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?dsorption of chromium on activated carbon produced
from agri-food waste

Abstract

ﬁe objective of this study is the adsorption of chromium on activated carbon produced from
agri-food waste such as the shells of Balanites aegyptiaca (L.) Del. (Adoua), Hyphaene
thebaica (L.) Mart. (Gorouba), Zizyphus mauritiana (L.) Lam. (Magaria) and Balanites
aegyptiaca (L.) Del. cake by chemical activation with 25% orthophosphoric acid and 25%
sulfuric acid. The mass yields of the ACs after pyrolysis, surface functions (Boehm ethod),
pH at zero loading point (return dosage) and methylene blue (MB) adsorption capacities are
determined. Next, ée adsorption kinetics of chromium on the developed activated carbons
(CAEs) and a commercial activated carbon (CA-C) are determined. The results show that the
best yields are obtained with HT; 51.55% (H3POu4) and 40% (H>SO.). The surface functions
are acidic in nature and range from 3.18 to 3.91 meq g"'. The pHpcns vary from 1.3 to 5.24.
The BM extraction rates vary from 83.3445 to 94.3777%. Elovich's correlation coefficients
(R?) are in the order of 0.96728 and 0.94642 for CA-BA-H;POs; and CA-HT-H;PO.,
respectively. The initial Cr adsorption rates “o” are 2.45343 .10"" and 1.91005 .10° mg g*!
min” for CA-BA-H3POs and CA-HT-HsPQ,, respectively. The material diffusivities D are
0.07643 and 0.13219 cm? min! for CA-BA-H3PO4 and CA-HT-HsPOu, respectively. The
optimal adsorption pH values for chromium are 2 and 8 for CA-BA-H3PO4 and CA-HT-
H3PO,, respectively. It should be noted that the yields of our three CAE samples exceed that
of CAC (91.48%).

E!ywords: Adsorption, Chromium, Activated Carbon, Kinetics, Agri-food Waste.

1. Introduction

Water is essential to life, but it is a resource that is very unevenly distributed around the world
[1,2]. In addition, it is becoming increasingly polluted. Pollution that deteriorates water
quality and the environment is caused by the discharge of mineral or organic substances that
are more or less difficult to biodegrade, as well as other toxic substances [3,4]. The discharge
of these effluents poses a major threat to humans and ecosystems. Africa accounts for

approximately 9% of the planet's freshwater resources and 11% of the world's population. The




many water-related challenges facing sub-Saharan Africa are hampering its economic growth
and threatening the livelihoods of its people [2]. Drinking water is a scarce commodity that
must be protected from toxic substances that harm human health and ecosystems. Good
quality water resources in sufficient quantities are necessary for economic development and
the well-being of populations. In this regard, the leather and hide treatment techniques used in
industrial and semi-industrial tanneries in Niger, which employ chromium salt-based
formulations, as in many industrial tanneries around the world, have contributed significantly
to water pollution [5-6]. The discharge of tannery wastewater most often generates effluents
that do not comply with chromium discharge standards, set at | mg L™ for discharge into
sewers [7]. It is therefore essential to limit this pollution as much as possible by implementing
a chromium removal technique adapted to our locality (Niger). There are various methods for
removing chemicals (heavy metals, dyes, phenols, etc.) from effluents. Among these methods,
adsorption is ge most widely used technique due to its effectiveness, ease of implementation,

and affordable investment cost [2.8-9].

This method requires the selection of an adsorbent with good characteristics (high adsorption
capacity, availability, low cost, etc.) [10-12]. Microporous adsorbents such as activated
carbons are widely used in the extraction of chemical species in aqueous or gaseous phases
due to their excellent adsorption capacity [13-15]. In this topic, we will develop and
characterize activated carbons from local lignocellulosic biomass, in particular the shells of
the kernels of E!ﬂmites aegyptiaca (L.) Del. (Adoua), Hyphaene thebaica (L.) Mart.
(Gorouba), Zizyphus mauritiana (L.) Lam. (Magaria), and Balanites aegyptiaca (L.) Del. cake
through chemical activation with orthophosphoric acid and sulfuric acid. Next, the mass
yields of the ACs after pyrolysis, surface functions, pH at zero charge point, and methylene
blue (MB) adsorption capacities are determined on the one hand, and the kinetics and
isotherms of chromium adsorption on the activated carbons produced are determined on the

other.

?Materials and methods
2.1. Synthesis of activated carbons

After conditioning the raw materials, the activated carbons are produced in three stages [5,15]

v impregnation of the biomass in solutions of the activating agent;

v pyrolysis of the impregnated biomass;




v purification of the product obtained.

In this work, two activating agents are used, namely orthophosphoric acid (H;PO4) and

sulfuric acid (H28O4).

The activated carbon samples synthesized at the end of this optimization process are used to
determine the mass yields after pyrolysis, the iodine (I2) adsorption capacities, and the

methylene blue (MB) adsorption capacities.

2.1.1. Activation of the biomass sample

In 250 mL beakers, 16 g of the pretreated raw material and 100 mL of the activating agent
solution (H3PO4 and H>S04) are mixed together. The mixture obtained is Eirred for 15 hours
on a magnetic stirrer at atmospheric pressure and room temperature. The sample is then
filtered on ashless filter paper using a Biichner funnel, ashed with distilled water, and dried

in an oven at 105°C for 24 hours.

2.1.2. Pyrolysis of impregnated biomass samples

“:e dry sample obtained after impregnation was placed in a programmable high-temperature

ffle furnace. The furnace temperature was gradually increased to the pyrolysis temperature
,(ﬁ()"C) at a heating rate of 2.5°C min’!, with an isothermal plateau of 1 hour 30 minutes at
the end of heating, representing me residence time in the furnace. Upon removal from the

furnace, the carbonized samples were cooled in a desiccator.

2.1.3. Purification
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@the end of the production process, the cooled activated carbon is washed thoroughly gith
hot distilled water until the pH reaches between 6.5 and 7 to remove any impurities,
dried in an oven at 105°C for 24 hours. The processed activated carbon (PAC) is then cooled

and stored in airtight containers until characterization tests are performed.

2.2.1. Yield calculation
The yield values for activated carbon production are determined using the following formula:

Yield = —F % 100 'e)
I¥

finalmass (my) and initial mass (m;).




2.2.2. Surface function

The surface function is a characteristic that highlights the acidic and basic groups of CA. The
method adopted for its determination is that of Boehm (1966), taken from the work of
TCHAKALA et al [16], which is a return titration method. #hc basic groups are measured as
a whole, while the acidic groups are measured separately. The experimental protocol is as
follows: 0.2 of CA was placed in contact with 20 mL of each of the aqueous solutions of

aOH, Na;CO;, NaHCO3, C;HsONa, and HCI at 0.1 M. Each solution was stirred for 24
hours to ensure that a maximum number of CA surface groups reacted, and then the mixture
was filtered. After filtration, 10 mL of each of the five solutions was measured. %e basic
solutions were titrated with 0.1 M hydrochloric acid using three drops of bromothymol blue,
phenolphthalein, bromocresol green, and helianthine, respectively, and the acidic solution was
titrated with 0.1 M sodium hydroxide using bromothymol blue as the color indicator. As this
1 a back titration, the number of moles of the function sought corresponds to the number of

moles that reacted with the contact solution. It is given by formula (2):

Nggr = N;V; — NV (2)

neéqR is the number of equivalent grams that reacted; N;V; is the number of equivalent grams

before the reaction; NrVris the number of equivalent grams after the reaction.

2.2.3.9]—1 at zero charge point (pHecy)

Activated carbon in contact with a solvent has an acid-base character. However, there is a pH
called pH at zero charge point (pHpcn) at which it 1 electrically neutral in solution. To
determine the (pHpcn), the first bisector method was used. This method involves preparing 0.1
M sodium chloride (NaCl) solutions at pH values of 2, 4, 6, 8, and 10. The pH values were
adjusted with a HI 991001 pH meter using NaOH and HCI solutions. El g of CA was placed
in contact with 20 mL of each solution per sample. The mixture was stirred magnetically for
72 hours. The suspension was then filtered through filter paper and the pH of the filtrate was
measured for each mixture. This allowed us to plot é curve pHi - pHf = f(pHi). The

intersection point between this curve and the line x = 0 gives the pH at the zero loading point

of the activated carbon in question.

2.2.4. Methylene blue (MB) index on synthesized activated carbons




The ﬁB index, expressed in mg g, represents the adsorption capacity of medium-sized
molecules for the purpose of evaluating mesopores and macropores. MB adsorption was
erformed by introducing 0.1 of CA, previously dried in an oven at 105°C, into a 250 mL
Eenmeyer flask containing 100 mL of the standard MB analysis solution. %e mixture was
stirred for 20 min. After this contact time, it was filtered through filter paper and the residual
concentration of Methylene Blue in the solution was determined using a UV-visible
spectrophotometer at a wavelength of 620 nm, which is the wavelength at which the
adsorption of the MB molecule is maximum. Equation (3) gives the calculation of the
Methylene Blue index.
_E-cIvM oo @

Qaxe m

1
With Qpu: gisorption capacity of Ca (in mg/g); Ci: initial concentration of BM solution (in
mol/L); Cr: residual concentration of BM solution (in mol/L); V: volume of BM solution (in

mL); M: molar mass of BM; m: mass of adsorbent used (in g)

2.3. Application for the treatment of chromium solution

Chromium removal from CA was carried out as follows: in a 100 mL beaker, a mass m of 50
mg of CA weighed using a precision balance (accurate to 1/10,000, Precisa brand) as added
to 50 mL of Cr (K:Cr:07) solution of known concentration. The mixture was stirred for a
specific period of time, then filtered through filter paper, and the residual Cr(VI)
concentration was measured using a Micro-Plasma Atomic Emission Spectroscopy (MP-AES)
flame spectrophotometer (Figure 1). The adsorption capacity and extraction yield of Cr are
given by equations (4) and (5) respectively [10]:

Cool gy o g=c

mey G

x 100 (5)

where qeq is the Cr adsorption capacity expressed in mg g, Ci is the initial concentration of
the Cr solution in mg L', Cris the final concentration of the Cr solution in mg L', V is the
volume of the Cr solution in mL, mca is the mass of activated carbon in g, and R is the Cr

extraction yield in %.




Figure 1. Micro-ﬁlsma Atomic Emission Spectroscopy MP-AES

2.3.1. Effect of contact time
2.3.1.1. Elovich kinetics

Equation (6) was used to study the Elovich kinetics of Cr-CAEs.

q is the amount of solute adsorbed at time t in mg g, o is the initial adsorption rate in mg g’!

min”, and B is the Elovich constant in g.

20
The q: grve as a function of time In(t) is plotted. Thus, the characteristic indices of the

Elovich model?re determined from the slope = ;a.nd the y-intercept = éln(aﬁ) of the line.

2.3.1.2. External diffusion kinetics

Equation (7) was used @study the external diffusion kinetics of Cr-CAEs.

CU_CEQ a _
ln(ct—ceq)'k(v)'t_ kot ()
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C: 1s the concentration of Cr at time t expressed in mg L7, Ceq is equilibrium

concentration of Cr in mg L', a is the area of the CAEs-Cr interface in cm?, V is the volume

15
of solution in mL, kea is the external diffusion constant, and t is the time in min.

The Erve In (i‘:—cc“) as a function of time t is plotted. Thus, the characteristic indices of the
e

model are determined.

2.3.2. Effect of CA mass

The variation in contact surface area (variation in CA mass) was carried out for a contact time
of 2 hours. The masses considered were 20,%, 60, and 80 mg of CA for 50 mL of chromium
solution at 70 mg L',

25. Effect of the pH of the dichromate solution

The pH of the chromium solution is an essential parameter for adsorption because there are
four forms of chromium oxides depending on the pH and concentration. For this part, the
contact time was set at 2 hours, the adsorbent mass at 80 mg, and the solution concentration at
70 mg/L. Thus, chromium removal was performed at pH = 2,4, 6, 8, and 10.

2.3.3. Adsorption of chromium on Activated Carbon

g Results and Discussion

3.1. Results

3.1.1. Mass yields of Activated Carbon

Figure 2 shows the results of the mass yields after pyrolysis for the 8 ACE samples.
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Figure 2. Mass yield after pyrolysis

3.1.2. Surface@ncﬁons of activated carbons

41
The results of the surface functions of eight (8) ACEs and one AC-C in meq g™ are recorded in

Table 1.

Table 1. Surface functions of CAEs and CA-C in meq g’

Elaborated Acids Basics
activated carbons | Carboxylic  Lactone  Phenol  Carbonyl  Totals | Globality

CA-BA-H3PO4 1.78 1.16 0.26 0,24 3.44 0
CA-BA-H,S04 1.76 1.46 0.47 0,22 3.91 0
CA-HT-H3;PO4 1.88 0.94 0.54 0,2 3.56 0
CA-HT-H2S04 1.62 1.152 0.368 0,26 3.4 0
CA-TB-H;PO4 1.94 0.52 048 0,24 3.18 0
CA-TB-H2804 1.86 1.04 048 0,32 3.7 0
CA-ZM-H3PO4 1.8 L.16 0.34 0,16 346 0
CA-ZM-H2804 1.62 L4 048 0,36 3.86 0

CA-C 0 2 0.1 1,2 3.3 0

The numbers of active CA sites are shown in Table 2.

Table 2. Number of active CA sites




Elaborated Acides x10% Basics
activated carbons | Carboxylic Lactone Phenol  Carbonyl Totals Globality

CA-BA-H3PO4 10.71 6.98 1.56 1.44 20.71 -
CA-BA-H2804 10.59 8.79 2.83 1.32 23.54 -
CA-HT-H3PO4 11.32 5.66 325 1.20 21.43 -
CA-HT-H2804 9.75 6.93 221 1.56 20.47 -
CA-TB-H:PO4 11.68 3.13 2.89 1.44 19.14 -
CA-TB-H2804 11.20 6.26 2.89 1.92 22.28 -
CA-ZM-H3PO4 10.83 6.98 2.04 0.96 20.83 -
CA-ZM-H>804 9.75 8.43 2.89 2.16 23.24 -

CA-C 0 12.04 0.60 7.22 19.87 -

3.1.3.& at zero charge point of CAEs and CA-C

The pHpen or pH at zero charge point corresponds to the pH value at which the net charge on
the CA surface is zero, even though positive and negative charges are still present. Figure 3

shows the pHpcx results for CAEs.
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Figure 3.pHpcn of CAEs in H3PO4 and HaSO4

3.1.4. Methylene Blue Index




Figure 4 shows the MB extraction rates for the 8 CAE samples and the CA-C sample.
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Figure 4: CAE BM Index and CA-C

Figure 5 shows the results of applying linearization of the Elovich model based on

experimental data.
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Figure 5: Elovich kinetics

The characteristic parameters of Elovich kinetics are summarized in Table 3.
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Table 3. Parameters of Elovich kinetics

Parameters B of R?
(mg g'min') (gmg?) (min)

CA-BA-H3PO4 245343.10'""  0.82427 2.02228.10""  0.96728

CA-HT-H3PO4 1.91005.10°  0.36277  6.92908.10°  0.94642

3.1.3. External diffusion kinetics

Figure 6 shows the results of applying linearization of the external diffusion model based on

experimental data from CAEs.
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Figure 6. External diffusion kinetics
%e characteristic parameters of external diffusion kinetics are summarized in Table 4.

Table 4: External diffusion parameters

Parameters D ka R?
(em? min") min!
CA-BA-H:PO4 0.07643 0.01312 0.97898
CA-HT-H:PO4 0.13219 0.02269 0.96157

3.1.4. Intra-particle diffusion kinetics

Figure 7 shows the curves resulting from the application of the intra-particle diffusion model

based on experimental data from CAEs.
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@gure 7. Intra-particle diffusion kinetics
3.1.5. Mass effect of CAEs

Figure 8 shows the Cr removal rate as a function of CAE mass (CA-BA-H3PO4 and CA-HT-
HiPOy).
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Figure 8. Mass effect of CAEs
3.1.6. Effect of solution pH

Figure 9 shows the Cr removal rate as a function of the pH of the chromium solution for

CAEs (CA-BA-H3PO, and CA-HT-H3POy).
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Figure 9. Effect of Cr solution pH on PACs
3.1.7. Chromium adsorption on processed activated carbon

Figure 10 shows the chromium removal rate on PACs at 25% and PAC under the optimal

operating conditions obtained.
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Figure 10. Adsorption of chromium on CAs
3.2. Discussion

The mass yield results presented in Figure 2 show that these yields vary from 29.8 to 51.55%
for TB and HT, respectively. In both activation cases, the best yields are obtained with HT:
51.55% (HsPO4) and 40% (H2SO4). This is consistent with the results of thermal analyses
performed on BA and HT nut shells. Regardless of the biomass, the best yields are obtained
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by activation with HisPO4. This would confirm the fact that HiPOy acid delays the thermal
decomposition of biomass and limits the loss of volatile matter, leading to the formation of a
rigid carbon matrix, i.e., AC [17]. Although the CA production process used is very simple,
the mass yield from HT is greater than 50%. This is comparable to commercial activated

carbons [ 10].

ﬂalysis of these results, presented in Table 2, shows a complete absence of basic function.
This can be explained by the fact that the CAEs were not exposed to ygen below 200°C or
above 700°C, they were not treated with hydrogen, and they were not degassed at room
temperature, as this is the stage at which basic functions are introduced. This would indicate
that CA-C did not undergo this treatment either. In addition, CAC did not develop carboxyl
functions. The surface functions acidic in nature, and the total acidity of the ACEs
increased from 3.18 to 3.91 meg ;ﬁ for CA-TB-HiPO4 and CA-BA-H3PO,, respectively.
These results suggest that the samples have a high degree of adsorption. The literature shows
that the higher the functional group content, the greater the degree of adsorption of activated
carbon [18,19]. Similar results have been reported by several authors, such as Daoud and
Benturki in 2014 [20], Reffas et al., in 2010 [21], Souley in 2015 [22], and Siragi et a/., in
2017 [11].

The results presented in Figure 3 show thatge pH values at zero loading point for CAEs and
commercial activated carbon are all below neutrality (pH < 7). They range from 1.3 to 5.24
for the activated carbons developed. Commercial activated carbon gave a value of 6.84
(Appendix). These results are consistent with the surface function results found. Similar
results were reported by Siragi et @/, in 2017 [11]. In fact, the values obtained for the
developed activated carbons are significantly different from those found by Rabilou (2015)
[22,23]. This can be explained by the washing method used after development. For

commercial activated carbon, the value found is not significantly different (6.9).

The results presented in Figure 4 show that BM extraction rates vary from 83.3445 to
94.3777%. In general, activated carbons produced by H3POs acid activation develop better
BM extraction rates regardless of the biomass used. In fact, under the operating conditions,
six (6) CAE samples developed BM extraction rates higher than that obtained with CA-C. The
CA that developed the highest BM extraction rate was obtained with HT.
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The results of Elovich kinetic modeling presented in Figure 5 and Table III show thatﬂ
correlation coefficient values (R?) are approximately 0.96728 and 0.94642 for CA-BA-H:PO4
and CA-HT-H:PO., respectively. This shows that CA-BA-H3POQs is better suited to this model
than CA-HT-H3PO4. The initial Cr adsorption rate o calculated with CA-BA-H3PO4
(2.45343.1011 mg g min™") is greater than that obtained with CA-HT-H3PO4 (1.91005.106
mg g ' min'). The same is true for the calculated constant values @ated to the external
surface area and activation energy of chemisorption), which are approximately 0.82427 and
036277 g mg™' for CA-BA-H3PO4 and CA-HT-HsPOs, respectively, and the same for the off
product. Analysis of these different parameters shows that the Elovich model could describe
the experimental data. Indeed, there is a similarity between the latter and the assumption made
by Chien and Clayton [24] that uft >>1 based on the model data. It should be noted that this
model could confirm the existence of activated chemisorption according to Feng et al. [25],
which could explain the second steps observed on the kinetic curves, but it does not provide

any precise mechanism of interaction between CAEs and Cr.

The results of external diffusion modeling show thatm correlation coefficient values (R?) are
approximately 0.97898 and 0.96157 for CA-BA-HsPOs and CA-HT-HsPQu, respectively. This
shows that CA-BA-HsPO. is better suited to this model than CA-HT-H-PO.. However, the
mass diffusivity D calculated with CA-BA-H;PO4 (0.07643 cm? min) is lower than that
obtained with CA-HT-H3PO4 (0.13219 cm® min™). Thus, the values of the constants related to
this model follow the same logic and are of the order of 0.01312 and 0.02269 min' for CA-
BA-Hs;POs and CA-HT-HsPOa, respectively. This shows that despite the higher correlation
coefficient of CA-BA-H3POs, the mass diffusion coefficient is higher for CA-HT-H;POy.

According to Figure 7, all of the curves plot show multi-linearities suggesting the existence of
several stages in the Cr sorption process. These multi-linearities revealed by this model
indicate the presence of three stages involved in the Cr adsorption process. The first stage,
which is slightly concave and faster, can be considered as the binding of Cr to active sites on
the outer surface of CAEs (instantaneous adsorption), and the second, slower stage n be
attributed to the diffusion of Cr inside the pores of CAEs (gradual adsorption). The third stage
is a plateau corresponding to equilibrium. The curves are not straight lines passing through the
origin, which shows that internal diffusion is not the only factor limiting the kinetics of Cr

sorption on CAEs. Other mechanisms may therefore be involved in this case [26,27].
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The results obtained show that increasing the contact surface area of CAEs increases the

percentage of Cr extraction.

Figure 9 shows that the optimal adsorption pH values for chromium are 2 and 8 for CA-BA-
H3PO4 and CA-HT-H3PQs, respectively. According to the Mohan and Pittman diagram, the
best-adsorbed chromium species is HCrO4 for CA-BA-HiPO4 and CrO4>for CA-HT-H;POs.

Analysis of Figure 10 shows that the extraction rate increases from 80.82% to 98.98%. It
should be noted that the yields of our three CAE samples exceed that of CAC (91.48%).

?Cunclusion

At the end of this study, the following lessons were learned:

v" The best yields are obtained with HT; 51.55% (H3PO4) and 40% (H2SO4) ;

v" Regardless of the biomass, the best yields are obtained by activation with H3POa;

v the total absence of basic functions. The surface functions are acidic in nature and the
total acidity of the CAEs would increase from 3.18 to 3.91 meq g”! for CA-TB-H3PO,
and CA-BA-H:POyrespectively;

v" The pH values at zero loading point for CAEs and commercial products are all below
neutrality (pH < 7). They range from 1.3 to 5.24 for activated carbons;

v" BM extraction rates range from 83.3445 to 94.3777%;

v" The correlation coefficient values (R?) are approximately 0.96728 and 0.94642 for
CA-BA-HsPO. and CA-HT-HsPOs, respectively.

v" The initial Cr adsorption rate “«” calculated with CA-BA-H:PO4 (2.45343.1011 mg
¢! min™') is greater than that obtained with CA-HT-HsPO4 (1.91005.106 mg g
min');

v the mass diffusivity D calculated with CA-BA-H3PO; (0.07643 cm? min') is lower
than that obtained with CA-HT-H3PO; (0.13219 cm?® min™');

v" The results obtained show that increasing the contact surface area of CAEs increases
the percentage of Cr extraction;

v" The optimal adsorption pH values for chromium are 2 and 8 for CA-BA-H3PO4 and
CA-HT-H3POy, respectively. It should be noted that the yields of the three CAE
samples exceed that of CAC (91.48%).
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