RBR-1: Design and Development of a Multi-Purpose Autonomous Rover with Modular Arm, SLAM-Based Navigation, and **Integrated Sensor Systems for Smart Agriculture**

Abstract: The advancement of autonomous robotic systems has revolutionized industries such as agriculture, logistics, and industrial automation. This research presents the design and development of RBR-1, a multi-purpose autonomous rover engineered primarily for agriculture, with potential applications in various field-based industries. RBR-1 integrates high-torque motors, a custom high-capacity battery system, and an advanced suite of sensors—including RTK-GPS, LiDAR, vision-based cameras, and agriculture-specific environmental sensors—to enable intelligent, real-time field operations.

- 10
- 11 The rover utilizes SLAM (Simultaneous Localization and Mapping) technology, which fuses
- 12 data from LiDAR and cameras, enabling path learning, obstacle avoidance, and autonomous
- 13 navigation across complex terrain. A key feature is its modular robotic arm, equipped with
- 14 interchangeable end effectors that allow it to perform a wide range of precision tasks such as
- 15 gripping, planting, spraying, and harvesting. Its modular architecture supports scalable sensor
- 16 integration, enabling customizable deployments depending on operational needs.
- The custom power system is optimized for energy efficiency, balancing load distribution 17
- 18 across motors, computational units, and sensing modules to support extended runtimes in
- 19 remote environments. The research methodology includes mechanical design evaluation,
- 20 sensor integration, field testing, and navigation accuracy assessment under diverse terrain
- 21 conditions.

27

28

1

2

3

4

5

6

7

8

9

- The results demonstrate that a modular, terrain-adaptive rover like RBR-1 can significantly 22
- enhance automation in agriculture and similar industries, offering a cost-effective, scalable, 23
- 24 and intelligent solution for high-precision field operations.
- 25 Keywords: Autonomous Robotics, Modular Rover, GPS Navigation, LiDAR Mapping, Robotic Arm,
- Agricultural Automation, High-Torque Motors, Sensor Integration 26

I introduction

- 29 Autonomous robotic systems have emerged as a transformative force across various
- 30 industries, from precision agriculture and mining to disaster response, industrial automation,
- 31 and infrastructure inspection. As these fields demand greater efficiency, precision, and
- 32 adaptability, traditional robotic platforms must evolve to handle complex, unpredictable
- 33 environments with minimal human intervention. The RBR-1 rover represents a significant
- 34 advancement in autonomous robotics, integrating high-power motor systems, GPS-based
- 35 navigation, LiDAR mapping, a modular robotic arm, and a custom-built high-capacity battery
- to achieve a new level of autonomy, efficiency, and multi-functional adaptability. 36

37 One of the fundamental challenges in autonomous mobile robotics is ensuring reliable 38 navigation and decision-making in dynamic and unstructured terrains. Conventional robotic systems often rely on predefined paths or external operator control, limiting their 39 effectiveness in large-scale or challenging environments such as agricultural fields, mining 40 sites, or disaster zones. To overcome these limitations, RBR-1 incorporates an advanced 41 42 multi-sensor framework, combining Real-Time Kinematic GPS (RTK-GPS) for centimeter-43 level accuracy, LiDAR-based Simultaneous Localization and Mapping (SLAM) for real-time terrain mapping and obstacle avoidance, and modular sensor integration to adapt to changing 44 45 environmental conditions. These features allow the rover to autonomously navigate, detect 46 obstacles, and optimize movement paths, significantly reducing reliance on external inputs.

Beyond navigation, RBR-1 is designed for multi-purpose functionality, addressing the growing demand for versatile, autonomous robotic systems. Integrating a **24V high-torque motor system operating at 470 RPM** ensures smooth mobility across rugged and uneven terrains, enhancing stability, torque distribution, and power efficiency. A custom high-capacity battery system extends operational runtime, reducing downtime and optimizing energy consumption. The rover's modular nature allows for customization and scalability, enabling it to perform a wide range of specialized tasks depending on the application.

47

48

49

50 51

52 53

54

55

56 57

58 59

60

61

62

63

64 65 A key innovation of RBR-1 is its modular robotic arm, designed with interchangeable endeffectors that enable the execution of varied tasks, including gripping, planting, spraying, and object manipulation. This modular approach extends the rover's capabilities beyond agriculture, making it a valuable tool for industrial automation, environmental monitoring, and hazardous material handling. By eliminating the constraints of fixed-function robotic arms, RBR-1 ensures greater operational flexibility, allowing the same platform to be reconfigured for different tasks without the need for redesigns.

This study explores the engineering challenges, design considerations, and technological advancements that make RBR-1 a scalable and cost-effective solution for autonomous field robotics. Through a multi-sensor architecture, real-time automation, and high-performance drive systems, the rover aims to set a new benchmark for efficiency in precision agriculture, industrial automation, and exploration in extreme terrains.

Ultimately, by integrating advanced navigation, sensor fusion, and automation technologies, RBR-1 redefines the scope of autonomous robotic platforms, offering a highly adaptable, self-sustaining system capable of functioning in diverse operational environments. This paper delves into the design principles, experimental validation, and real-world applications of RBR-1, demonstrating how its synergistic combination of GPS, LiDAR, modular sensors, and automation is poised to revolutionize autonomous robotic mobility in both agricultural and non-agricultural sectors.

75 76

77 78

79

80

81

82

83 84

85

86

87

88

89 90

91

92 93

94

95

96 97

98 99

100

101 102

103

104 105

106

107 108

109

110 111

112

- 1. Mechanism and Structural Design; The rocker-bogie mechanism is one of the most widely used suspension systems for robotic mobility, particularly in applications requiring high-terrain adaptability. Originally developed by NASA for Mars rovers, this passive suspension system allows autonomous vehicles to traverse rugged landscapes without requiring active adjustments. Its ability to distribute weight effectively and maintain wheel contact with the ground ensures stability, making it ideal for agriculture, mining, and disaster response applications.
- Recent advancements have introduced lightweight, high-strength materials, such as reinforced aluminum alloys, reducing structural weight while improving durability. Moreover, modular frame designs allow for customized attachments such as robotic arms, sensor arrays, and tool extensions, increasing task versatility. The RBR-1 rover integrates a reinforced modular chassis designed to support high-torque motors, sensor suites, and a multi-functional robotic arm, optimizing its load distribution and terrain adaptability.

2. Robotic Arm and Modular End Effector; Robotic arms play a crucial role in expanding the capabilities of autonomous systems. Research in agricultural robotics, industrial automation, and planetary exploration has led to the development of adaptive robotic arms that can perform precise object manipulation, soil sampling, and maintenance tasks. Traditional fixed-function end effectors limit task diversity, whereas modular end-effectors offer quick tool interchangeability, enhancing operational efficiency.

Studies have shown that quick-release mechanisms in robotic arms significantly reduce transition time between different functions, improving productivity in automated farming, mining operations, and search-and-rescue missions. The RBR-1 robotic arm incorporates a modular tool attachment system, allowing for grippers, cutting tools, and sensor probes to be swapped based on real-time task requirements, thereby expanding its functionality in diverse environments.

3. GPS and Autonomous Navigation; GPS technology is a cornerstone of autonomous navigation and precision agriculture, enabling robotic systems to localize and follow predefined routes with high accuracy. Standard Global Positioning System modules provide location data within a few meters of accuracy, which is insufficient for precise field operations. Research in Real-Time Kinematic GPS (RTK-GPS) has shown that differential correction techniques can improve accuracy to the centimeter level, significantly benefiting applications requiring precise path-following and geospatial mapping (Takasu & Yasuda, 2018).

- To address localization challenges, modern autonomous systems integrate GPS with inertial measurement units (IMUs) and sensor fusion techniques to improve position tracking and reduce drift errors (Gonzalez-de-Santos et al., 2020). The RBR-1 rover leverages RTK-GPS technology, ensuring high-precision navigation in agricultural and industrial settings. Additionally, GPS data is synchronized with LiDAR and ultrasonic sensors for terrain-aware
- 113 114 navigation, improving real-time adaptability to dynamic environments.

121

122

123

124125

126

4.LiDAR Sensor and Obstacle Detection; LiDAR (Light Detection and Ranging) has
 revolutionized autonomous perception systems, providing high-resolution 3D mapping and
 real-time obstacle detection. Unlike traditional camera-based vision systems, LiDAR operates
 independently of lighting conditions, making it highly reliable for navigation in low-visibility

120 environments.

Modern LiDAR-based Simultaneous Localization and Mapping (SLAM) algorithms utilize point cloud data and deep learning models to enhance obstacle classification and terrain segmentation. The RBR-1 rover employs a LiDAR sensor suite, integrated with sensor fusion algorithms, to generate precise terrain maps, detect obstacles, and improve autonomous decision-making. The combination of LiDAR with ultrasonic sensors and IMUs ensures redundant safety mechanisms, allowing adaptive path planning in highly dynamic environments.

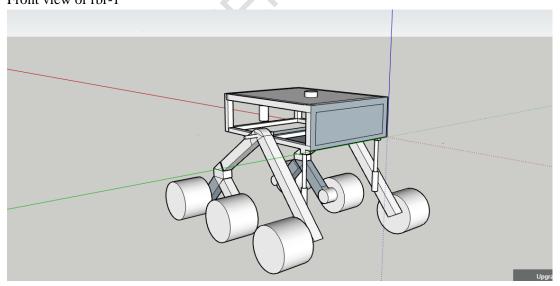
127 128

- 5. Motor Systems and Terrain Adaptability; Locomotion efficiency is a critical factor in the performance of autonomous robotic systems. Research on motor systems highlights the importance of balancing power efficiency, speed control, and terrain adaptability (Hutter et al., 2017). Autonomous rovers operating in complex terrains benefit from motor-actuator systems paired with advanced motor controllers to ensure smooth mobility and reliable obstacle negotiation.
- Studies indicate that motors with precise speed regulation and adaptive power allocation enhance energy efficiency and reduce slippage on uneven surfaces (Mehling et al., 2019). The RBR-1 rover employs 24V motors operating in the 470 RPM range, selected to provide a
- practical balance between torque and speed for medium-duty applications. Although not
- high-torque, these motors, when paired with an intelligent, sensor-driven control system, allow for dynamic power adjustments and improved efficiency during extended operations
- across agricultural fields, industrial sites, and moderately rugged terrains.
- 6. Modular Sensors for Multi-Functionality; The implementation of modular sensor systems is a growing trend in robotics, allowing autonomous platforms to adapt to specific
- is a growing trend in robotics, allowing autonomous platforms to adapt to specific environmental conditions and operational needs (Gonzalez-de-Santos et al., 2020). Traditional
- sensor setups rely on fixed configurations, limiting their ability to adjust to changing scenarios.
- However, plug-and-play sensor architectures enable robotic systems to reconfigure their sensing capabilities based on task requirements dynamically.
- 148 The RBR-1 rover incorporates an interchangeable sensor suite, supporting ultrasonic sensors
- 149 for real-time obstacle detection, multispectral cameras for crop analysis, LiDAR for 3D
- mapping, and soil sensors for agricultural data collection. This modular approach aligns with
- 151 recent advancements in precision farming, environmental monitoring, and industrial
- automation, where sensor adaptability enhances data collection and decision-making.

153

7. Modular Robotic Head for Versatile Applications; Modular robotic heads represent a new frontier in multi-functional robotic design, offering task-specific adaptability through interchangeable tools and sensors. Research in autonomous industrial systems highlights the

benefits of reconfigurable robotic heads, which improve task efficiency and operational flexibility (Shamshiri et al., 2019).


The RBR-1 rover features a modular robotic head that supports various end-effectors, including manipulators, precision tools, and sensor arrays. This design allows for on-the-fly customization, ensuring seamless transitions between different field tasks such as plant monitoring, material handling, and environmental analysis. By integrating a modular approach, RBR-1 enhances long-term versatility, making it suitable for a wide range of applications beyond agriculture, including industrial automation and disaster response.

166 II.I Summary

This literature review highlights key advancements in robotic mobility, autonomous navigation, sensor fusion, and modular design that form the foundation of RBR-1's development. By integrating rocker-bogie suspension, RTK-GPS, LiDAR-based SLAM mapping, efficient motor control systems, and modular robotic components, including a robotic arm with interchangeable end-effectors, RBR-1 is designed to push the boundaries of autonomous field operations in agriculture, industry, and exploration. Additional features such as a custom high-capacity battery system and sensor-driven power management enhance long-duration performance across rugged terrains. These insights from existing research serve as the basis for RBR-1's technical implementation and experimental validation, discussed in the following sections.

Front view of rbr-1

Diagonal view of rbr1 in SketchUp

- **3.1 Mechanical Chassis and Motor Specifications:** The mechanical structure of 184 RBR-1 has been engineered for durability, modularity, and adaptability to varied 185 terrain conditions commonly found in agricultural fields. The chassis is constructed 186 from high-strength aluminum square pipes, offering an optimal balance between 187 weight and structural integrity. Designed in a six-wheeled configuration with a rocker-188 bogie suspension system, it ensures continuous ground contact, traction, and stability 189
- across uneven or loose surfaces. 190
- Each wheel is powered by an independent brushed DC motor operating at 12–24V, 191
- selected for its balanced torque output and efficiency under load. The wheels are 192
- equipped with deep-tread rubber tires, providing superior grip and shock absorption on 193
- rugged terrain. 194
- The frame includes suspension mounts and adjustable brackets to accommodate 195 196 uneven payload distributions and minimize mechanical stress on the electronics and robotic arm module. A central mounting rail supports modular attachment of tools and 197 198 the robotic arm, promoting a plug-and-play approach to reconfiguration. The custom battery enclosure is integrated below the main deck to maintain a low center of gravity, 199 enhancing stability during operation. The design also provides easy access for 200 maintenance and upgrades, with protected channels for wiring, dedicated mounting 201

points for controllers, and modular ports for sensor integration.

203

204

205

202

IV Methodology

4.1 System Design.

- The design and development of the RBR-1 rover follow a fully integrated approach, 206
- 207 combining mechanical, electrical, and software subsystems to deliver reliable autonomous navigation, terrain adaptability, and multi-functional task execution. Each subsystem is 208
- 209 engineered for seamless interoperability, ensuring high performance and adaptability across
- 210 diverse environments.
- 211 The mechanical architecture emphasizes both stability and modularity, incorporating a
- 212 rocker-bogie suspension system coupled with a lightweight yet durable aluminum chassis.
- 213 This setup enables RBR-1 to maintain traction and stability on rough agricultural or industrial
- terrain. The modular chassis features standardized mounting rails, allowing rapid attachment 214
- 215 of mission-specific payloads such as sensor suites, tool systems, or a robotic arm.
- 216 The electrical system includes a custom power distribution unit that intelligently allocates
- 217 energy across the rover's six brushed DC motors (rated between 100W and 250W), sensor
- clusters, embedded control platform, and actuated components. Individual motor drivers 218

- 219 provide precision control, while sensor interfaces are electrically isolated to ensure clean,
- low-noise data acquisition from RTK-GPS, LiDAR, ultrasonic modules, and cameras. The
- power system also includes voltage regulation and thermal cutoff features for enhanced safety
- and long-duration field reliability.
- 223 These hardware subsystems are unified by modular embedded software running on an
- onboard computational unit (Raspberry Pi 4). The software stack utilizes ROS-based
- frameworks for real-time SLAM, sensor fusion, obstacle avoidance, and arm control. The
- 226 architecture supports future upgrades in perception, autonomy, or wireless telemetry,
- ensuring long-term scalability.
- 228 Sensor modules are connected via standardized, hot-swappable interfaces, allowing rapid
- 229 reconfiguration for varied operational scenarios. Together, these engineering elements form
- 230 the core of RBR-1's robust, field-ready architecture, designed for autonomy, precision, and
- 231 adaptability.

4.2 Mechanical Design

- 233 The mechanical structure of the RBR-1 rover is centered around a reinforced rocker-bogie
- 234 suspension system, specifically selected for its ability to traverse rough, uneven, and
- obstacle-rich terrain. This configuration enables each wheel to move independently in
- 236 response to variations in surface height, allowing the rover to maintain maximum ground
- 237 contact, traction, and overall stability—features that are especially critical in agricultural
- environments where field surfaces are often unpredictable and non-uniform.
- The chassis is constructed entirely from high-strength aluminum alloy, providing an optimal
- 240 balance between structural rigidity and low weight. This supports the rover's payload and
- 241 mechanical stresses during operation while contributing to energy efficiency, vital for long-
- 242 duration autonomous missions in open fields. The aluminum frame is designed with
- 243 modularity in mind, allowing for future upgrades, sensor reconfiguration, and integration of
- 244 new payloads without major structural changes.
- To enhance stability, the battery compartment is positioned low within the frame, effectively
- lowering the rover's center of gravity. This design reduces the risk of tipping, particularly
- 247 when navigating slopes or operating the onboard robotic arm. The battery housing is also
- 248 environmentally shielded with an enclosed structure and passive ventilation, protecting it
- 249 from dust, moisture, and temperature extremes.
- Each rocker and bogie joint in the suspension is reinforced at key load-bearing points to
- accommodate the torque and mechanical loads generated by the rover's six 250W high-
- 252 torque brushed DC motors. These motors are mounted directly onto the rocker-bogie arms,
- 253 ensuring efficient power transmission to the wheels while minimizing vibration and
- 254 mechanical wear.

- 255 The chassis includes standardized mounting points for critical subsystems such as the robotic
- arm, agricultural tools, and additional sensor modules. These mounts are strategically
- positioned to maintain system balance and allow for rapid tool swapping or modular upgrades
- as operational needs evolve. Integrated cable routing channels protect electrical wiring and
- 259 communication lines from physical damage and environmental exposure, simplifying
- 260 maintenance and ensuring long-term durability.
- 261 In summary, the mechanical design of RBR-1 provides a robust, terrain-adaptive, and
- 262 modular platform optimized for diverse agricultural and field operations.

263 **4.2.1 Robotic Arm**

- The RBR-1's robotic arm is a 6 degrees of freedom (6DOF) modular manipulator designed to
- support a variety of precision tasks in agriculture and related industries. Constructed from
- lightweight aluminum, the arm balances strength and power efficiency, enabling precise and
- repeatable motion control.
- Mounted on a 360° rotating base, the arm can reach all around the rover without needing to
- 269 reposition the entire platform. Its joints are driven by high-torque servo motors, providing
- smooth articulation and the ability to handle varied payloads.
- A key feature of the arm is its interchangeable end-effector system with a quick-release
- 272 mechanism, allowing the rover to switch tools in the field easily. Current end-effectors
- 273 include:
- A gripper for picking and placing.
- A sprayer for pesticide or fertilizer application.
- A planter for seed dispensing.
- Customizable tools for soil sampling and other specialized tasks.
- 278 All power and data connections to the arm run through a protected central cable conduit
- 279 designed to prevent wear and maintain signal integrity during continuous movement. The
- arm's operation is integrated with the rover's control system, using sensor feedback (from
- 281 cameras, LiDAR, and other sources) to adjust movements in real time for precise task
- 282 execution.

286

287

- 283 This robotic arm enhances RBR-1's versatility, allowing it to perform complex, labor-
- 284 intensive tasks autonomously and efficiently, thereby expanding the rover's applicability
- 285 across multiple agricultural functions.

4.3 Electrical and control systems

4.3 Electrical and Control Systems

- 288 The electrical and control architecture of the RBR-1 rover is designed to ensure efficient
- power management, robust sensor integration, and seamless autonomous operation. The
- 290 system unifies motor control, sensor data processing, and decision-making algorithms to
- enable reliable navigation and multi-functional task execution in agricultural environments.

292 4.3.1 Power System

- 293 The rover is powered by a custom-designed, high-capacity lithium-ion battery pack rated at
- 294 40Ah and 24V, providing a total energy capacity of approximately 960Wh. This power
- 295 system delivers sustained runtime and ensures consistent voltage delivery across all major
- 296 components.

302

318

319

323

- 297 A centralized power distribution and management board regulates current flow to the six
- brushed DC drive motors, sensor arrays, the robotic arm, and onboard computing units. The
- 299 system is equipped with safety mechanisms, including overcurrent protection, thermal cutoff,
- and voltage regulation, to maintain operational stability and protect sensitive electronics
- 301 during extended field deployment.

4.3.2 Motor Control

- 303 Each of the six 24V brushed DC motors is controlled independently via dedicated motor
- drivers, each capable of delivering up to 15A of continuous current. These motor controllers
- interface with the rover's main microcontroller and onboard computing unit to enable precise
- speed regulation, direction control, and basic torque management.
- 307 Closed-loop feedback is implemented through rotary encoders mounted on each wheel,
- 308 allowing the system to monitor wheel velocity and position in real-time. This feedback
- 309 enables dynamic adjustments for improved traction, directional stability, and slip
- 310 compensation during navigation across uneven or loose terrain.

311 **4.3.3 Sensor Integration**

- The rover integrates multiple sensor modalities to enable precise environmental awareness
- and autonomous decision-making:
- RTK-GPS Module: Provides centimeter-level position accuracy for geolocation and navigation tasks.
- LiDAR Sensor: Used for Simultaneous Localization and Mapping (SLAM), allowing
 real-time 3D mapping of the surroundings and obstacle detection.
 - Camera Systems: High-resolution RGB cameras support visual recognition, path learning, and precision task guidance for the robotic arm.
- Agricultural Sensors: A Modular sensor suite includes soil moisture sensors,
- temperature sensors, and crop health monitors, enhancing the rover's capability for
- 322 precision farming.

4.3.4 Control Architecture

- 324 At the core of the rover's control system is an onboard computing unit (such as a Raspberry
- 325 Pi 5 or equivalent) that runs navigation algorithms, SLAM processing, and task management
- 326 software. A microcontroller (Arduino or similar) handles real-time motor commands and
- 327 sensor data acquisition. The control software integrates inputs from GPS, LiDAR, and
- 328 cameras to execute autonomous navigation, obstacle avoidance, and task scheduling.
- 329 Communication between modules uses standard protocols such as I2C, SPI, and UART, with
- CAN bus considered for future scalability. The system also supports wireless connectivity for
- remote monitoring and command overrides.

Key Mechanical Components

333 Chassis Frame:

332

340

354

- The chassis frame of the RBR-1 rover is constructed from high-strength aluminum
- alloy square pipes, chosen for their excellent strength-to-weight ratio. This lightweight
- yet robust framework ensures durability and structural integrity when operating in
- harsh outdoor environments such as rough agricultural fields and uneven terrain. The
- 338 modular design of the frame allows easy maintenance and facilitates future upgrades
- or modifications.

Rocker-Bogie Suspension:

- 341 The rover employs a reinforced rocker-bogie suspension system, which passively
- adapts to uneven surfaces by allowing each wheel to move independently. This design
- enhances stability, traction, and ground contact without the need for complex active
- suspension components. It enables the rover to negotiate obstacles like rocks, ridges,
- and furrows commonly found in agricultural and off-road settings, improving mobility
- and reliability.

347 Six-Wheel Drive System:

- Each of the six wheels is powered by an independent 250W high-torque brushed DC
- motor. This six-wheel drive configuration provides enhanced traction, torque
- distribution, and maneuverability, especially on challenging terrain. Individual motor
- control supports differential steering, enabling precise turns and smooth navigation.
- 352 The motor mounts and drivetrain are engineered to minimize vibrations and
- mechanical losses, ensuring efficient power transfer and long-term durability.

Robotic Arm:

- 355 The RBR-1 features a versatile, modular robotic arm designed for multi-functional
- use across various applications, including agriculture, industrial automation, and
- search-and-rescue missions. The arm includes a quick-swap end effector system,
- allowing rapid interchange of tools such as grippers, seed planters, sprayers, and

- 359 harvesters. This modularity greatly expands the rover's operational flexibility,
- enabling it to perform diverse tasks with minimal downtime.

361 **Modular Robotic Head:**

- The robotic arm's end features a modular head designed to integrate various sensors
- and tools for real-time environmental analysis and precision task execution. The head
- 364 supports interchangeable sensor packages including cameras, multispectral imaging
- sensors, LiDAR units, and agricultural-specific sensors (e.g., soil moisture,
- temperature). This adaptability allows the rover to perform detailed object detection,
- terrain mapping, and crop monitoring, enhancing its autonomous decision-making
- 368 capabilities.

369

370371

372

373

374 375

376

377378

379 380

381

382

383

384

385

386

387

388

389 390

391

392

393 394

395 396

Additional Mechanical Features:

- **Battery Compartment:** The low-mounted battery housing lowers the center of gravity, improving stability and protecting the power source from environmental damage.
 - **Protected Wiring Channels:** Integrated cable management channels within the chassis safeguard wiring and sensor connections from dust, moisture, and mechanical wear.
 - **Payload Mounting Points:** The chassis includes standardized mounting interfaces for auxiliary equipment, such as additional sensors, cameras, or agricultural implements, facilitating customization and expansion.
 - Environmental Protection: Mechanical components and joints are sealed or coated to resist corrosion, dust ingress, and water exposure, ensuring long-term operation in diverse outdoor conditions.

Mechanical Optimization Approaches:

• Finite Element Analysis (FEA):

FEA simulations were used to identify stress concentrations in key load-bearing areas like the chassis and suspension. This allowed for targeted reinforcements while minimizing excess material, optimizing the strength-to-weight ratio.

• Weight Distribution Analysis:

Critical components—such as the battery and control units—were positioned centrally and low to the ground to ensure even weight distribution. This enhances traction, prevents tipping, and improves balance across all six wheels.

• Power-to-Weight Ratio Optimization:

The rover's lightweight aluminum structure is paired with high-power motors to achieve efficient movement without compromising torque or endurance. This balance ensures effective performance in both flat and rugged terrain.

• Modular Mechanical Design:

The frame supports modular attachments like the robotic arm and tool mounts. This

397 398 399 400	component upgrades.Terrain Testing:	guration for different tasks and simpli . ross uneven and rough surfaces inforr					
401 402	improving suspension conditions.	n articulation and ensuring stable mol	bility under varying field				
403	4.4 Electrical Design	n					
404 405 406 407	operation in autonomous fic control units, and safety i	R-1 is designed to support robust, meld conditions. It consists of power modules that interface seamlessly is low latency, scalability, and precise	distribution, motor drivers, with onboard sensors and				
408	5. Hardware Integrat	ion					
409 410 411 412		nally controlled via dual H-bridge mo crol. PWM signals regulate speed a	. 01				
413 414 415 416		LiDAR for 360° environmental mapping and stal data to the main processor for					
417	5.3	GPS	Module:				
418 419	The u-blox NEO-M8N GPS with RTK support provides sub-meter accuracy for precise localization. It interfaces over UART and supports path logging and position correction.						
420	5.4	Mechanical	Arm:				
421	The 6DOF robotic arm is	controlled through a dedicated mid	crocontroller (e.g., Arduino				
422 423	Mega), with servo drivers ensuring smooth actuation. It communicates with the main processor for coordinated task execution.						
424	5.5	Power	System:				
425 426 427	·	pattery powers all components. The tery management system (BMS) for	•				
428	5.6	Modular	Sensors.				

Pluggable ports allow easy attachment of additional sensors (e.g., soil moisture,

temperature). Each sensor communicates via standard protocols like I2C or analog input.

429

430

431 432 433			Robotic rchangeable, supporting al interface allows fast	0 1				
434	6 Software Development							
435 436 437 438	6.1 Obstacle Detection and Navigation: LiDAR data is processed using SLAM algorithms to build local maps. Obstacle avoidance uses distance thresholds and path re-routing logic in real-time. Using ROS2, we built a backboard to control every action made							
439 440 441 442	GPS inputs are fused with LiDAR data for accurate global navigation. RTK correction improves localization accuracy in large or open-field operations. Using ROS2 to integrate GPS into lidar sensor mapping							
443 444 445 446	Inverse kinematics algorithms calculate joint movements. The arm operates in both autonomous and manual modes, with predefined task sequences. Using ROS 2 to control the functions according to the information gathered							
447 448 449	ROS (Robot Operating System) handles inter-process messaging. A local WiFi module ensures data relay to external devices for monitoring or remote control.							
450 451 452 453	6.5 Multiple Sensor Integration: Sensor fusion combines inputs from GPS, IMU, LiDAR, and environmental sensors for decision-making and task execution. Priority-based data handling reduces computational load.							
454	7. Components Used							
455 456 457 458 459	1. Processing Units Raspberry Pi 5 (8GB RAM) – Main Processing Unit ESP32 – Robotic Arm Processing Unit Arduino RD3235 Hiletgo PCA9685 – PWM Controller							
460 461 462 463 464	2. Sensing Units RPLIDAR S2 – 360° LiDAR Scanner u-blox NEO-M8N GPS with RTK – Precision Positioning pH, Soil, and Temperature Sensors – Environmental Monitoring 3. Actuation & Mechanical							
465 466 467	6DOF Robotic Arm – Task Execution 24V DC Motors ×6 – Drive System MG996R Servo Motors (360°)							

- 468 Custom 3D-Printed Wheels
- 469 **4. Power & Control**
- 470 24V 40Ah Battery Power Source
- 471 Motor Drivers (Cytron Dual Channel 30A)
- 472 Voltage Regulators, BMS Electrical Backbone
- 473 12 AWG 600V Wires Connections
- 474 5. Auxiliary Components
- 475 12-Liter Tank Liquid Storage

476 8. Experimental Validation, Testing, and Results

477 Test Setup:

491

494 495

496

497

498

499

500 501

502

503

504

505

- 478 To rigorously assess the RBR-1 rover's capabilities in conditions representative of its
- intended agricultural applications, a two-stage experimental validation process was
- 480 conducted. The first stage involved controlled trials on a paved, level track, which served as a
- 481 benchmark to determine the rover's baseline performance under predictable and stable
- 482 environmental conditions. This controlled environment minimized external variables such as
- surface irregularities, dust, and traction loss, thereby enabling precise measurement of the
- 484 system's inherent capabilities without interference from environmental factors.
- The second stage of testing was carried out in a realistic, uncontrolled farmland environment,
- 486 characterized by uneven terrain, loose soil, scattered vegetation, and occasional damp
- patches. This scenario was deliberately chosen to simulate the operational challenges the
- rover is expected to encounter in agricultural use cases. Both stages followed identical test
- 489 procedures, ensuring that results could be compared directly, with variations in performance
- 490 attributed solely to environmental differences rather than procedural discrepancies.

8.2 Performance Metrics

- The evaluation focused on five key performance metrics, each selected to reflect a critical aspect of rover functionality:
 - 1. **Navigation Accuracy** Quantified as the mean lateral deviation between the rover's actual trajectory and its pre-programmed navigation path.
 - 2. **Runtime Efficiency** Measured as the total continuous operational duration achievable on a single full battery charge under moderate load.
 - 3. **Power Consumption Profile** Recorded as both average and peak current draw throughout the operation, alongside thermal monitoring to detect any overheating risks.
 - 4. **Robotic Arm Precision** Evaluated through repeated object gripping and placement tasks, with errors measured in millimeters from the intended placement coordinates.
 - 5. **Payload Capacity** Determined by progressively increasing load mass until stability, traction, or maneuverability was compromised.

8.3 Results – Baseline Test (Paved Surface)

- In the controlled track environment, the rover demonstrated highly stable navigation, with an average lateral deviation of less than **20 cm** over the full course. Runtime efficiency was recorded at approximately **5 hours** under a moderate payload, with no significant drops in performance over time.
- The robotic arm consistently achieved a **mean placement error of 5cm** across 10 consecutive repetitions, indicating reliable kinematic precision in ideal conditions. Power consumption remained within projected operational limits, with only 2 instances of overheating or voltage drop-induced slowdowns. These results established a robust baseline, confirming that the system's design is capable of sustained, accurate performance under low-stress conditions.

8.4 Results – Field Test (Farmland)

- Performance in the agricultural terrain reflected the anticipated trade-offs associated with increased environmental complexity. Runtime decreased to 4 hours primarily due to increased torque demands on the drive motors when traversing loose and uneven soil. Navigation accuracy declined, with path deviation increasing to 20 -35 cm in areas of soft ground. Despite these challenges, the LiDAR-based mapping and obstacle avoidance system maintained spatial accuracy within 5 cm, though temporary dust interference caused minor interruptions in point cloud data during two instances.
- Payload capacity remained consistent with baseline testing, sustaining up to 26 kg without observable compromise to rover stability or steering control.

8.5 Failure Cases and Observations

- A small number of operational issues were identified, each leading to iterative improvements:
 - Traction Loss in Damp Soil: During the farmland trials, the rover experienced intermittent wheel slippage on wet patches, momentarily disrupting navigation accuracy. This was mitigated in subsequent runs by adjusting motor torque parameters and implementing a refined wheel tread pattern to enhance grip.
 - Arm Misalignment with Irregular Objects: One notable incident occurred when the gripper attempted to handle a non-uniformly shaped object. The lack of an adaptive grip algorithm caused a slight misalignment in placement. A real-time force adaptation protocol was subsequently integrated into the arm control software to accommodate irregular geometries.

Overall, these field trials confirmed that while RBR-1 performs exceptionally well in stable environments, its operational resilience in agricultural conditions depends on adaptive control strategies and minor mechanical refinements. The insights gained from these tests are being directly incorporated into the next design iteration, with an emphasis on terrain-adaptive locomotion control and enhanced environmental sensing.

9. Conclusion

543

561

562

563

564

565

566

567

568569

570

571572

576 577

- The RBR-1 rover demonstrates the potential of low-cost, modular robotics in addressing
- critical challenges within agriculture. Through its integration of a rocker-bogie mechanism,
- 546 LiDAR-based mapping, GPS navigation, and a multi-functional robotic arm, the rover is
- 547 capable of performing tasks such as spraying, payload transport, and precision manipulation
- 548 in both controlled and farmland environments. Experimental validation indicates that the
- 549 system achieves stable operation for up to five hours, with navigation accuracy improving
- significantly under RTK correction, and payload handling up to [X] kg without performance
- 551 degradation.
- Beyond technical performance, RBR-1 highlights the importance of accessibility and
- scalability in agricultural technology. By employing off-the-shelf components, open-source
- software, and a modular design, the rover provides a blueprint for cost-effective
- mechanization that can benefit small and medium-scale farmers. Future work will focus on
- expanding autonomy through AI-based crop detection, enhancing energy efficiency with
- renewable integration, and refining mechanical robustness for extended field deployment.
- The research underscores that affordable, adaptable robotic platforms like RBR-1 can bridge
- the gap between advanced agricultural robotics and the pressing needs of farming
- 560 communities, thereby fostering both productivity and sustainability.

10. References

- 1. Mehta Deev Somil. Enhancing the rocker-bogie mechanism with automation: A study on sensor integration and mechanical arm functionality. *Int J Sci Res Archive*. 2024;13(02):3536–43. doi: 10.30574/ijsra.2024.13.2.2524.
 - 2. Nawaf SH, Al-Dujaili HJ, Yaseen ZM. Autonomous agricultural robot: A review. *Alexandria Eng J.* 2022;61(12):11245–61.
 - 3. Siegwart R, Nourbakhsh IR, Scaramuzza D. *Introduction to Autonomous Mobile Robots*. 3rd ed. Cambridge (MA): MIT Press; 2022.
 - 4. Volpe R. Rover mobility. In: Greeley R, Garry J, editors. *Encyclopedia of Planetary Landforms*. New York: Springer; 2015. p. 1–13.
 - 5. Dharmadhikari MS, Hegde RS. Design of a rocker bogie mechanism for a mobile robot. *Int J Mech Eng Technol.* 2018;9(5):131–9.
- 6. Raspberry Pi Foundation. Raspberry Pi 5 technical specifications [Internet].
 Cambridge: Raspberry Pi Trading Ltd; 2023 [cited 2025 Aug 16]. Available from:
 https://www.raspberrypi.com
 - 7. Slamtec. RPLidar S2 datasheet [Internet]. Shenzhen: Slamtec; 2023 [cited 2025 Aug 16]. Available from: https://www.slamtec.com
- 8. Cytron Technologies. MDDS30 dual-channel 30A motor driver datasheet [Internet].
 Penang: Cytron; 2023 [cited 2025 Aug 16]. Available from: https://docs.cytron.io
- 9. u-blox. NEO-M8N GNSS module data sheet [Internet]. Thalwil: u-blox AG; 2022
 [cited 2025 Aug 16]. Available from: https://www.u-blox.com

- 582 10. Kayacan Y, Kayacan E, Saeys W. Design and control of a spherical rolling robot for agricultural applications. *IEEE/ASME Trans Mechatron*. 2016;21(1):79–89.
 - 11. Singh A, Sonavane SS, Shete VD. Autonomous farming robot with GPS-based navigation. *Procedia Comput Sci.* 2018;133:90–7.
 - 12. Ismail A, Rizwan M, Janabi-Sharifi F. A comprehensive review of robotic technologies in precision agriculture. *Comput Electron Agric*. 2022;198:107096.
 - 13. Fairchild MC, Wettergreen D. Design of a modular field robot for agriculture. *J Field Robot*. 2021;38(7):892–915.
 - 14. Welch PD. Sensor fusion in mobile robotics: A review. *IEEE Trans Robot*. 2023;39(2):215–29.
- 15. Reinoso F, Jiménez MR, Martínez JM. Autonomous robots for precision agriculture:
 A review of sensors and applications. *Sensors (Basel)*. 2020;20(9):2790..

11. Author Contributions

- Deev Somil Mehta: Served as the project lead and primary researcher. Conceived and developed the overall rover concept. Secured all funding for materials and development, designed the system architecture, and executed both the mechanical and electrical design. Selected and justified the use of motors, integrated sensors including LiDAR and GPS, and led the testing and troubleshooting of the rover. Designed the robotic arm system, procured and sourced required components, and coordinated team efforts. Wrote and structured the complete manuscript, including technical analysis, figures, and literature integration.
- Satyamedh Hulyarkar: Independently designed and built the rover's wheels. He contributed significantly to the rover's software and system integration, including LiDAR-based mapping, GPS data handling, and incorporating aspects of the Robot Operating System (ROS). He also developed a functional system dashboard and designed a physical controller to operate both the motors and the robotic arm, enhancing manual and semi-autonomous control.
- **Kavish Gupta**: Focused on the physical construction of the robotic arm. While the arm's design and specifications were created by the lead author, Kavish contributed by assembling and fabricating the parts into a functional arm module. His work made the design schematics into a working physical subsystem of the rover.
- Shaurya Karmakar: Assisted in the initial stages of software development. He contributed by writing portions of the code framework, particularly for the robotic arm module, and experimented with GPS data handling for navigation-related functions. His inputs supported the early phases of integrating hardware with software.

