Jana Publication & Research

Integrated care approaches for Diabetes management in pregnancy: Multidisciplinary strategies and outcomes

E VRC27

Document Details

Submission ID

trn:oid:::2945:314034583

Submission Date

Sep 23, 2025, 12:38 PM GMT+5:30

Download Date

Sep 23, 2025, 12:40 PM GMT+5:30

File Name

IJAR-53962.pdf

File Size

867.4 KB

23 Pages

6,791 Words

43,497 Characters

14% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text

Match Groups

43 Not Cited or Quoted 8%

Matches with neither in-text citation nor quotation marks

36 Missing Quotations 6%

Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

O Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

9% 📕 Publications

11% Land Submitted works (Student Papers)

Match Groups

43 Not Cited or Quoted 8%

Matches with neither in-text citation nor quotation marks

36 Missing Quotations 6%

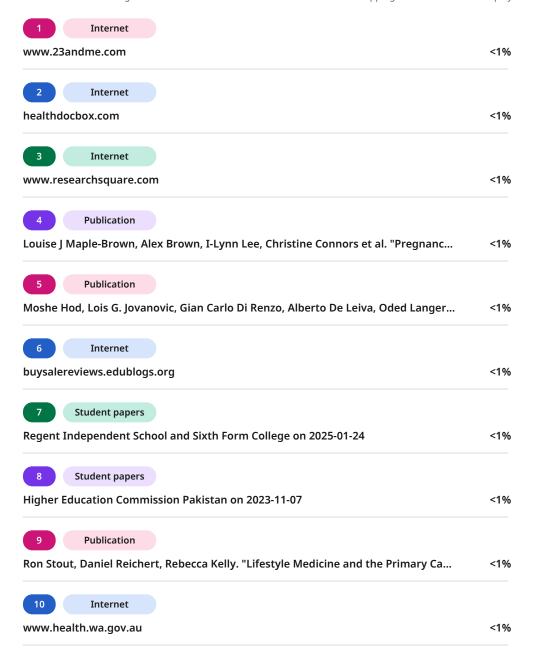
Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks


Top Sources

9% 📕 Publications

11% L Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

11 Publication	
Gia Merlo, Kathy Berra. "Lifestyle Nursing", Routledge, 2022	<1%
12 Internet	
ijmedph.org	<1%
13 Internet	
13 Internet www.worlddiabetesfoundation.org	<1%
14 Internet	.40
docksci.com	<1%
15 Student papers	
Galgotias University, Greater Noida on 2024-05-07	<1%
16 Internet	
cris.maastrichtuniversity.nl	<1%
17 Internet	
diabetesjournals.org	<1%
18 Publication RishiRaj Sinha. "Transfusion Medicine at the Crossroads: From Niche Practice to a	<1%
19 Student papers	
The University of Texas at Arlington on 2025-03-22	<1%
20 Internet	
pt.scribd.com	<1%
21 Internet	
www.researchgate.net	<1%
22 Student papers	
University of Queensland on 2022-05-12	<1%
imi stokom as id	~4 04
jmi.stekom.ac.id	<1%
24 Student papers	
Collin County Community College on 2020-11-16	<1%

25 Student papers	
University of Hertfordshire on 2025-06-16	<1%
26 Student papers	
University of Hertfordshire on 2025-08-07	<1%
27 Internet	
dochero.tips	<1%
<u> </u>	
28 Internet	
link.springer.com	<1%
29 Internet	
www.grafiati.com	<1%
www.granaci.com	-170
30 Student papers	
Australian Catholic University on 2025-05-31	<1%
31 Publication	444
Formánek, Tomáš. "Investigating the Mental-Physical Health Interface Using Nati	<1%
32 Student papers	
MAHSA UNIVERSITY (NEW LMS) on 2025-08-15	<1%
33 Publication	
Tapia, Miriam L "Diabetes Self-Management Education Program for Patients Wit	<1%
34 Student papers	
University of Brighton on 2016-06-06	<1%
35 Student papers	
University of West Attica on 2025-08-05	<1%
Trade-mark	
and an internet edm.bioscientifica.com	~10 /
eum.bioscientinica.com	<1%
37 Student papers	
Galen College on 2024-06-01	<1%
Publication Haynes, Lemuel P., Jr "Increasing the Prescribing Rate of Continuous Glucose M	<1%

39 Student papers	
Oxford Brookes University on 2024-09-25	<1%
Oxford Brookes Offiversity off 2024-05-23	~170
40 Student papers	
University College London on 2024-07-24	<1%
41 Student papers	
University of Alabama at Birmingham on 2025-07-26	<1%
42 Student papers	
University of Glasgow on 2015-03-26	<1%
43 Internet	
citeseerx.ist.psu.edu	<1%
·	
44 Internet	
ebin.pub	<1%
45 Internet	
escholarship.org	<1%
46 Internet	
farfar.pharmacy.bg.ac.rs	<1%
Tariai ipriai macy iogracii s	
47 Internet	
schariagegner.wordpress.com	<1%
48 Internet	
www.frontiersin.org	<1%
49 Internet	
www.medrxiv.org	<1%
www.medrxiv.org	~170
50 Internet	
www.peeref.com	<1%
51 Publication	
"Metabolic Syndrome", Springer Science and Business Media LLC, 2023	<1%
Chudant waxaya	
52 Student papers Llaward Modical School on 2023 10 23	-40/
Harvard Medical School on 2023-10-23	<1%

53 Publication	
Mclean, Anna-Gerardina. "Improving Management for Women With Hyperglycae	<1%
54 Student papers	
Queen's University of Belfast on 2024-09-06	<1%
55 Student papers	
University of Stellenbosch, South Africa on 2022-11-14	<1%
56 Publication	
Clive Petry. "Gestational Diabetes - Origins, Complications, and Treatment", CRC	<1%
57 Student papers	
Imperial College of Science, Technology and Medicine on 2020-06-12	<1%
58 Publication	
Mari Drabløs, Hilde Risstad, Patji Alnæs-Katjavivi, Elisabeth Qvigstad. "Pregnancy	<1%
59 Student papers	
University of Derby on 2018-12-04	<1%
60 Student papers	
University of Nottingham on 2016-05-25	<1%
61 Student papers	
Imperial College of Science, Technology and Medicine on 2023-05-25	<1%

- 1 Integrated care approaches for Diabetes management in pregnancy: Multidisciplinary
- 2 strategies and outcomes
- Background: Diabetes in pregnancy, including pre-existing Type 1 and Type 2 diabetes as well
 - 4 as gestational diabetes mellitus (GDM), is a major global health challenge. It is associated with
 - 5 increased risks of maternal complications, adverse neonatal outcomes, and long-term metabolic
 - 6 disorders in both mother and child. Fragmented healthcare delivery often limits effective
 - 7 management, underscoring the need for integrated and multidisciplinary approaches.
 - 8 **Objective:** This review aimed to synthesize current evidence on integrated care approaches for
 - 9 diabetes management during pregnancy, emphasizing key components, implementation models,
 - 10 outcomes, challenges, and future directions.
 - 11 Methods: A narrative review of contemporary literature was conducted, focusing on integrated
 - care models and multidisciplinary strategies applied to diabetes in pregnancy. Sources included
 - peer-reviewed articles, clinical guidelines, and systematic reviews published in recent years. Key
 - themes analyzed were components of integrated care, care delivery models, clinical outcomes,
 - cost-effectiveness, patient satisfaction, and barriers to implementation.

16 Results:

- 17 Integrated care models incorporating medical management, nutritional therapy, blood glucose
- monitoring, fetal surveillance, and mental health support demonstrated significant improvements
- 19 in maternal and neonatal outcomes. Evidence shows reductions in HbA1c levels,
- 20 hospitalizations, neonatal intensive care admissions, and pregnancy-related complications.
- 21 Multidisciplinary clinics and telehealth solutions improved care coordination, patient
- 22 engagement, and accessibility. Integrated approaches were also associated with higher patient
- 23 satisfaction and long-term cost-effectiveness. However, persistent challenges include limited
- 24 access in underserved populations, health literacy deficits, and fragmented provider
- 25 communication.
- 26 Conclusion: Integrated care approaches for diabetes in pregnancy provide measurable benefits in
- 27 clinical outcomes, cost-effectiveness, and patient satisfaction. Overcoming barriers related to
- access, health literacy, and inter-provider coordination is essential for scaling these models.
- 29 Future strategies should focus on personalized multidisciplinary care, technology-driven
- 30 solutions, preventive interventions, and supportive policy frameworks to build a sustainable,
- 31 patient-centered healthcare ecosystem for pregnant individuals with diabetes.

- Keywords: Diabetes in pregnancy; gestational diabetes; integrated care; multidisciplinary care;
- 34 maternal health; telemedicine.

Keywords: Diabetes in pregnancy; gestational diabetes; integrated care; multidisciplinary care;

36 maternal health; telemedicine.

37

38

53

58

1. Introduction:

- 39 Diabetes during pregnancy, encompassing pre-existing Type 1, Type 2, and gestational diabetes 40 mellitus (GDM), represents a substantial global health concern, impacting 5–20% of pregnancies 41 worldwide (Scavini & Secchi, 2019). The physiological adaptations of gestation inherently 42 exacerbate glucose intolerance, thereby imposing dynamic challenges to glycemic control. **5** 43 GDM, characterized by its typical onset in the second or third trimester, fundamentally stems from an inadequate pancreatic beta-cell compensatory response to the amplified insulin 44 resistance of pregnancy (Lende & Rijhsinghani, 2020). Identified risk factors for GDM include **1** 45 46 maternal obesity, advanced maternal age, specific ethnic backgrounds, and a family history of Type 2 diabetes. Unmanaged GDM escalates maternal risks such as preeclampsia and increased 47 rates of C-sections, alongside a 7-10-fold heightened likelihood of postpartum Type 2 diabetes 48 (Adam et al., 2023; McCance, 2015). Neonatal complications include macrosomia, 49 50 hypoglycemia, and respiratory distress. Critically, both mother and offspring face enduring risks 51 of Type 2 diabetes and metabolic syndrome, underscoring an intergenerational transmission of metabolic dysfunction (Adam et al., 2023; McCance, 2015). 52
 - major congenital anomalies, and perinatal mortality, directly correlated with suboptimal firsttrimester glycemic control (Alexopoulos et al., 2019; Mackin et al., 2018; Malaza et al., 2022). Missed preconception care opportunities are common (Scavini & Secchi, 2019; Alexopoulos et al., 2019). Persistent disparities in screening and management lead to suboptimal outcomes

Pregestational diabetes carries more severe outcomes, including higher risks of miscarriage,

Fragmented healthcare models are insufficient for this complex interplay of factors. Integrated care, offering coordinated, person-centered approaches across primary, specialized, social, and community support systems (Goodwin et al., 2012), is urgently needed to provide clinically effective, accessible, efficient, equitable, and patient-centered care (Bashir et al., 2024; Glasgow, 2003). Systematic approaches, including quality improvement, are essential for better diabetes

(Lende & Rijhsinghani, 2020).

- 64 care (O'Connor et al., 2011). This review explores integrated care principles, components,
- 65 models, and outcomes, examining challenges and proposing future directions for this vulnerable
- 66 population.
- 5 67 2. Types of Diabetes in pregnancy:
 - 68 Pathophysiology, risks, and management
- Diabetes during pregnancy, including gestational diabetes mellitus (GDM) and pre-existing Type
 - 70 1 and Type 2 diabetes, each requires specific management approaches.
- ¹⁹ 20 71 2.1. Gestational Diabetes Mellitus (GDM)
 - 72 GDM is a form of glucose intolerance first identified during pregnancy (Alexopoulos et al.,
- ¹⁹ 73 2019), affecting about 16.9% of live births (McCance, 2015). It typically resolves after childbirth
- but significantly raises a woman's lifetime risk of developing Type 2 diabetes (McCance, 2011).
- **Pathophysiology and diagnosis:** GDM usually develops in the second or third trimester (around
- •• 5 76 24-28 weeks). due to pregnancy hormones inducing insulin resistance and inadequate beta-cell
- 17 77 compensation (Lende & Rijhsinghani, 2020). Screening often involves a 75-g oral glucose
- 1) 1) 78 tolerance test (OGTT) or a two-step approach (American Diabetes Association Professional
 - 79 Practice Committee, 2022).
 - 80 Maternal and Neonatal risks: Maternal risks include preeclampsia and increased cesarean
- 36 81 delivery, with a 7-10-fold higher likelihood of developing Type 2 diabetes postpartum. Neonatal
 - 82 complications include macrosomia, hypoglycemia, and respiratory distress syndrome. Long-
- ¹⁹ 25 83 term, these children have an increased risk of childhood obesity and Type 2 diabetes (Adam et
 - 84 al., 2023; McCance, 2015).
- Management: Initial management for GDM involves medical nutrition therapy (MNT) and
- 6 86 regular physical activity. If these measures don't achieve glycemic targets (e.g., fasting blood
 - 87 sugar below 95 mg/dL, 1-hour post-meal below 140 mg/dL, 2-hour post-meal below 120
 - 88 mg/dL), insulin is the preferred medication. Metformin might also be considered in certain
- situations (American Diabetes Association Professional Practice Committee, 2022).
- 34 90 2.2. Pregestational Diabetes: Type 1 and Type 2

92

93

95

96

97

98

99

100

47 94

2.2.1. Type 1 Diabetes in pregnancy (T1DM): Women with T1DM face complex glycemic control challenges due to fluctuating insulin sensitivity and increased insulin requirements (McCance, 2015), heightened risk for severe hypoglycemia and DKA (McCance, 2011). Risks: High rates of major congenital malformations, spontaneous abortion, stillbirth, preterm delivery, and macrosomia (Mackin et al., 2018; McCance, 2015). Maternal risks include accelerated retinopathy/nephropathy, severe hypoglycemia, DKA, and increased preeclampsia risk (McCance, 2011). Management: Intensive insulin therapy (MDI or insulin pump), frequent SMBG or CGM. Rigorous preconception counseling (HbA1c < 6.5%) is paramount for reducing congenital anomaly risk (American Diabetes Association Professional Practice Committee, 2022).

2.2.2. Type 2 Diabetes in pregnancy (T2DM): Increasing T2DM prevalence (Alexopoulos et al., 58101 102 2019; McCance, 2015) leads to outcomes often as poor as or worse than T1DM, with increased 103 risks for preeclampsia, cesarean delivery, and macrosomia (Malaza et al., 2022). Risks: Similar 104 to GDM/T1DM, including congenital anomalies (lower than T1DM), macrosomia, preterm birth, 105 and neonatal hypoglycemia. Maternal risks include accelerated progression of diabetic 106 complications and heightened gestational hypertension/preeclampsia risk (McCance, 2015). 107 Management: Often necessitates a shift from oral agents to insulin. Preconception planning is 108 vital: glycemic optimization, cessation of teratogenic medications, and screening for existing 33109 complications (American Diabetes Association Professional Practice Committee, 2022).

Table 1: Comparison of Gestational Diabetes Mellitus (GDM) and Pregestational Diabetes (Type 4 110

—	
111	1 & Type 2) in Pregnancy

Type

reature	Gestational	Type I Diabetes III	Type 2 Diabetes in Tregnancy
	Diabetes Mellitus	Pregnancy	
	(GDM)		
Definition	Glucose	Autoimmune beta-cell	Progressive loss of insulin
	intolerance with	destruction, absolute insulin	secretion on background of insulin
	onset or first	deficiency, diagnosed pre-	resistance, diagnosed pre-
	recognition during	pregnancy [4, 43-44].	pregnancy [4, 43-44].
	pregnancy [4, 28,		
	43].		
Onset	Typically 2nd or	Usually	Usually adulthood, often
	3rd trimester [28].	childhood/adolescence, but any	associated with obesity/sedentary
		age.	lifestyle [34].
Pathophysiology	Pregnancy-induced	Autoimmune beta-cell	Insulin resistance and progressive
	insulin resistance,	destruction.	beta-cell dysfunction.
	inadequate beta-		

Diabetes

Feature

cell compensation

Gestational

in Type 2 Diabetes in Pregnancy

113

114

116

117

118

121

122

123

124

125

126

45115

	[28].		
Maternal Risks	Preeclampsia,	Severe hypoglycemia, DKA,	Preeclampsia, cesarean delivery,
(Short-term)	cesarean delivery,	accelerated	accelerated complications [31, 34].
	future Type 2	retinopathy/nephropathy,	
	diabetes [1, 4,29,	preeclampsia [4].	
	31, 34].		
Neonatal Risks	Macrosomia,	Congenital anomalies (high	Congenital anomalies (moderate
(Short-term)	neonatal	risk), macrosomia, preterm	risk), macrosomia, preterm birth,
	hypoglycemia,	birth, perinatal mortality [4, 29,	neonatal hypoglycemia [31, 34].
	respiratory distress	31].	
	syndrome [1, 28,		
	31, 34].		
Long-term	High risk (7-10x)	Worsening microvascular	Worsening
Implications	of developing Type	complications, glycemic	microvascular/macrovascular
(Mother)	2 diabetes [1, 34].	control challenges.	complications.
Long-term	Increased risk of	Increased risk of obesity,	Increased risk of obesity,
Implications	childhood obesity,	metabolic syndrome [44].	metabolic syndrome [44].
(Offspring)	Type 2 diabetes [1,		
	34].		
Primary	MNT, exercise;	Intensive insulin therapy	Insulin often required; lifestyle
Management	insulin if targets	(MDI/pump), frequent	changes; metformin sometimes
	not met [6, 28, 43].	monitoring [4, 6].	continued [4, 6, 43].
Preconception	Not applicable.	Crucial for optimizing	Crucial for optimizing glycemic
Care Importance		glycemic control and reducing	control, medication review, and
		congenital anomaly risk [4, 6,	complication screening [4, 6, 43].
		44].	

All diabetes types in pregnancy require a multidisciplinary approach (obstetricians, endocrinologists, diabetes educators, dietitians) (Alexopoulos et al., 2019; McCance, 2015). Preconception planning for pregestational diabetes is crucial for glycemic optimization (HbA1c < 6.5%) and complication management (American Diabetes Association Professional Practice Committee, 2022; McCance, 2015). Suboptimal uptake of preconception care remains a significant gap (Scavini & Secchi, 2019).

3. Components of integrated care in Diabetes management during pregnancy

Integrated care for diabetes in pregnancy optimizes maternal and neonatal outcomes through continuity, coordination, and patient-centeredness, with several key components.

3.1. Medical management: Achieving glycemic control

Medical management is foundational for preventing complications, focusing on precise blood glucose control, often with intensive insulin therapy due to its efficacy and fetal safety (American Diabetes Association Professional Practice Committee, 2022). Insulin doses are dynamically adjusted for changing physiological needs. Management also includes monitoring and managing comorbidities like gestational hypertension, preeclampsia, retinopathy, and

" 35127	nephropathy. Regula	r lab assessments	(HbA1c,	renal/thyroid	function)	are crucial	(American
----------------	---------------------	-------------------	---------	---------------	-----------	-------------	-----------

Diabetes Association Professional Practice Committee, 2022).

3.2. Nutritional therapy: The foundation of glycemic control

- Nutritional therapy (MNT) is a first-line component, involving individualized meal planning
- 19131 guided by a registered dietitian nutritionist (RD/RDN) (American Diabetes Association
 - Professional Practice Committee, 2022). Goals include adequate caloric/nutrient intake, healthy
 - fetal growth, strict glycemic targets, and appropriate gestational weight gain. Recommendations
 - emphasize complex carbohydrates, lean proteins, and healthy fats, limiting simple sugars.
 - 135 Carbohydrate intake is strategically distributed to minimize postprandial glucose excursions and
 - prevent ketosis (American Diabetes Association Professional Practice Committee, 2022). RDs
 - provide culturally sensitive education for adherence.

3.3. Blood glucose monitoring: The compass for management

- Regular and accurate blood glucose monitoring is indispensable for optimal glycemic control.
- 99 46140 Both fasting and postprandial self-monitoring (SMBG) are routinely recommended (American
- ¹⁹ 9141 Diabetes Association Professional Practice Committee, 2022). Continuous glucose monitoring
- •• 40142 (CGM) systems are increasingly valuable, especially for Type 1 diabetes, providing real-time
 - data and identifying glycemic excursions, reducing macrosomia and neonatal hypoglycemia
- (American Diabetes Association Professional Practice Committee, 2022).

145 3.4. Fetal monitoring: Safeguarding fetal well-being

- 146 Fetal monitoring is critical for identifying and managing complications. Intensive surveillance is
- warranted due to increased risks of stillbirth, IUGR, and macrosomia. This includes regular
- 148 ultrasounds (from 28 weeks) for fetal growth and amniotic fluid volume. Formal antepartum fetal
- monitoring (NSTs, BPPs) often begins around 32 weeks, guiding optimal timing and mode of
- delivery (American Diabetes Association Professional Practice Committee, 2022).

3.5. Mental health support: Addressing the psychosocial burden

- 52152 Dedicated mental health support is crucial for managing the significant psychosocial burden of
 - diabetes in pregnancy. The demanding nature of daily diabetes management exacerbates anxiety,
 - stress, and diabetes distress (Guo et al., 2021). Integrated care models effectively incorporating

- 155 psychological screening and targeted support, especially those with dedicated mental health 43156 professionals or online-offline strategies, reduce anxiety/depression, improve self-management,
 - 157 and enhance quality of life (Guo et al., 2021). Psychosocial assessment is essential throughout
- 11158 pregnancy and postpartum (American Diabetes Association Professional Practice Committee,
 - 159 2022). This holistic support, via counseling, peer groups, or coping strategies, empowers
 - 160 patients, significantly improves adherence to complex treatment plans, and fosters emotional
- 49161 well-being, leading to better glycemic outcomes and a more positive pregnancy experience (De
 - 162 Hert et al., 2011, De Hert et al., 2011).
 - 163 Integrated care for diabetes in pregnancy is a multifaceted approach combining
 - 164 medical/nutritional management, blood glucose/fetal monitoring, and mental health support. This
- collaborative strategy is crucial for mitigating risks and optimizing outcomes for mother and ²⁶165
 - 166 child.
 - 4. Models of integrated care: Multidisciplinary clinics, digital telehealth solutions, and 167
 - 168 national case studies
 - 169 Integrated care models enhance outcomes for mothers and infants by streamlining services and
 - 170 improving coordination.

171 4.1. Multidisciplinary Clinics: The Hub of Collaborative Care

- Multidisciplinary clinics serve as a hub for integrated care, bringing together obstetricians, 172
- 173 endocrinologists, diabetes educators, dietitians, and mental health professionals to create
- 174 individualized care plans for pregnant individuals with diabetes. This integrated approach has
- 175 also been successful in pediatric diabetes clinics, where regular assessments of emotional well-
- 176 being resulted in improved quality of life and reduced emotional stress. Such structured, holistic
- collaboration clearly enhances patient outcomes, satisfaction, and adherence to treatment (Brodar 177
- etal., 2022, Theofilou et al., 2023, Lannon et al., 2024). The principles are highly relevant to 41178
- 179 pregnant individuals (Versloot et al., 2023). These clinics also enhance inter-provider
- 180 communication and consistent patient messaging through regular team meetings (Rushforth et
- 181 al., 2016).

4.2. Digital and telehealth-based care: Extending reach and continuity

201

Digital health and telehealth solutions revolutionize integrated care, particularly for chronic disease management in underserved populations. Telehealth provides remote clinical healthcare, bridging distances and improving access. Miller (2019) found telemonitoring in home healthcare reduced emergency visits and readmissions by enabling early intervention. Nasir et al. (2018) identified telehealth as a facilitator of timely follow-up, patient education, and efficient care coordination. For diabetes in pregnancy, digital platforms enable remote glucose monitoring, virtual consultations, and continuous support, benefiting women facing logistical challenges, enhancing self-management and adherence (Miller, 2019; Nasir et al., 2018).

4.3. Case studies and national programs: Demonstrating scalability and impact

Integrated care models have shown high scalability and effectiveness across various healthcare settings. For instance, the Canadian Mental Health–Integrated Diabetes Clinic expanded successfully at the national level, significantly improving patient engagement and enhancing the quality of life among young individuals with diabetes. This illustrates how such comprehensive, integrated approaches can be effectively implemented on a larger scale to achieve meaningful health improvements (Bentz et al., 2023, de Wit et al., 2022). In the U.S., the VA's integrated care model (Serper et al., 2023), although studied for cirrhosis, highlights principles like interdisciplinary collaboration and telehealth, directly applicable to diabetes in pregnancy. Telehealth, particularly during the COVID-19 pandemic, demonstrated its capacity to make integrated care more accessible and resilient. A systematic review also identified integrated maternal care strategies in low- and middle-income countries (Van der Werf et al., 2022).

Successful implementation relies on robust technological infrastructure, continuous provider training, consistent policy support, and sustainable funding (Serper et al., 2023). Integrated care is considered the optimal model, necessitating robust specialist services (Greenwood et al., 2005). The strong evidence from studies (Berg et al., 2025; Haque et al., 2024; Miller, 2019; Nasir et al., 2018; Serper et al., 2023) confirms that these patient-centered approaches lead to superior clinical outcomes, higher patient satisfaction, cost-effectiveness, and sustainable healthcare for pregnant individuals with diabetes.

5. Outcomes of integrated care: Demonstrating value across multiple dimensions

- 211 Integrated care models for diabetes in pregnancy aim to improve maternal/neonatal health,
- 212 demonstrate cost-effectiveness, and enhance patient satisfaction through coordinated care.

5.1. Maternal and neonatal outcomes: Improved health and reduced complications

- 214 Integrated care approaches show substantial benefits for mothers and newborns. A systematic
- 215 review found integrated care associated with a 0.5 percentage point HbA1c reduction in diabetes
- patients (Dorling et al., 2015), clinically significant for reducing complications. Integrated care
- 217 programs also showed a 19% reduction in hospital admission rates across various chronic
- 218 conditions (Dorling et al., 2015).
- 219 For neonatal outcomes, studies in integrated health systems consistently show decreased NICU
- admission rates and patient-days, without increased readmissions or mortality (Braun et al.,
- 221 2020). This suggests efficient resource utilization while improving indicators like macrosomia
- and neonatal hypoglycemia. In LMICs, integrated approaches improved care follow-up,
- 223 coordination, and interprofessional collaboration, crucial for reducing maternal/neonatal
- morbidity/mortality (van der Werf et al., 2022).

5.2. Cost-Effectiveness: Economic benefits for sustainable healthcare

- 226 Integrated care models can be highly cost-effective, particularly over longer follow-up periods
- 227 (Rocks et al., 2020). Initial investments can lead to substantial long-term savings through
- reduced complications, fewer hospitalizations, and decreased emergency department visits.
- For maternal/newborn health in LMICs, strategies improving service utilization have been cost-
- 230 effective, involving community-based interventions and quality improvement (Mangham-
- Jefferies et al., 2014). An initiative in Ukraine led to cost savings per birth (Mangham-Jefferies et
- al., 2014). While methodological variations exist (Mangham-Jefferies et al., 2014; Martin et al.,
- 233 2023), evidence points to integrated care as a financially prudent strategy for managing diabetes
- in pregnancy, optimizing resource utilization.

5.3. Patient satisfaction: Fostering engagement and empowerment

- 236 Patient satisfaction is a vital outcome reflecting quality and patient-centered healthcare.
- 237 Integrated care models prioritize patient involvement, clear communication, shared decision-
- making, and individualized support, all recognized drivers of enhanced patient satisfaction and

240

241

242

9 243

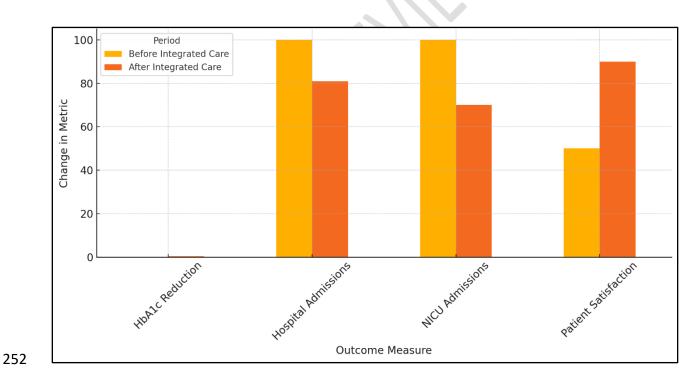
9 244

245

246

247

248


249

250

251

improved experience. This collaborative environment fosters trust and adherence, aligning with patient-centered care principles in diabetes that focus on individuality, engagement, and empowerment (Chen et al., 2024).

A comprehensive program for Type 2 diabetes patients in Mexico demonstrated significant reductions in anxiety, depression, and distress, leading to improved quality of life and high patient satisfaction (García-Ulloa et al., 2024). The inherent principles of integrated care—multidisciplinary collaboration, personalized plans, access to information, and psychosocial support—contribute synergistically to a positive patient experience (Dorling et al., 2015), enhancing adherence and long-term health outcomes. An integrative review of birth centers also found high patient satisfaction with comprehensive, personalized care (Alliman & Phillippi, 2016). Overall, integrated care for diabetes in pregnancy yields multifaceted positive outcomes, including improved maternal/neonatal health, cost-effectiveness, and substantially enhanced patient satisfaction, strongly supporting its continued implementation.

Figure I. Outcomes before and after implementation of integrated care:Comparison of clinical and patient-centered outcomes before and after integrated care implementation. Metrics include HbA1c reduction, hospital admissions, neonatal intensive care unit (NICU) admissions,

253

254

and patient satisfaction. Integrated care is associated with reduced hospital/NICU admissions,

improved glycemic control, and higher patient satisfaction. References: Dorling et al., 2015;

Braun et al., 2020; García-Ulloa et al., 2024

259

258

⁴⁸257

260

57261

266

- 6. Challenges and barriers in integrated care for Diabetes management in pregnancy:
- 262 navigating complexities
- Despite its promise, integrated care for diabetes in pregnancy faces persistent challenges: access
- 264 to care, health literacy, and coordination between providers. These impact patient engagement,
- 265 clinical outcomes, and system efficiency.
 - 6.1. Access to care: Bridging the divide
- Access to consistent, quality healthcare is a major barrier, especially for pregnant individuals in
- underserved communities. Logistical and financial obstacles (lack of insurance, transportation,
- unaffordability of services/supplies) are prominent (Chin et al., 2001). Delays in prenatal care
- 270 initiation are detrimental for diabetes, where early intervention is crucial. Addressing access
- 271 requires expanded community-based services, digital health platforms, and policy changes to
- improve insurance and reduce costs (Chin et al., 2001).
 - 6.2. Health literacy: Empowering informed self-management
- Health literacy is crucial for effective diabetes self-management, enabling informed health
 - 275 decisions. Inadequate health literacy correlates with suboptimal glycemic control, increased
- complications, and poor self-care understanding (Schillinger et al., 2002; Al Sayah et al., 2012).
 - This challenge is particularly acute during pregnancy, where complex self-care routines are
 - 278 essential. Despite general education, many struggle due to information overload or
 - 279 language/cultural barriers, affecting vulnerable populations disproportionately (Ahola & Groop,
 - 280 2013). Integrated care must provide culturally tailored, interactive, and consistent education,

284

285

286

287

288

289

290

291

292

293

294

295

⁶⁰296

59297

281 moving beyond passive materials to ensure comprehension and practical application.

Empowering individuals through improved health literacy is a critical solution to self-

283 management barriers (Mahmoodi & Khanjani, 2020), leading to better outcomes.

6.3. Coordination between providers: The interdisciplinary imperative

Effective coordination among diverse healthcare professionals is a cornerstone of integrated care for diabetes in pregnancy, yet it's often hindered by unclear roles and fragmented communication. Primary care clinicians, crucial first contacts, experience significant burden from time constraints, patient loads, and ambiguous professional boundaries (Rushforth et al., 2016). They find diabetes uniquely challenging due to its complexity and perceived lack of systemic support (Larme & Pugh, 1998).

Poor communication leads to inconsistent patient messaging, eroding trust and undermining adherence (Nam et al., 2011). Inefficient resource use and delayed interventions result, exacerbated by non-interoperable electronic health records that limit real-time data access. To overcome this, integrated care teams require clearly defined roles, robust real-time communication platforms, regular interdisciplinary meetings, and dedicated care coordinators (Rushforth et al., 2016; Nam et al., 2011). Communication is a critical influencing factor for integrated care outcomes (Baxter et al., 2018). Without strong coordination, integrated care remains an unfulfilled aspiration.

299

300

Table 2: Common Challenges in Implementing Integrated Care and Proposed Solutions

Challenge	Impact on Care	Proposed Solutions
Access to Care	Missed appointments, delayed	Expand community-based services (mobile clinics,
	diagnosis/treatment, suboptimal	satellite offices), strategic telehealth/digital platforms,
	outcomes for vulnerable	improve insurance coverage, address transportation
	populations, increased emergency	barriers (e.g., ride-share programs, public transit
	visits.	support), culturally competent outreach [1, 15].
Health Literacy	Poor self-management, medication	Culturally tailored education programs, use of plain
	non-adherence, increased	language and visual aids, "teach-back" method for
	complications, patient	comprehension, interactive digital tools, dedicated
	disengagement, limited	diabetes educators for personalized coaching, involving
	understanding of risks.	family/support networks [1-3, 22, 30].
Coordination	Fragmented care, inconsistent	Clear role delineation and protocols, fully interoperable
Between	patient messaging, duplicated	Electronic Health Records (EHRs), secure and real-time
Providers	efforts, delayed critical	communication platforms (e.g., shared messaging),
	interventions, provider burnout,	regular interdisciplinary team meetings/case conferences,

incomplete patient records.	dedicated care coordinators/navigators, joint training
	initiatives [1, 10, 22,27,37, 42].
Limited resources for integrated	Implement value-based care models (linking payment to
models, lack of incentives,	outcomes), bundled payments for episodes of care,
sustainability issues,	adequate reimbursement for non-physician services (e.g.,
undervaluation of non-physician	dietitians, diabetes educators, social workers), grant
services.	funding for pilot programs and research on cost-
	effectiveness, policy changes to support team-based care
	[7,39].
Incomplete patient information,	Standardized data collection protocols, robust and
difficulty tracking longitudinal	interoperable health information exchange systems,
outcomes, hindered research and	secure data sharing agreements with clear privacy
quality improvement initiatives,	guidelines, investment in robust IT infrastructure and
compromised patient safety.	cybersecurity, common data models across institutions
	[10].
Lack of skills in interdisciplinary	Mandatory interprofessional education, specialized
collaboration, limited	training in diabetes in pregnancy for all team members,
understanding of specific diabetes-	continuous professional development on integrated care
in-pregnancy challenges, burnout.	principles, fostering a culture of mutual respect and
_	shared learning [7, 10, 39].
	Limited resources for integrated models, lack of incentives, sustainability issues, undervaluation of non-physician services. Incomplete patient information, difficulty tracking longitudinal outcomes, hindered research and quality improvement initiatives, compromised patient safety. Lack of skills in interdisciplinary collaboration, limited understanding of specific diabetes-

Addressing access, health literacy, and care coordination is essential for maximizing integrated care's effectiveness. Success hinges on equitable service, tailored education, and seamless provider communication, requiring policy reform, funding, and a cultural shift towards patient-centered care.

7. Future directions and recommendations: Forging a resilient and patient-centered healthcare ecosystem

Addressing the escalating prevalence and complexity of diabetes in pregnancy requires a proactive, forward-thinking approach. Integrated care models are crucial for improving maternal and neonatal outcomes, reducing healthcare burdens, and enhancing patient experience.

Firstly, future care must center on truly personalized, comprehensive multidisciplinary models. Beyond obstetricians and endocrinologists, this expanded team must routinely include mental health professionals and social workers. As the American Diabetes Association (2009) highlighted, effective integrated care addresses not only glycemic control and medical comorbidities but also profound psychosocial stressors. A holistic approach integrating mental health screening, counseling, and social services for determinants of health (e.g., food insecurity) is crucial for well-being and adherence. Pharmacogenomics can further refine personalized care, though nascent in pregnancy (Schaefer-Graf et al., 2018).

Secondly, technology offers transformative enhancements. With diabetes prevalence projected to increase significantly (Rowley et al., 2017), scalable digital tools are essential. Advanced remote glucose monitoring, intuitive mobile apps, and telehealth platforms can manage conditions efficiently, especially in underserved areas. These technologies must prioritize user-friendliness, cultural sensitivity, data security, and seamless EHR integration. Leveraging AI and machine learning could revolutionize risk prediction and generate personalized treatment algorithms, shifting towards proactive management (Schaefer-Graf et al., 2018; Coman et al., 2024).

Thirdly, robust preventive strategies and public health interventions must be aggressively prioritized. Aggressive population-level prevention, including universal preconception and early pregnancy diabetes screening, lifestyle modification programs, and community-based education, can substantially reduce disease incidence (Rowley et al., 2017). This includes promoting healthy behaviors pre-conception and addressing social determinants of health. Prevention of GDM development through lifestyle has had varying success, emphasizing earlier intervention (Schaefer-Graf et al., 2018; Malaza et al., 2022).

Lastly, consistent policy support and pragmatic reimbursement frameworks are essential for sustaining and expanding integrated care. Current fee-for-service models inadvertently incentivize fragmented care. Funding mechanisms must incentivize team-based care, adequately reimburse non-physician professionals, and cover digital health services. Policy reforms are needed for seamless data sharing and interoperability. Advocating for value-based care, where providers are reimbursed for outcomes, can align incentives. A "single level health care" approach is advocated for equitable access (Bagchee, 2005).

These four pillars—integrated teams, technology, prevention, and policy support—will forge a resilient, responsive, and equitable healthcare ecosystem, optimizing outcomes for mothers and children.

8. Conclusion

Diabetes during pregnancy, encompassing pre-existing Type 1 and Type 2 diabetes and gestational diabetes mellitus (GDM), is a significant and escalating global public health challenge. Its rising prevalence directly links to adverse maternal/neonatal outcomes and profound long-term health implications for both mother and offspring. The complex management

of glycemic control and potential complications underscores the urgent need for comprehensive, coordinated, and patient-centered care models that transcend traditional fragmented approaches.

This review explored the critical role of integrated care approaches in optimizing diabetes management throughout pregnancy. We delineated the distinct characteristics and risks of GDM, Type 1, and Type 2 diabetes in pregnancy, emphasizing meticulous glycemic control and early intervention. The core, synergistic components of effective integrated care—medical management, nutritional therapy, blood glucose monitoring, fetal surveillance, and mental health support—contribute to demonstrably improved clinical outcomes.

Furthermore, we critically analyzed various integrated care models, from multidisciplinary clinics fostering direct collaboration to innovative digital and telehealth solutions enhancing accessibility. Case studies from national programs provide compelling empirical evidence of scalability and sustained effectiveness in diverse settings, demonstrating their potential to improve clinical outcomes, enhance patient satisfaction, and achieve greater cost-effectiveness.

Despite these benefits, widespread and equitable implementation faces significant barriers, including access to care (socioeconomic/geographical disparities), varying health literacy levels, and issues in inter-provider coordination. Addressing these multifaceted challenges is fundamental, requiring systemic reforms, targeted educational interventions, and robust technological infrastructure.

Looking towards the future, recommendations emphasize personalized, holistic care models integrating psychosocial support. Further leveraging cutting-edge technological innovations and prioritizing aggressive, widespread preventive strategies are crucial. Establishing robust, supportive policy and sustainable reimbursement frameworks is also vital. By fostering seamless collaboration, deploying technological advancements, championing preventive health, and implementing supportive policies, the healthcare ecosystem can be fundamentally transformed. This will enable it to effectively address the growing burden of diabetes in pregnancy, delivering high-quality, patient-centered, compassionate, and efficient care. Ultimately, a future-focused, integrated approach holds the profound potential to ensure healthier outcomes, mitigate long-term risks, and foster a brighter future for mothers and their children globally, breaking the vicious intergenerational cycle of metabolic disease and improving public health on a grand scale.

_	_	
	8378	Conflict of Interest Statemen

- The authors declare that there is no conflict of interest regarding the publication of this review
- 380 article.
- **Funding Statement**
- 3382 This review article did not receive any specific grant from funding agencies in the public,
 - commercial, or not-for-profit sectors.
 - 384 **Acknowledgment**
- 18385 The authors would like to acknowledge the valuable contributions of researchers and clinicians
 - whose work has been cited in this review. We also thank PHCC for providing access to resources
- 61387 and literature essential to the completion of this manuscript.

388 References

- 1. Adam, Sumaiya, Harold David McIntyre, Kit Ying Tsoi, Anil Kapur, Ronald C. Ma,
- Stephanie Dias, Pius Okong et al. "Pregnancy as an opportunity to prevent type 2
- diabetes mellitus: FIGO Best Practice Advice." International Journal of Gynecology &
- 392 *Obstetrics* 160 (2023): 56-67.
- 2. Ahola, Aila J., and P-H. Groop. "Barriers to self-management of diabetes." *Diabetic*
- 394 *medicine* 30, no. 4 (2013): 413-420.
- 395 3. Al Sayah, Fatima, Sumit R. Majumdar, Beverly Williams, Sandy Robertson, and Jeffrey
- A. Johnson. "Health literacy and health outcomes in diabetes: a systematic
- review." *Journal of general internal medicine* 28 (2013): 444-452.
- 4. Alexopoulos, Anastasia-Stefania, Rachel Blair, and Anne L. Peters. "Management of
- preexisting diabetes in pregnancy: a review." *Jama* 321, no. 18 (2019): 1811-1819.
- 5. Alliman, Jill, and Julia C. Phillippi. "Maternal outcomes in birth centers: an integrative
- 401 review of the literature." *Journal of midwifery & women's health* 61, no. 1 (2016): 21-51.

- 402 6. American Diabetes Association Professional Practice Committee, and American Diabetes
- Association Professional Practice Committee:. "15. Management of diabetes in
- pregnancy: Standards of Medical Care in Diabetes—2022." Diabetes Care 45, no.
- 405 Supplement_1 (2022): S232-S243.
- 7. American Diabetes Association. "Standards of medical care in diabetes—2009." *Diabetes*
- 407 *care* 32, no. Suppl 1 (2009): S13.
- 8. Bagchee, Shyamal. "Private health sector in India: single level health care is the only
- 409 solution." *BMJ: British Medical Journal* 331, no. 7528 (2005): 1339.
- 9. Bashir, Mohammed, Yassin Fagier, Badreldeen Ahmed, and Justin C. Konje. "An
- overview of diabetes mellitus in pregnant women with obesity." Best Practice &
- 412 Research Clinical Obstetrics & Gynaecology 93 (2024): 102469.
- 413 10. Baxter, S. K., Maxine Johnson, Duncan Chambers, Anthea Sutton, Elizabeth Goyder, and
- Andrew Booth. "Understanding new models of integrated care in developed countries: a
- 415 systematic review." *Health Services and Delivery Research* 6, no. 29 (2018).
- 416 11. Bentz, Jamie Anne, Rebecca Hancock-Howard, Zal Press, Francesca Brundisini, and
- 417 Sarah Berglas. "CADTH Health Technology Review Living With Type 2 Diabetes." Can
- 418 J Health Technol 3, no. 3 (2023).
- 419 12. Braun, David, Eric Braun, Vicki Chiu, Anthony E. Burgos, Mandhir Gupta, Marianna
- Volodarskiy, and Darios Getahun. "Trends in neonatal intensive care unit utilization in a
- large integrated health care system." *JAMA network open* 3, no. 6 (2020): e205239.
- 422 13. Brodar, Kaitlyn E., Rafael O. Leite, Daniella Marchetti, Manuela Jaramillo, Eileen Davis,
- Janine Sanchez, Alan M. Delamater, Patrice G. Saab, and Annette M. La Greca.
- 424 "Psychological screening and consultation in a pediatric diabetes clinic: Medical

425	providers' perspectives." Clinical Practice in Pediatric Psychology 10, no. 2 (2022): 164-
426	179.
427	14. Chen, Tsung-Tai, Wei-Chih Su, and Mei-I. Liu. "Patient-centered care in diabetes care-
428	concepts, relationships and practice." World Journal of Diabetes 15, no. 7 (2024): 1417.
429	15. Chin, Marshall H., Sandy Cook, Lei Jin, Melinda L. Drum, James F. Harrison, Julie
430	Koppert, Fay Thiel et al. "Barriers to providing diabetes care in community health
431	centers." Diabetes care 24, no. 2 (2001): 268-274.
432	16. Coman, Laura-Ioana, Marilena Ianculescu, Elena-Anca Paraschiv, Adriana Alexandru,
433	and Ioana-Anca Bădărău. "Smart solutions for diet-related disease management:
434	Connected care, remote health monitoring systems, and integrated insights for advanced
435	evaluation." Applied Sciences 14, no. 6 (2024): 2351.
436	17. De Hert, Marc, Christoph U. Correll, Julio Bobes, Marcelo Cetkovich-Bakmas, D. A. N.
437	Cohen, Itsuo Asai, Johan Detraux et al. "Physical illness in patients with severe mental
438	disorders. I. Prevalence, impact of medications and disparities in health care." World
439	psychiatry 10, no. 1 (2011): 52.
440	18. De Hert, Marc, D. A. N. Cohen, Julio Bobes, Marcelo Cetkovich-Bakmas, Stefan Leucht,
441	David M. Ndetei, John W. Newcomer et al. "Physical illness in patients with severe
442	mental disorders. II. Barriers to care, monitoring and treatment guidelines, plus
443	recommendations at the system and individual level." World psychiatry 10, no. 2 (2011):
444	138.
445	19. de Wit, Maartje, Katarzyna A. Gajewska, Eveline R. Goethals, Vincent McDarby, Xiaolei
446	Zhao, Given Hapunda, Alan M. Delamater, and Linda A. DiMeglio. "ISPAD clinical

- practice consensus guidelines 2022: psychological care of children, adolescents and young adults with diabetes." Pediatric Diabetes 23, no. 8 (2022): 1373.
- 20. Dorling, Grail, Tim Fountaine, Sorcha McKenna, and Brindan Suresh. "The evidence for
 integrated care." *McKinsey and Company* (2015).
- 21. García-Ulloa, Ana Cristina, José Luis Cárdenas-Fragoso, Diana Hernández-Juárez, Nancy
 Haydée Serrano-Pérez, Paula Blancarte-Jaber, Carlos Aguilar-Salinas, Nancy R. Mejía Domínguez, Alejandro Zentella-Dehesa, and Sergio Hernández-Jiménez. "A case study
 on the implementation of quality and comprehensive indicators set in routine diabetes
 care." Archives of Public Health 82, no. 1 (2024): 121.
- 456 22. Glasgow, Russell E. "Translating research to practice: lessons learned, areas for improvement, and future directions." *Diabetes care* 26, no. 8 (2003): 2451-2457.
- 458 23. Goodwin, Nick, Judith Smith, Alisha Davies, Claire Perry, Rebecca Rosen, Anna Dixon,
 459 Jennifer Dixon, and Chris Ham. "Integrated care for patients and populations: improving
 460 outcomes by working together." *London: King's Fund* (2012).
- 24. Greenwood, Richard, Ken Shaw, and Peter Winocour. "Diabetes and the quality and outcomes framework: integrated care is best model for diabetes." *BMJ: British Medical Journal* 331, no. 7528 (2005): 1340.
- 25. Guo, Ying, Ling Zhou, Bei Sun, Chenhui Wang, and Jinling Zhang. "Application of
 online-offline integrated medical care management in patients with gestational
 diabetes." *Ginekologia Polska* 92, no. 10 (2021): 720-725.
- 467 26. Haque, Mohammad M., W. Kathy Tannous, William H. Herman, Jincy Immanuel,
 468 William M. Hague, Helena Teede, Joanne Enticott et al. "Cost-effectiveness of diagnosis
 469 and treatment of early gestational diabetes mellitus: economic evaluation of the

- 470 TOBOGM study, an international multicenter randomized controlled trial."
- 471 EClinicalMedicine 71 (2024).
- 27. Lannon, Carole M., Christine L. Schuler, LaCrecia Thomas, Emily Gehring, Keith J.
- 473 Mann, and Laurel K. Leslie. "Integrating Emotional Health Assessments into Pediatric
- Care: Initial Learnings from an MOC Part 4 Activity." Pediatric Quality & Safety 9, no. 5
- 475 (2024): e768.
- 476 28. Larme, Anne C., and Jacqueline A. Pugh. "Attitudes of primary care providers toward
- diabetes: barriers to guideline implementation." Diabetes care 21, no. 9 (1998): 1391-
- **478** 1396.
- 479 29. Lende, Michelle, and Asha Rijhsinghani. "Gestational diabetes: overview with emphasis
- on medical management." *International journal of environmental research and public*
- 481 *health* 17, no. 24 (2020):
- 482 30. Mackin, Sharon T., Scott M. Nelson, Joannes J. Kerssens, Rachael Wood, Sarah Wild,
- Helen M. Colhoun, Graham P. Leese, Sam Philip, and Robert S. Lindsay. "Diabetes and
- pregnancy: national trends over a 15 year period." *Diabetologia* 61, no. 5 (2018): 1081-
- 485 1088.
- 486 31. Mahmoodi, Mohammad Reza, and Narges Khanjani. "Barriers and Limitations to
- Obstacle Diabetes Self-Management with a Focus on Nutritional Literacy: Solutions and
- 488 Opportunities. Critical Review and Research Synthesis." Critical Comments in
- 489 *Biomedicine* (2020).
- 490 32. Malaza, Nompumelelo, Matladi Masete, Sumaiya Adam, Stephanie Dias, Thembeka
- 491 Nyawo, and Carmen Pheiffer. "A systematic review to compare adverse pregnancy

- outcomes in women with pregestational diabetes and gestational diabetes." *International journal of environmental research and public health* 19, no. 17 (2022): 10846.
- 33. Mangham-Jefferies, Lindsay, Catherine Pitt, Simon Cousens, Anne Mills, and Joanna Schellenberg. "Cost-effectiveness of strategies to improve the utilization and provision of maternal and newborn health care in low-income and lower-middle-income countries: a systematic review." *BMC pregnancy and childbirth* 14 (2014): 1-23.
- 498 34. Martin, Elizabeth, Bassel Ayoub, and Yvette D. Miller. "A systematic review of the cost-499 effectiveness of maternity models of care." *BMC pregnancy and childbirth* 23, no. 1 500 (2023): 859.
- 35. McCance, David R. "Diabetes in pregnancy." Best practice & research Clinical obstetrics
 & gynaecology 29, no. 5 (2015): 685-699.
- 503 36. McCance, David R. "Pregnancy and diabetes." *Best practice & research Clinical*504 endocrinology & metabolism 25, no. 6 (2011): 945-958.
- 37. Miller, Melissa. "Telehealth Integration Influencing Success and Sustainability." PhD
 diss., Walden University, 2019.
- 38. Nam, Soohyun, Catherine Chesla, Nancy A. Stotts, Lisa Kroon, and Susan L. Janson.
 "Barriers to diabetes management: patient and provider factors." *Diabetes research and clinical practice* 93, no. 1 (2011): 1-9.
- 39. Nasir, Jamal Abdul, Shahid Hussain, and Chuangyin Dang. "An integrated planning approach towards home health care, telehealth and patients group based care." *Journal of network and computer applications* 117 (2018): 30-41.

- 513 40. O'Connor, Patrick J., Noni L. Bodkin, Judith Fradkin, Russell E. Glasgow, Sheldon
- Greenfield, Edward Gregg, Eve A. Kerr et al. "Diabetes performance measures: current
- status and future directions." *Diabetes care* 34, no. 7 (2011): 1651.
- 41. Rocks, Stephen, Daniela Berntson, Alejandro Gil-Salmerón, Mudathira Kadu, Nieves
- Ehrenberg, Viktoria Stein, and Apostolos Tsiachristas. "Cost and effects of integrated
- care: a systematic literature review and meta-analysis." The European Journal of Health
- 519 *Economics* 21 (2020): 1211-1221.
- 42. Rowley, William R., Clement Bezold, Yasemin Arikan, Erin Byrne, and Shannon Krohe.
- "Diabetes 2030: insights from yesterday, today, and future trends." *Population health*
- *management* 20, no. 1 (2017): 6-12.
- 43. Rushforth, Bruno, Carolyn McCrorie, Liz Glidewell, Eleanor Midgley, and Robbie Foy.
- "Barriers to effective management of type 2 diabetes in primary care: qualitative
- 525 systematic review." *British Journal of General Practice* 66, no. 643 (2016): e114-e127.
- 526 44. Scavini, Marina, and Antonio Secchi. "Diabetes in pregnancy." Acta Diabetologica 56
- **527** (2019): 719-721.
- 45. Schaefer-Graf, Ute, Angela Napoli, Christopher J. Nolan, and Diabetic Pregnancy Study
- Group. "Diabetes in pregnancy: a new decade of challenges ahead." *Diabetologia* 61
- **530** (2018): 1012-1021.
- 46. Schillinger, D., K. Grumbach, and J. D. Piette. "Association of functional health literacy
- with glycemic control among diabetes patients." *JAMA* 288 (2002).
- 533 47. Serper, Marina, Aneeza Agha, Patrik A. Garren, Tamar H. Taddei, David E. Kaplan, Peter
- W. Groeneveld, Rachel M. Werner, and Judy A. Shea. "Multidisciplinary teams, efficient

538

539

540

541

542

543

544

545

546

547

548

549

- 535 communication, procedure services, and telehealth improve cirrhosis care: A qualitative study." *Hepatology Communications* 7, no. 6 (2023): e0157.
 - 48. Theofilou, Paraskevi, and Dimitris D. Vlastos. "The psychological burden of families with diabetic children: A literature review focusing on quality of life and stress." Children 10, no. 6 (2023): 937.
 - 49. van den Berg, Maud, Julia Spaan, Jacoba Van Der Kooy, Monique Klerkx, Charlotte Krol, Arie Franx, Kees TB Ahaus, and Hilco J. van Elten. "Value-based evaluation of gestational diabetes mellitus care pathway redesign by using cost and outcome data." BMC Pregnancy and Childbirth 25, no. 1 (2025): 1-11.
 - 50. van der Werf, Laura, Silvia Evers, Laura Prieto-Pinto, Daniel Samacá-Samacá, and Aggie Paulus. "Integrated maternal care strategies in low-and middle-income countries: a systematic review." *International Journal of Integrated Care* 22, no. 2 (2022): 26.
 - 51. Versloot, Judith, Hana Saab, Simona C. Minotti, Amna Ali, Julia Ma, Robert J. Reid, Sheryl Parks, and Ian Zenlea. "An integrated care model to support adolescents with diabetes-related quality-of-life concerns: an intervention study." *Canadian Journal of Diabetes* 47, no. 1 (2023): 3-10.