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Abstract: 4 

 Fermatean fuzzy sets serve as a significant generalization of both intuitionistic fuzzy sets and 5 

Pythagorean fuzzy sets, providing a broader and more flexible structure for modeling uncertainty. Unlike 6 

their predecessors, they successfully address and overcome certain inherent limitations associated with 7 

these earlier frameworks, particularly in handling higher degrees of hesitation and indeterminacy. 8 

Motivated by these advantages, this paper introduces the concept of t-Q Fermatean ℒ-fuzzy ideals, thereby 9 

extending the study of algebraic structures within the Fermatean fuzzy environment. We further explore the 10 

homomorphic properties of these ideals, analyzing how they behave under various mappings. Within this 11 

framework, a number of new theoretical results are established, which contribute to the deeper 12 

understanding of Fermatean fuzzy algebra and open avenues for further research. 13 

Keywords:  Fuzzy sets, Intuitionistic fuzzy sets, Fermatean fuzzy sets, Lattice, t-Q-fermatean L-fuzzy left 14 

(right) ideals, homomorphism.  15 

1  Introduction 16 

The foundation of fuzzy set theory was laid by Zadeh [23], who introduced the concept of a membership 17 

function 𝜚 to quantify the degree to which an element belongs to a given set. Unlike classical set theory, 18 

where membership is strictly binary an element either belongs to a set or it does not—fuzzy set theory 19 

allows for gradations of membership. Within this framework, every element of the universal set is assigned 20 

a membership value from the unit interval [0,1]. A value of 0 signifies complete non-membership, while a 21 

value of 1 indicates full membership. Intermediate values represent varying degrees of partial membership, 22 

capturing situations where the status of an element cannot be described in absolute terms. This innovative 23 

generalization of classical sets provides a powerful tool for modeling vagueness, uncertainty, and 24 

imprecision, since it reflects the reality that many real-world phenomena do not conform to rigid boundaries 25 

but instead fall within a spectrum of belonging. 26 

Classical fuzzy set theory, despite its effectiveness in extending the binary nature of classical sets, 27 

exhibited notable limitations in its ability to model uncertainty in a comprehensive manner. Specifically, it 28 

lacked an explicit non-membership function to quantify the degree to which an element does not belong to 29 

a set, and it was unable to capture the hesitation or indeterminacy that often arises in real-world 30 

decision-making situations. Recognizing these shortcomings, Atanassov [9] proposed the concept of 31 

intuitionistic fuzzy sets (IFSs), which significantly enriched the fuzzy framework. An IFS is formally 32 

described by a triplet of functions: a membership function 𝜚 that assigns the degree of belonging of an 33 

element to a set, a non-membership function 𝜗 that expresses the degree of rejection, and an indeterminacy 34 

(or hesitation) function 𝜋  that reflects the extent of uncertainty or lack of knowledge regarding the 35 

element’s status. These functions are interrelated through the conditions 𝜚 + 𝜗 ≤ 1 and 𝜚 + 𝜗 + 𝜋 = 1, 36 

ensuring consistency in the representation of information. This formulation provides a richer and more 37 

flexible mechanism for representing vagueness and uncertainty, thereby broadening the applicability of 38 

fuzzy set theory in diverse fields such as decision-making, pattern recognition, and knowledge 39 

representation. 40 

However, there are practical situations where the condition 𝜚 + 𝜗 ≥ 1 may hold, which is not 41 

permissible under IFSs. To accommodate such scenarios, Pythagorean fuzzy sets (PFSs) were introduced 42 

by Yager [21, 22]. In a PFS, the membership and non-membership degrees satisfy 0 ≤ 𝜚, 𝜗 ≤ 1 with the 43 

constraint 𝜚2 + 𝜗2 ≤ 1, and the indeterminacy is derived accordingly as 𝜋 =  1 − 𝜚2 − 𝜗2. Fermatean 44 

fuzzy sets is the extension Pythagorean fuzzy sets. In fermatean fuzzy sets the membership grade (𝜚) and 45 

non-membership grade (𝜗) satisfy the conditions 0 ≤ 𝜚3 + 𝜗3 ≤ 1, where the values of 𝜚 and 𝜗 lie 46 

between 0 and 1. 47 

In the context of algebraic structures, the study of fuzzy subsets in near-rings has a 48 



 

 

well-documented history. Kim and Jun [11] introduced the notion of intuitionistic fuzzification of various 49 

semigroup ideals. Later, Kyung Ho Kim and Young Bae Jun [12], in their work on “Normal fuzzy 50 

R-subgroups in near-rings", extended this line of study by defining normal fuzzy R-subgroups and 51 

investigating their properties. Kuncham et al. [13] subsequently introduced fuzzy prime ideals of 52 

near-rings. Further contributions include Solairaju and Nagarajan [19], who defined Q-fuzzy subrings, and 53 

Palaniappan, Arjanan, and Palanivelrajan [15], who introduced intuitionistic L-fuzzy subrings. Wang et al. 54 

[20] proposed intuitionistic fuzzy ideals of rings with threshold parameters (𝛼, 𝛽), while Sharma [17] 55 

developed the concept of t-intuitionistic fuzzy quotient groups. 56 

Building upon these foundational concepts, the present paper is devoted to the introduction and 57 

systematic study of t-Q Fermatean ℒ-fuzzy ideals. To provide a clear framework, the paper is organized as 58 

follows. Section 2 is dedicated to preliminaries, where we recall essential definitions and outline the key 59 

algebraic structures associated with Fermatean fuzzy sets and lattices, which form the basis for our study. 60 

Section 3 develops the central theme by formally introducing t-Q Fermatean ℒ -fuzzy ideals and 61 

investigating their fundamental properties, with particular emphasis on their behavior under 62 

homomorphisms. Finally, Section 4 concludes the work with a summary of the main findings and some 63 

closing observations that highlight the significance of the results and suggest possible directions for future 64 

research. 65 

 66 

2  Preliminaries and Definition  67 

We will review the related concepts of fuzzy sets, intuitionistic fuzzy sets, pythagorean fuzzy sets, 68 

fermatean fuzzy sets and lattices in this section.  69 

Definition 2.1 We defined fuzzy set 𝐹 in a universal set 𝑋 as  70 

 𝐹 = {〈𝑥, 𝜚𝐹(𝑥)〉: 𝑥 ∈ 𝑋}, 71 

where 𝜚𝐹: 𝑋 → [0,1] is a mapping that is known as the fuzzy membership function. 72 

The complement of 𝜚 is defined by 𝜚 (𝑥) = 1 − 𝜚(𝑥) for all 𝑥 ∈ 𝑋 and denoted by 𝜚 .  73 

Definition 2.2 A fuzzy ideal 𝜚 of a ring 𝑅 is called fuzzy primary ideal, if for all 𝑎, 𝑏 ∈ 𝑅 either 74 

𝜚(𝑎𝑏) = 𝜚(𝑎) or else 𝜚(𝑎𝑏) ≤ (𝑏𝑚) for some 𝑚 ∈ 𝑍+.  75 

Definition 2.3 A fuzzy ideal 𝜚 of a ring 𝑅 is called fuzzy semiprimary ideal, if for all 𝑎, 𝑏 ∈ 𝑅 either 76 

𝜚(𝑎𝑏) ≤ 𝜚(𝑎𝑛), for some 𝑛 ∈ 𝑍+, or else 𝜚(𝑎𝑏) ≤ (𝑏𝑚) for some 𝑚 ∈ 𝑍+  77 

Definition 2.4 An intuitionistic fuzzy set (IFS) 𝐴 in 𝑋 is defined as  78 

 𝐴 = {〈𝑥, 𝜚𝐴(𝑥), 𝜗𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, 79 

where the 𝜚𝐴(𝑥) is the worth of membership and 𝜗𝐴(𝑥) is the worth of non-membership of the element 80 

𝑥 ∈ 𝑋 respectively. 81 

Also 𝜚𝐴: 𝑋 → [0,1], 𝜗𝐴: 𝑋 → [0,1] and satisfy the condition  82 

 0 ≤ 𝜚𝐴(𝑥) + 𝜗𝐴(𝑥) ≤ 1, 83 

for all 𝑥 ∈ 𝑋. 84 

The degree of indeterminacy ℎ𝐴(𝑥) = 1 − 𝜚𝐴(𝑥) − 𝜗𝐴(𝑥).  85 

Definition 2.5 A Pythagorean fuzzy set 𝑃 in universe of discourse 𝑋 is represented as  86 

 𝑃 = {〈𝑥, 𝜚𝑃(𝑥), 𝜗𝑃(𝑥)〉|𝑥 ∈ 𝑋}, 87 

where 𝜚𝑃(𝑥): 𝑋 → [0,1] denotes the worth of membership and 𝜗𝑃(𝑥): 𝑋 → [0,1] represents the worth to 88 

which the element 𝑥 ∈ 𝑋 is not a member of the set 𝑃, with the condition that  89 

 0 ≤ (𝜚𝑃(𝑥))2 + (𝜗𝑃(𝑥))2 ≤ 1, 90 

for all 𝑥 ∈ 𝑋. 91 

The worth of indeterminacy ℎ𝑃(𝑥) =  1 − (𝜚𝑃(𝑥))2 − (𝜗𝑃(𝑥))2.  92 

Definition 2.6 A fermatean fuzzy set 𝐴 in a finite universe of discourse 𝑋 is furnished as  93 

 𝐴 = {〈𝑥, 𝜚𝐴(𝑥), 𝜗𝐴(𝑥)〉|𝑥 ∈ 𝑋}, 94 

where 𝜚𝐴(𝑥): 𝑋 → [0,1] denotes the worth of membership and 𝜗𝐴(𝑥): 𝑋 → [0,1] represents the worth to 95 

which the element 𝑥 ∈ 𝑋 is not a member of the set 𝐴, with the predicament that  96 

 0 ≤ (𝜚𝐴(𝑥))3 + (𝜗𝐴(𝑥))3 ≤ 1, 97 



 

 

for all 𝑥 ∈ 𝑋. 98 

The worth of indeterminacy ℎ𝐴(𝑥) =  1 − (𝜚𝐴(𝑥))3 − (𝜗𝐴(𝑥))33
.  99 

Definition 2.7 Let 𝑋 be a non empty set, and ℒ = (ℒ,≤) be a lattice with least element 0 and greatest 100 

element 1 and 𝑄 be a non empty set. A Q-L-fuzzy subset 𝜇 of 𝑋 is a function 𝜇: 𝑋 × 𝑄 → ℒ.  101 

Definition 2.8 Let ℒ = (ℒ,≤) be a complete lattice with an evaluative order reversing operation 102 

𝑁: ℒ → ℒ and 𝑄 be a non empty set.  103 

Definition 2.9 A Q-Fermatean L-fuzzy subset (QFLFS) 𝜇  in 𝑋  is defined as an object of the form 104 

𝜇 = {〈(𝑥, 𝑞), 𝜚𝜇 (𝑥, 𝑞), 𝜗𝜇 (𝑥, 𝑞)〉: 𝑥 ∈ 𝑋   𝑎𝑛𝑑   𝑞 ∈ 𝑄}  where 𝜚𝜇 : 𝑋 × 𝑄 → ℒ   𝑎𝑛𝑑   𝜗𝜇 : 𝑋 × 𝑄 → ℒ 105 

define the degree of member ship, and the degree of non membership of the element 𝑥 ∈ 𝑋, respectively, 106 

and for every 𝑥 ∈ 𝑋 and 𝑞 ∈ 𝑄.  107 

Definition 2.10 Let 𝑅 be a ring. A Q-Fermatean L-fuzzy subset 𝜇 of R is said to be a Q-Fermatean L-fuzzy 108 

sub ring (QFLFSR) of R if it satisfies the following axioms: 109 

(i) 𝜚𝜇 (𝑥 − 𝑦, 𝑞) ≥ min{𝜚𝜇 (𝑥, 𝑞), 𝜚𝜇 (𝑦, 𝑞)} 110 

(ii) 𝜚𝜇 (𝑥𝑦, 𝑞) ≥ min{𝜚𝜇 (𝑥, 𝑞), 𝜚𝜇 (𝑦, 𝑞)} 111 

(iii) 𝜗𝜇 (𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜇 (𝑥, 𝑞), 𝜗𝜇 (𝑦, 𝑞)} 112 

(iv) 𝜗𝜇 (𝑥𝑦, 𝑞) ≤ max{𝜗𝜇(𝑥, 𝑞), 𝜗𝜇 (𝑦, 𝑞)}.  113 

Definition 2.11 Let 𝑅 be a ring. A Q-Fermatean L-fuzzy sub ring 𝜇 of R is said to be a Q-Fermatean 114 

L-fuzzy normal sub ring (QFLFNSR) of R if  115 

(i) 𝜚𝜇 (𝑥𝑦, 𝑞) = 𝜚𝜇 (𝑦𝑥, 𝑞) 116 

(ii) 𝜗𝜇 (𝑥𝑦, 𝑞) = 𝜗𝜇 (𝑦𝑥, 𝑞) for all 𝑥, 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  117 

Definition 2.12 Let 𝜇  be a QFLFS of a ring 𝑅 . And let 𝑡 ∈ [0,1], then the 𝜇𝑡  of 𝑅  is called the 118 

t-Q-Fermatean fuzzy subset (tQFLFS) of 𝑅 with respect to (QFLFS) 𝜇 and is defined as 𝜇𝑡 = (𝜚𝜇 𝑡 ,𝜗
𝜇 𝑡

), 119 

where 𝜚𝜇 𝑡 (𝑥, 𝑞) = 𝑚𝑖𝑛{𝜚𝜇 (𝑥, 𝑞), 𝑡} and 𝜗𝜇 𝑡 (𝑥, 𝑞) = 𝑚𝑎𝑥{𝜗𝜇 (𝑥, 𝑞),1 − 𝑡}, for all 𝑥 ∈ 𝑅.  120 

Definition 2.13 Let 𝑋, 𝑌 be two non empty sets and 𝜙: 𝑋 → 𝑌 be a mapping. Let 𝜇 and 𝛾 be two 121 

tQFLFS of X and Y respectively. Then the image of 𝜇 under the map 𝜙 is denoted by 𝜙(𝜇) and is defined 122 

as 𝜙(𝜇𝑡)(𝑦, 𝑞) = (𝜚𝜙(𝜇𝑡)(𝑦, 𝑞), 𝜗𝜙(𝜇𝑡)(𝑦, 𝑞)), where  123 

 𝜚𝜙(𝜇𝑡)(𝑦, 𝑞) =  
sup{𝜚𝜇 𝑡(𝑥, 𝑞)}, 𝑥 ∈ 𝜙−1(𝑦),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  124 

 125 

 𝜗𝜙(𝜇𝑡)(𝑦, 𝑞) =  
inf{𝜗𝜇 𝑡 (𝑥, 𝑞)}, 𝑥 ∈ 𝜙−1(𝑦),

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  126 

also the pre-image of 𝛾 under 𝜙 is denoted by 𝜙−1(𝛾𝑡) and is defined as  127 

 𝜙−1(𝛾𝑡(𝑥, 𝑞) = (𝜚𝜙−1 (𝛾𝑡)(𝑥, 𝑞), (𝜗𝜙−1 (𝛾𝑡)(𝑥, 𝑞)), 128 

where 𝜚𝜙−1 (𝛾𝑡)(𝑥, 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥), 𝑞) and 𝜗𝜙−1 (𝛾𝑡)(𝑥, 𝑞) = 𝜗𝛾 𝑡 (𝜙(𝑥), 𝑞). 129 

This means that 𝜙−1(𝛾𝑡)(𝑥, 𝑞) = (𝜚𝛾 𝑡 (𝜙(𝑥), 𝑞), 𝜗𝛾 𝑡((𝜙(𝑥), 𝑞)).  130 

Definition 2.14 Let 𝜙:𝑋 → 𝑌 be a mapping.Let 𝜇 and 𝛾 be two tQFLFS of X and Y respectively. Then 131 

𝜙−1(𝛾𝑡) = (𝜙−1(𝛾𝑡))𝑡  and 𝜙(𝜇𝑡) = (𝜙(𝜇))𝑡  for all 𝑡 ∈ [0,1].  132 

Definition 2.15 Let 𝜇 be a QFLFS of a ring R. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy 133 

sub ring (tQFLFSR) of R if is QFLFSR of R. This means that 𝜇𝑡  satisfies the following conditions: 134 

1. 𝜚𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≥ min{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡 (𝑦, 𝑞)}; 135 

2. 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) ≥ min{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡 (𝑦, 𝑞)}; 136 

3. 𝜗𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡 (𝑦, 𝑞)}; 137 

4. 𝜗𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡 (𝑦, 𝑞)}; for all 𝑥, 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  138 

Theorem 2.1 If 𝜇 is QFLFNSR of a ring R, then 𝜇 is also tQFLFNSR of a ring 𝑅.  139 

Proof. Let 𝑥, 𝑦 ∈ 𝑅 be any elements, then 140 

𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) = min{(𝑥𝑦, 𝑞), 𝑡} = min𝜚𝜇 , (𝑦𝑥, 𝑞), 𝑡 = 𝜚𝜇 𝑡 (𝑦𝑥, 𝑞). 



 

 

Similarly, 𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) = max{(𝑥𝑦, 𝑞),1 − 𝑡} = max{𝜚𝜇 , (𝑦𝑥, 𝑞),1 − 𝑡} = 𝜗𝜇 𝑡 (𝑦𝑥, 𝑞). 141 

Therefore is also tQFLFNSR of 𝑅.  142 

Definition 2.16 Let 𝜇 be a QFLFS of a ring R. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy 143 

left ideal (tQFLFLI) of R. If 144 

(i) 𝜚𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≥ min{𝜚𝜇 𝑡 (𝑥, 𝑞), 𝜚𝜇 𝑡 (𝑦, 𝑞)} 145 

(ii) 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡 (𝑦, 𝑞)} 146 

(iii) 𝜗𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡 (𝑦, 𝑞)} 147 

(iv) 𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡 (𝑦, 𝑞)} for all 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  148 

Definition 2.17 Let 𝜇 be a QFLFS of a ring 𝑅. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy 149 

right ideal (tQFLFRI) of 𝑅. If 150 

(i) 𝜚𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≥ min{𝜚𝜇 𝑡 (𝑥, 𝑞), 𝜚𝜇 𝑡 (𝑦, 𝑞)} 151 

(ii) 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡 (𝑥, 𝑞)} 152 

(iii) 𝜗𝜇 𝑡 (𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡 (𝑦, 𝑞)} 153 

(iv) 𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡 (𝑥, 𝑞)};  154 

Theorem 2.2 If 𝜇 is QFLFLI of a ring R, then 𝜇 is also tQFLFLI of a ring R.  155 

Proof. It is required to prove that 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑦, 𝑞)}   𝑎𝑛𝑑   𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡(𝑦, 𝑞)}  for all 156 

𝑥, 𝑦 ∈ 𝑅. 157 

Again, 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) = min{(𝑥𝑦, 𝑞), 𝑡} = min𝜚𝜇 , (𝑦, 𝑞), 𝑡 = 𝜚𝜇 𝑡 (𝑦, 𝑞). 158 

Thus 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑦, 𝑞)}. Similarly, we can show that 𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡 (𝑦, 𝑞)}. 159 

Hence is also tQFLFLI of a ring R. 160 

Definition 2.18 If 𝜇 is QFLFRI of a ring R, then 𝜇 is also tQFLFRI of a ring R.  161 

3   Main Results  162 

In this section, we have undertaken a detailed discussion of several significant results concerning the 163 

homomorphic behavior of t-Q Fermatean ℒ-fuzzy subrings. These results highlight how such structures 164 

interact under homomorphisms, providing deeper insights into their algebraic properties and contributing to 165 

a broader understanding of Fermatean fuzzy algebra within the framework of ℒ-fuzzy subrings. 166 

Theorem 3.1 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be 167 

tQFLFSR of 𝑅2 . Then 𝜙−1(𝛾) is tQFLFSR of 𝑅1 .  168 

Proof. Let 𝑥, 𝑦 ∈ 𝑅1 , since 𝛾 be tQFLFSR of 𝑅2 . Then  169 

𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝜙−1(𝛾 𝑡)(𝑥 − 𝑦, 𝑞), 𝜗𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞)). 

 𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝛾 𝑡(𝜙(𝑥 − 𝑦, 𝑞) 170 

 = 𝜚𝜇 𝑡 (𝜙(𝑥) − 𝜙(𝑦), 𝑞 171 

 ≥ min{𝜚𝛾𝑡(𝜙(𝑥), 𝑞), 𝜚𝛾 𝑡(𝜙(𝑦), 𝑞)} 172 

 = min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞). } 173 

 Thus 𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) ≥ min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 174 

Similarly, it can be prove that 𝜗𝜙−1(𝛾 𝑡)(𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜙−1 (𝑥 − 𝑞), 𝜗𝜙−1 (𝑦, 𝑞)}.  175 

Again,  176 

 𝜗𝜙−1(𝛾 𝑡)(𝑥 − 𝑦, 𝑞) = 𝜚𝛾 𝑡(𝜙(𝑥𝑦), 𝑞) 177 

 = 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ min{𝜚𝛾𝑡(𝜙(𝑦),𝑞)} 178 

 = min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞). } 179 

 Thus, 𝜚𝜙(−1)(𝛾𝑡)(𝑥𝑦, 𝑞) ≥ min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 180 

Also,  181 

 𝜗𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≤ max{𝜗𝜙−1 (𝑥 − 𝑞), 𝜗𝜙−1 (𝑦, 𝑞)}. 182 

Therefore, 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFSR of 𝑅1 and hence 𝜙−1(𝛾𝑡) is tQFLFSR of 𝑅1 .  183 

Theorem 3.2 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be 184 



 

 

tQFLFSR of 𝑅2 . Then 𝜙−1(𝛾)is tQFLFSR of 𝑅1 .  185 

Proof.  Let 𝑥, 𝑦 ∈ 𝑅1 , since 𝛾 be tQFLFSR of 𝑅2. Also 𝜙−1(𝛾𝑡)(𝑥𝑦) = (𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞), 186 

𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞), 𝜗𝜙−1(𝛾 𝑡)(𝑦𝑥, 𝑞). 187 

Hence, it is enough to show that 188 

𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞), 𝜙−1(𝛾𝑡)(𝑥𝑦)   𝑎𝑛𝑑   𝜗𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜗𝜙−1(𝛾 𝑡)(𝑦𝑥, 𝑞). 189 

Now,  190 

 𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) 191 

 = 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) 192 

 = 𝜚𝛾 𝑡 (𝜙(𝑦)𝜙(𝑥), 𝑞) 193 

 = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) 194 

 = 𝜚𝜙−1(𝛾 𝑡)(𝑦𝑥, 𝑞). 195 

 Moreover,  196 

 𝜗𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜗𝛾 𝑡(𝜙(𝑥𝑦), 𝑞) 197 

 = 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) 198 

 = 𝜗𝛾 𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞) 199 

 = 𝜗𝛾 𝑡(𝜙(𝑥𝑦), 𝑞) 200 

 = 𝜗𝜙−1(𝛾 𝑡)(𝑦𝑥, 𝑞). 201 

 Thus 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFNSR of 𝑅1 and hence 𝜙−1(𝛾𝑡) is tQFLFNSR of 𝑅1.  202 

Theorem 3.3 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2 . Let 𝛾 be 203 

tQFLFLI of 𝑅2. Then 𝜙−1(𝛾𝑡) is tQFLFLI of 𝑅1 .  204 

Proof.  Since 𝛾 be tQFLFSR of 𝑅2 and let 𝑥, 𝑦 ∈ 𝑅1. 205 

We need only to prove 206 

𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≤ 𝜚𝜙−1(𝛾 𝑡)(𝑦, 𝑞) and 𝜗𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≤ 𝜗𝜙−1(𝛾 𝑡)(𝑦, 𝑞). 207 

Now, 𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) = 𝜚𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝜚𝛾 𝑡(𝜙(𝑦), 𝑞) = 𝜚𝜙−1(𝛾 𝑡)(𝑦, 𝑞). 208 

Therefore, 𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≥ 𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) 209 

𝜚𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) = 𝜚𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝜚𝛾 𝑡 (𝜙(𝑦), 𝑞) = 𝜚𝜙−1(𝛾 𝑡)(𝑦, 𝑞). 210 

Similarly, 𝜗𝜙−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≤ 𝜗𝜙−1(𝛾 𝑡)(𝑦, 𝑞). 211 

Therefore 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFSR of 𝑅1 and hence 𝜙−1(𝛾𝑡) is tQFLFSR of 𝑅1 .  212 

Theorem 3.4 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be 213 

tQFLFRI of 𝑅2 . Then 𝜙−1(𝛾𝑡) is tQFLFRI of 𝑅1 .  214 

Proof. Straight forward.  215 

Theorem 3.5 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFSR of 𝑅1 . 216 

Then 𝜙(𝜇) is tQFLFSR of 𝑅2 .  217 

Proof. Let 𝑥, 𝑦 ∈ 𝑅2 . Then there exist 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦 we know that 𝑎, 𝑏 need 218 

not be unique also 𝜇 is tQFLFSR of 𝑅1. 219 

Now, 𝜙(𝜇𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞)). 220 

𝜚𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞) = 𝜚(𝜙(𝜇))𝑡 (𝑥 − 𝑦, 𝑞) = min{𝜚𝜙(𝜇)(𝜙(𝑎) − 𝜙(𝑏), 𝑞), 𝑡} 

𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) ≥ min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 221 

Similarly, 𝜚𝜇−1(𝛾 𝑡)(𝑥 − 𝑦, 𝑞) ≤ max{𝜚𝜇−1 (𝑥 − 𝑞), 𝜚𝜇−1 (𝑦, 𝑞)}. 222 

Also,  223 

𝜗𝜙−1(𝛾 𝑡)(𝑥 − 𝑦, 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) 

= 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ min{𝜚𝛾𝑡(𝜇(𝑦),𝑞)} 

= min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞). }. 224 

Thus, 𝜚𝜇 (−1)(𝛾𝑡)(𝑥𝑦, 𝑞) ≥ min{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 225 

It is easy to show that 𝜚𝜇−1(𝛾 𝑡)(𝑥𝑦, 𝑞) ≤ max{𝜚𝜇−1 (𝑥 − 𝑞), 𝜗𝜙−1 (𝑦, 𝑞)}. 226 



 

 

Similarly, we can show that  227 

𝜗𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞) ≤ max{𝜗𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞)}, 

𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜚(𝜙(𝜇))𝑡 (𝑥𝑦, 𝑞) = min{𝜗𝜙(𝜇)(𝜙(𝑎). 𝜙(𝑏), 𝑞), 𝑡} 

= min{𝜚𝜙(𝜇)(𝜙(𝑎𝑏), 𝑞), 𝑡} ≥ min{𝜚𝜇(𝑎𝑏, 𝑞), 𝑡} = 𝜚𝜇 (𝑎𝑏, 𝑞)′ 

for all 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦. 228 

= min{sup{𝜚𝜙(𝜇 𝑡)(𝑎, 𝑞); 𝜙(𝑎) = 𝑥}, sup{𝜚𝜙(𝜇 𝑡)(𝑏, 𝑞); 𝜙(𝑏) = 𝑦}} 

= min{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 

Thus 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) ≥ min{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 229 

Similarly, we can show that min{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 230 

Thus 𝜙(𝜇𝑡) = (𝜙(𝜇𝑡))′𝑡 is QFLFSR of 𝑅2 and hence 𝜙(𝜇) is tQFLFSR of 𝑅2. 231 

Theorem 3.6 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFNSR of 232 

𝑅1 . Then 𝜙(𝜇) tQFLFNSR of 𝑅2 .  233 

Proof. Let 𝑥, 𝑦 ∈ 𝑅2 . Then exist 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦 we know that 𝑎, 𝑏 need not be 234 

unique also 𝜇 is tQFLFNSR of 𝑅1 . 𝜙(𝜇𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞)). Now, we have to prove 235 

that 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞) and 𝜗𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜗𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞); 236 

𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎)𝜙(𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎𝑏), 𝑞) 

= sup{𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞); 𝜙(𝑎𝑏) = 𝑥𝑦} 

= sup{𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞); 𝜙(𝑎𝑏) = 𝑥𝑦} 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎)𝜙(𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞) 

Similarly, we can show that 𝜗(𝑥𝑦, 𝑞) = 𝜗(𝑦𝑥, 𝑞);. 237 

Hence the result.  238 

Theorem 3.7 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFLI of 𝑅1 . 239 

Then 𝜙(𝜇) is tQFLFLI of 𝑅2 .  240 

Proof. Let 𝑥, 𝑦 ∈ 𝑅2 . Then there exist 𝑎, 𝑏 ∈ 𝑅2 , then there exist a unique a,be 𝑅1  such that 𝜙(𝑎) =241 

𝑥, 𝜙(𝑏) = 𝑦, 242 

(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞) = (𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞), (𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞)). 

Since 𝜇 be IQFLFLI of 𝑅1 , then 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞) ≥ 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞) and 243 

therefore 𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞) ≥ 𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞)). 244 

Similarly, it can be shown that 245 

𝜗(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞), ≤ 𝜗(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞)). 

Hence (𝜇𝑡) is QFLFLI of 𝑅2 and hence 𝜙(𝜇) is tQFLFLI of 𝑅2 . 246 

Theorem 3.8 Let 𝑅1 , 𝑅2 be any two rings. The homomorphic image of a tQFLFSR of 𝜙(𝑅1) is a 247 

tQFLFSR of 𝜙(𝑅1) = 𝑅2.  248 

Proof. Let 𝜇 be a tQFLFSR of 𝑅1. We have to prove that 𝛾 is tQFLFSR of 𝑅2. 249 

Now, for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄. 250 

𝜚𝛾 𝑡(𝜙(𝑥) − 𝜙(𝑦), 𝑞) = 𝜚𝛾 𝑡(𝜙(𝑥 − 𝑦), 𝑞) = min𝜚𝛾{(𝜙(𝑥 − 𝑦), 𝑞), 𝑡} 

≥ min𝜚𝛾{𝜙(𝑥 − 𝑦, 𝑞), 𝑡} = min{𝜚𝛾𝑡 (𝜙(𝑥), 𝑞), 𝜚𝛾 𝑡 (𝜙(𝑦), 𝑞)}. 251 

Also, for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄,  252 

𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑥𝑦), 𝑞) = min{𝜚𝛾(𝜙(𝑥𝑦), 𝑞), 𝑡} 

≥ min{𝜚𝛾(𝑥𝑦, 𝑞), 𝑡} = min{𝜚𝛾 𝑡(𝑥, 𝑞), 𝜚𝛾 𝑡 (𝑦, 𝑞)}.  253 

Thus, 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ min{𝜚𝛾𝑡(𝜙(𝑥, 𝑞), 𝜙(𝑦, 𝑞))}. 254 

Similarly, in can be prove that 255 

𝜗𝛾 𝑡(𝜙(𝑥) − 𝜙(𝑦), 𝑞) ≤ max{𝜗𝛾𝑡(𝜙(𝑥), 𝑞), 𝜗𝛾 𝑡(𝜙(𝑦), 𝑞)} and  256 



 

 

𝜗𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≤ max{𝜗𝛾𝑡(𝜙(𝑥, 𝑞), 𝜙(𝑦, 𝑞))}. 257 

Hence 𝛾 is a tQFLFSR of 𝑅2.  258 

Theorem 3.9 Let 𝑅1 , 𝑅2 be any two rings. The homomorphic image of a tQFLFNSR of 𝑅1 is a tQFLFNSR 259 

of 𝜙(𝑅1) = 𝑅2 .  260 

Proof. Since 𝜇 is a tQFLFSR of 𝑅1. We have to prove that 𝛾 is a tQFLFSR of 𝑅2. 261 

Now for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄, clearly 𝛾 is tQFLFSR of 𝑅2. 262 

Also, 𝜇 is tQFLFSR of 𝑅1.  263 

Again, 𝜚𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾 𝑡(𝜙(𝑥𝑦), 𝑞) ≥ 𝜚𝜇 𝑡 (𝑥𝑦, 𝑞) 264 

= 𝜚𝜇 𝑡 (𝑦𝑥, 𝑞) = 𝜚𝜇 𝑡 (𝜙(𝑦𝑥), 𝑞) = 𝜚𝜇 𝑡 (𝜙(𝑦)𝜙(𝑥), 𝑞). 265 

Thus, 𝜚𝛾 𝑡 (𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾 𝑡 (𝜙(𝑦)𝜙(𝑥), 𝑞) for all 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄.  266 

Also, 𝜗𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜗𝛾 𝑡(𝜙(𝑥𝑦), 𝑞) ≤ 𝜗𝜇 𝑡 (𝑥𝑦, 𝑞) = 𝜗𝜇 𝑡 (𝑦𝑥, 𝑞) = 𝜗𝛾 𝑡 (𝜙(𝑦)𝜙(𝑥), 𝑞). 267 

Thus, 𝜗𝛾 𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜗𝛾 𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞). 268 

Therefore, 𝛾 is tQFLFSR of 𝑅1. 269 

4  Conclusion 270 

In order to deal with cognitive uncertainty in a more comprehensive manner, Fermatean fuzzy sets have 271 

emerged as a powerful extension of intuitionistic fuzzy sets, offering greater flexibility in modeling 272 

hesitation and imprecision. Motivated by these advantages, this paper focuses on the study of t-Q 273 

Fermatean ℒ-fuzzy ideals in the context of normal rings. We introduce and investigate their structural 274 

characteristics, establishing several important properties related to their homomorphic behavior. These 275 

results not only enrich the theoretical foundation of Fermatean fuzzy algebra but also provide useful 276 

insights for further applications. Looking ahead, a promising direction for future research lies in extending 277 

the framework to incorporate the concept of rough Fermatean fuzzy sets. In particular, we aim to develop 278 

and prove a number of significant theorems concerning rough Fermatean fuzzy sets in rings, which would 279 

further enhance the applicability of this theory in handling uncertainty and approximation in algebraic 280 

systems. 281 

 282 

Acknowledgments 283 

The authors are very grateful and would like to express their sincere thanks to the anonymous referees and 284 

Editor for their valuable comments to improve the presentation of the paper. 285 

Funding 286 

The authors declare that no external funding or support was received for the research presented in this 287 

paper, including administrative, technical, or in-kind contributions. 288 

Data Availability 289 

All data supporting the reported findings in this research paper are provided within the manuscript. 290 

Conflicts of Interest 291 

The authors declare that there is no conflict of interest concerning the reported research findings. 292 

 293 

References  294 

[1]  A. K.  Adak, D.  D. Salokolaei. Some Properties of Pythagorean Fuzzy Ideal of Near-rings,  295 

International Journal of Applied Operational Research 9(3)(2019)1-12. 296 

[2]  Adak, A. K., Nilkamal, N Barman, N. (2023). Fermatean fuzzy semi-prime ideals of ordered 297 

semigroups, Topological Algebra and its Applications, 11 (1), 1-10. 298 

[3]  Adak, A. K., Gunjan, M. K. (2024). Profitable Portfolio Using Fermatean Fuzzy Numbers. Journal of 299 

Fuzzy Extension and Applications (JFEA) , 5 (1), 60-68. 300 

[4]  Kamal, N. & Adak. A. K. (2025). Algebraic structure of (𝛼, 𝛽)-cut of fermatean fuzzy set over near 301 

ring.  IOSR Journal of Mathematics, 21(2), 11-16. 302 

[5]  Gunjan, M.K., Adak, A.K., & Salookolaei D.D. (2025). Fermatean Fuzzy Artinian and Noetherian 303 



 

 

Rings.  Asian Research Journal of Mathematics, 21(5), 179-190. DOI: 304 

https://doi.org/10.9734/arjom/2025/v21i5933 305 

[6]  Adak, A. K., & Kumar, D. (2022). Some Properties of Pythagorean Fuzzy Ideals of Γ-Near-Rings,  306 

Palestine Journal of Mathematics, 11(4), 336-346. 307 

[7]  Adak, A. K., Kumar, D. (2023). Spherical Distance Measurement Method for Solving MCDM 308 

Problems under Pythagorean Fuzzy Environment. Journal of fuzzy extension and applications 4 (4), 28-39. 309 

[8]  A Ebrahimnejad, A.  K.  Adak, E. B.  Jamkhaneh, Eigenvalue of Intuitionistic Fuzzy Matrices Over 310 

Distributive Lattice,  International Journal of Fuzzy System Applications  8(1) (2019) 1-8. 311 

[9]  K. Atanassov. Intuitionistic fuzzy sets.  Fuzzy Sets and Systems, 20 (1986) 87-96. 312 

[10]  X. J. Gou, Z. S. Xu, P. J. Ren. The properties of continuous Pyhagorean fuzzy information.  Int J 313 

Intell Syst  31(5)(2016) 401-424. 314 

[11]  Y. B. Jun, K. H. Kim, Y. H. Yon. Intuitionistic fuzzy ideals of near-rings,  J. Inst. Math. Comp. Sci. 315 

12 (3) (1999) 221-228. 316 

[12]  Y. B. Jun. Interval-valued fuzzy R-subgroups of near-rings,  Indian J. pure appl. Math, 33(1) (2002) 317 

71-80. 318 

[13]  S. P. Kuncham, S. Bhavanari, Fuzzy prime ideal of a gamma near ring.  Soochow Journal of 319 

Mathematics 31 (1) (2005) 121-129. 320 

[14]  X. Peng, Y Yang. Some results for Pythagorean fuzzy sets.  Int J Intell Syst 30 (2015)1133-1160. 321 

[15]  N. Palaniappan, K. Arjunan, M. Palanivelranjan. A study of intuitionistic fuzzy L-subrings, NIF, 322 

14(2008),5-10. 323 

[16]  P.K. Sharma. Translates of intuitionistic fuzzy sub ring,  International Review of Fuzzy 324 

Mathematics, 6(2011),77-84. 325 

[17]  P.K. Sharma. t-intuitionistic fuzzy quotient group, Advances in Fuzzy Mathematics, 7, (2012), 1-9. 326 

[19]  A. Solairaju, R. Nagarjan. A new structure and construction of Q-fuzzy groups, Advances in Fuzzy 327 

Mathematics, 4 (2009), 23-29. 328 

[19]  A. Solairaju, R. Nagarjan. Lattice valued Q-fuzzy left R-sub modules of near rings with respect to 329 

t-norms,  Advances in Fuzzy Mathematics, 4 (2009),137-145. 330 

[20]  J. Wang, X.Lin and Y.Yin. Intutionistic fuzzy ideals with threshold (𝛼, 𝛽) of rings, International 331 

Mathematics Forum, 4 (2009), 1119-1127. 332 

[21]  R. R. Yager, A. M. Abbasov. Pythagorean membership grades, complex numbers and decision 333 

making.  Int J Intell Syst 28(5) (2013) 436-452. 334 

[22]  R. R. Yager. Properties and applications of Pythagoean fuzzy sets.  Springer, Berlin (2016). 335 

[23]  L. A. Zadeh. Fuzzy sets,  Information and Control, 8(1965) 338-353. 336 

 337 

  338 


