ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-53868 Date: 18/09/25

Title: Enhancing Pdf Malware Classification Using Ctgan-Based Data Augmentation And Supervised Learning

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is	Originality		y		
Accept after minor revisionyes	Techn. Quality		у		
Do not accept (Reasons below)	Clarity		у		
	Significance		y		

Reviewer Name:Dr Shaweta Sachdeva

Date: 18/9/25

Reviewer's Comment for Publication. Accepted with Minor revision

(*To be published with the manuscript in the journal*)

The reviewer is requested to provide a brief comment (3-4 lines) highlighting the significance, strengths, or key insights of the manuscript. This comment will be Displayed in the journal publication alongside with the reviewers name.

Significance of the Manuscript

- Addresses a **critical cybersecurity challenge**: detecting malicious PDF files, which are a common attack vector in real-world digital systems.
- Tackles the class imbalance problem in malware datasets by using Conditional Tabular GAN (CTGAN), providing a novel and effective augmentation approach compared to traditional oversampling methods.
- Combines predictive performance with explainability by integrating SHAP, which
 enhances trust and interpretability—important for real-world deployment in sensitive
 environments (government, education, enterprises).
- Contributes a deployable framework with practical relevance, not just theoretical novelty.

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Strengths

1. Methodological Innovation:

- Unique integration of CTGAN-based data augmentation with supervised learning models.
- Systematic evaluation across six machine learning classifiers ensures robustness.

2. High Performance:

XGBoost on augmented data achieved near-perfect metrics (accuracy, F1, AUC,
 MCC), demonstrating effectiveness of the proposed pipeline.

3. Explainability and Trustworthiness:

- Use of SHAP for local and global interpretability sets this work apart from many black-box models.
- Feature insights (e.g., role of JavaScript presence, metadata volume) align well with domain knowledge in malware detection.

4. Thorough Validation:

- Includes statistical validation (KS tests, PCA analysis, correlation comparison) to show that CTGAN-generated samples maintain structural and statistical fidelity.
- Comparative performance evaluation across both original and augmented datasets adds credibility.

5. Practical Relevance:

- Modular, lightweight design compatible with existing Security Operations Center (SOC) tools.
- Emphasis on operational deployment feasibility, including low computational overhead.

Key Insights

- CTGAN augmentation significantly improves detection sensitivity for malicious PDFs, especially under class imbalance conditions.
- Ensemble models (Random Forest, XGBoost) outperform traditional classifiers, with XGBoost emerging as the best choice.
- Interpretable features (e.g., JavaScript triggers, metadata size, OpenAction) not only boost accuracy but also provide actionable intelligence for analysts.

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

- Demonstrates that synthetic data, if generated carefully, can meaningfully enhance
 cybersecurity detection models without introducing bias.
- Highlights the importance of balancing predictive accuracy with explainability, especially
 in high-stakes cybersecurity contexts.

Detailed Reviewer's Report

- 1. It clearly summarizes the work, but it could be more concise. Consider quantifying improvements (e.g., "XGBoost improved recall by X% compared to Random Forest").
- 2. Highlight the novelty more explicitly (e.g., why CTGAN + SHAP integration is unique compared to prior works).
- 3. Add a stronger motivation by including real-world case studies or recent statistics on PDF-based cyberattacks to emphasize urgency.
- 4. Clarify the research gap earlier: what exactly is missing in existing methods that this paper solves?
- 5. The workflow is well-explained, but the pseudocode could be simplified for clarity.
- 6. Provide justification for choosing only six supervised models—why not compare with deep architectures given prior work?
- 7. Expand on dataset preparation: Were benign vs malicious PDFs sourced from publicly available corpora? If yes, cite them.
- 8. Current performance metrics show near-perfect results (≈99.8%), which raises concerns of possible overfitting or dataset bias. Recommend validating with an external benchmark dataset.
- 9. Add confidence intervals or statistical tests (e.g., t-test, Wilcoxon) to prove significance of performance gains.
- 10. The confusion matrix is useful, but include class-specific precision/recall values in a tabular form for transparency.