 

Journal, 27(4), 1–13. 323 



 
 

 

25. Kaur, H., & Singh, J. (2020). Blockchain for privacy-preserving healthcare data sharing. Journal of 324 

Systems and Software, 163, 110536. 325 

26. Sarker, I. H., & Abushark, Y. B. (2022). Multimodal health data fusion using deep learning. 326 

Healthcare Analytics, 2, 100021. 327 

27. Tanwar, S., Patel, N., & Tyagi, S. (2019). Reinforcement learning-based smart healthcare systems: A 328 

comprehensive survey. IEEE Access, 7, 121–146. 329 

28. Zhang, Y., Luo, X., & Zhang, Q. (2022). AI in prosthetic rehabilitation: An overview. Medical 330 

Engineering & Physics, 100, 103768. 331 

29. Liu, R., Zhou, X., & Zhang, J. (2020). Deep learning-based ASR systems in healthcare environments. 332 

Applied Acoustics, 164, 107242. 333 

30. Hassan, A., & Ghoneim, A. (2021). Real-time voice-to-text captioning using deep federated 334 

networks. Computational Intelligence and Neuroscience, 2021, 8824102. 335 

31. Chen, M., Hao, Y., & Song, J. (2020). Privacy-preserving smart contracts in healthcare IoT. Journal of 336 

Network and Computer Applications, 167, 102710. 337 

32. Abadi, M., Chu, A., & Gagne, C. (2023). Quantum-resistant AI encryption in federated learning. IEEE 338 

Transactions on Dependable and Secure Computing, 20(1), 220–231. 339 

33. Rahman, M. A., & Karim, M. M. (2020). Differential privacy in federated learning: A survey. 340 

Information Fusion, 65, 312–329. 341 

34. Sethi, A., & Kapoor, A. (2021). Adaptive GANs for rare disease simulation. Biomedical Signal 342 

Processing and Control, 69, 102823. 343 

35. Wani, M. A., & Manogaran, G. (2022). Blockchain-integrated federated systems for secure 344 

healthcare. Journal of Supercomputing, 78, 12105–12125. 345 

36. Qureshi, A., & Rizwan, M. (2021). GAN-based synthesis of multimodal data for assistive 346 

technologies. Sensors, 21(12), 4201. 347 

37. Prakash, A., & Bhardwaj, R. (2022). Towards explainable multimodal health interfaces. Journal of 348 

Healthcare Engineering, 2022, 6732910. 349 

38. Singh, R., & Bhatia, A. (2023). Review of SHAP and LIME in healthcare XAI. Journal of Biomedical 350 

Informatics, 137, 104201. 351 

39. Mohan, S., & Rathi, S. (2021). Robust RL under uncertainty in healthcare environments. AI in 352 

Medicine, 113, 102048. 353 

40. Patel, D., & Shah, V. (2020). Smart hearing aids powered by on-device AI. Journal of Audiology & 354 

Otology, 24(2), 85–93. 355 

 356 


