ISSN: 2320-5407



# International Journal of Advanced Research

## Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

#### REVIEWER'S REPORT

Manuscript No.: IJAR-53849 Date: **16.09.2025** 

**Title:** RBR-1: Design and Development of a Multi-Purpose Autonomous Rover with Modular Arm,

SLAM-Based Navigation, and Integrated Sensor Systems for Smart Agriculture

| Recommendation:             | Rating         | Excel. | Good | Fair | Poor |
|-----------------------------|----------------|--------|------|------|------|
| Accept after Minor revision | Originality    | ✓      |      |      |      |
|                             | Techn. Quality |        | ✓    |      |      |
|                             | Clarity        |        | ✓    |      |      |
|                             | Significance   |        | ✓    |      |      |

Reviewer Name: Dr.K.Arumuganainar Date: 16.09.2025

#### Reviewer's Comment for Publication.

#### 1. Clarity & Language

- o Simplify lengthy technical descriptions for readability.
- o Maintain consistent terminology (e.g., "RBR-1 rover" instead of variations).

#### 2. Figures & Diagrams

- o Improve figure captions with explanations of results.
- o Provide clear schematics for hardware integration and software flow.

## 3. Experimental Validation

- Expand field trials across multiple agricultural scenarios.
- o Compare results with at least one existing rover prototype.
- o Include error bars/statistical measures for performance metrics.

#### 4. Discussion

- o Provide a cost-benefit analysis for small/medium farmers.
- o Discuss energy optimization (battery replacement/charging strategies).
- o Highlight limitations and future scope in more detail.

#### 5. References

- o Standardize citation style.
- o Add more recent (2023–2025) robotics and agriculture automation studies.

**Title of the Paper:** RBR-1: Design and Development of a Multi-Purpose Autonomous Rover

with Modular Arm, SLAM-Based Navigation, and Integrated Sensor Systems for Smart

Agriculture

**Manuscript ID:** IJAR-53849

1. Originality

The work presents the design and development of an autonomous rover with a modular

robotic arm, multi-sensor integration, and SLAM-based navigation for smart agriculture. The

integration of RTK-GPS, LiDAR, vision systems, and agricultural sensors in a modular,

low-cost rover is a noteworthy contribution. While similar studies exist in precision

agriculture and robotics, this research demonstrates a comprehensive, multi-purpose rover

**platform** with both software and hardware validation.

**Strengths:** 

Novel integration of multiple sensing technologies with modular robotics.

• Emphasis on cost-effectiveness and scalability for small/medium-scale farmers.

• Detailed description of both hardware and software frameworks.

Weaknesses:

Some features (e.g., rocker-bogie suspension, robotic arms, SLAM) are adapted from

existing robotics research, reducing novelty.

Lacks strong benchmarking against other agricultural robots.

**Score: 8/10** 

2. Significance

The research addresses critical issues in precision agriculture such as automation, labor

shortage, and environmental adaptability. The rover has cross-domain applicability in

mining, industrial automation, and disaster management, making the work highly relevant

and impactful.

**Strengths:** 

Addresses sustainability, efficiency, and labor challenges in agriculture.

• Offers practical solutions for diverse field tasks (planting, spraying, payload

handling).

Provides potential for low-cost adoption using open-source tools and off-the-shelf

components.

Weaknesses:

Economic feasibility analysis (cost per unit vs. benefits) is missing.

No discussion on long-term durability under real agricultural conditions.

Score: 8.5/10

3. Quality of Work

The methodology is strong, with a clear system architecture, hardware integration, and

software development using ROS frameworks. Experimental validation (controlled track vs.

farmland trials) provides practical insights into performance.

**Strengths:** 

Well-structured engineering design (mechanical, electrical, software).

Detailed testing metrics: navigation accuracy, runtime, power consumption, payload

capacity, robotic arm precision.

Identifies and addresses operational issues (traction loss, arm misalignment).

Weaknesses:

Results are promising but lack statistical validation or comparison with state-of-

the-art robots.

• Field tests were relatively limited (e.g., only runtime, navigation deviation, payload).

• Some critical parameters such as long-term reliability, safety, and weather resistance

are not addressed.

Score: 7.5/10

4. Presentation

The manuscript is technically rich and logically structured but could benefit from

refinement in clarity and formatting.

**Strengths:** 

• Abstract and introduction provide clear motivation.

• Literature review is comprehensive and supports the study.

• Detailed figures and system diagrams aid understanding.

Weaknesses:

Some sentences are repetitive and overly descriptive.

• Figures are referenced but lack detailed captions/labels.

• Minor typographical and formatting issues (e.g., inconsistent spacing, "rbr1" vs

"RBR-1").

• Reference list is a mix of books, articles, and datasheets, but citation formatting is

inconsistent.

**Score: 7/10** 

5. Recommendation

The paper is innovative and significant, but it requires moderate revisions to enhance

clarity, strengthen experimental validation, and improve presentation.

#### **Reviewer's Suggestions for Improvement**

## 1. Clarity & Language

- o Simplify lengthy technical descriptions for readability.
- o Maintain consistent terminology (e.g., "RBR-1 rover" instead of variations).

## 2. Figures & Diagrams

- o Improve figure captions with explanations of results.
- o Provide clear schematics for hardware integration and software flow.

## 3. Experimental Validation

- o Expand field trials across multiple agricultural scenarios.
- o Compare results with at least one existing rover prototype.
- o Include error bars/statistical measures for performance metrics.

#### 4. Discussion

- o Provide a cost-benefit analysis for small/medium farmers.
- o Discuss energy optimization (battery replacement/charging strategies).
- o Highlight limitations and future scope in more detail.

#### 5. References

- o Standardize citation style.
- o Add more recent (2023–2025) robotics and agriculture automation studies.

#### ☐ Final Evaluation:

• Originality: 8/10

• Significance: 8.5/10

• **Quality:** 7.5/10

• **Presentation:** 7/10

**Overall Recommendation: Minor to Moderate Revision**