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Algebraic Extensions through t-Q Fermatean L-Fuzzy
Ideals and Their Homomorphisms

Abstract:

Fermatean fuzzy sets serve as a significant generalization of both intuitionistic fuzzy sets and
Pythagorean fuzzy sets, providing a broader and more flexible structure for modeling uncertainty. Unlike
their predecessors, they successfully address and overcome certain inherent limitations associated with
these earlier frameworks, particularly in handling higher degrees of hesitation and indeterminacy.
Motivated by these advantages, this paper introduces the concept of t-Q Fermatean L-fuzzy ideals, thereby
extending the study of algebraic structures within the Fermatean fuzzy environment. We further explore the
homomaorphic properties of these ideals, analyzing how they behave under various mappings. Within this
framework, a number of new theoretical results are established, which contribute to the deeper
understanding of Fermatean fuzzy algebra and open avenues for further research.

Keywords: Fuzzy sets, Intuitionistic fuzzy sets, Fermatean fuzzy sets, Lattice, t-Q-fermatean L-fuzzy left
(right) ideals, homomorphism.

1 Introduction

The foundation of fuzzy set theory was laid by Zadeh [23], who introduced the concept of a membership
function ¢ to quantify the degree to which an element belongs to a given set. Unlike classical set theory,
where membership is strictly binary an element either belongs to a set or it does not—fuzzy set theory
allows for gradations of membership. Within this framework, every element of the universal set is assigned
a membership value from the unit interval [0,1]. A value of 0 signifies complete non-membership, while a
value of 1 indicates full membership. Intermediate values represent varying degrees of partial membership,
capturing situations where the status of an element cannot be described in absolute terms. This innovative
generalization of classical sets provides a powerful tool for modeling vagueness, uncertainty, and
imprecision, since it reflects the reality that many real-world phenomena do not conform to rigid boundaries
but instead fall within a spectrum of belonging.

Classical fuzzy set theory, despite its effectiveness in extending the binary nature of classical sets,
exhibited notable limitations in its ability to model uncertainty in a comprehensive manner. Specifically, it
lacked an explicit non-membership function to quantify the degree to which an element does not belong to
a set, and it was unable to capture the hesitation or indeterminacy that often arises in real-world
decision-making situations. Recognizing these shortcomings, Atanassov [9] proposed the concept of
intuitionistic fuzzy sets (IFSs), which significantly enriched the fuzzy framework. An IFS is formally
described by a triplet of functions: a membership function ¢ that assigns the degree of belonging of an
element to a set, a non-membership function 9 that expresses the degree of rejection, and an indeterminacy
(or hesitation) function m that reflects the extent of uncertainty or lack of knowledge regarding the
element’s status. These functions are interrelated through the conditions o +9 <1 and o +9 +m =1,
ensuring consistency in the representation of information. This formulation provides a richer and more
flexible mechanism for representing vagueness and uncertainty, thereby broadening the applicability of
fuzzy set theory in diverse fields such as decision-making, pattern recognition, and knowledge
representation.

However, there are practical situations where the condition ¢ +9 > 1 may hold, which is not
permissible under IFSs. To accommodate such scenarios, Pythagorean fuzzy sets (PFSs) were introduced
by Yager [21, 22]. In a PFS, the membership and non-membership degrees satisfy 0 < p,9 < 1 with the
constraint o? + 92 < 1, and the indeterminacy is derived accordingly as m = /1 — 0% — 2. Fermatean
fuzzy sets is the extension Pythagorean fuzzy sets. In fermatean fuzzy sets the membership grade (g) and
non-membership grade (9) satisfy the conditions 0 < o3 + 93 < 1, where the values of ¢ and ¥ lie
between 0 and 1.

In the context of algebraic structures, the study of fuzzy subsets in near-rings has a
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well-documented history. Kim and Jun [11] introduced the notion of intuitionistic fuzzification of various
semigroup ideals. Later, Kyung Ho Kim and Young Bae Jun [12], in their work on “Normal fuzzy
R-subgroups in near-rings”, extended this line of study by defining normal fuzzy R-subgroups and
investigating their properties. Kuncham et al. [13] subsequently introduced fuzzy prime ideals of
near-rings. Further contributions include Solairaju and Nagarajan [19], who defined Q-fuzzy subrings, and
Palaniappan, Arjanan, and Palanivelrajan [15], who introduced intuitionistic L-fuzzy subrings. Wang et al.
[20] proposed intuitionistic fuzzy ideals of rings with threshold parameters (a, 8), while Sharma [17]
developed the concept of t-intuitionistic fuzzy quotient groups.

Building upon these foundational concepts, the present paper is devoted to the introduction and
systematic study of t-Q Fermatean L-fuzzy ideals. To provide a clear framework, the paper is organized as
follows. Section 2 is dedicated to preliminaries, where we recall essential definitions and outline the key
algebraic structures associated with Fermatean fuzzy sets and lattices, which form the basis for our study.
Section 3 develops the central theme by formally introducing t-Q Fermatean L -fuzzy ideals and
investigating their fundamental properties, with particular emphasis on their behavior under
homomaorphisms. Finally, Section 4 concludes the work with a summary of the main findings and some
closing observations that highlight the significance of the results and suggest possible directions for future
research.

2 Preliminaries and Definition
We will review the related concepts of fuzzy sets, intuitionistic fuzzy sets, pythagorean fuzzy sets,
fermatean fuzzy sets and lattices in this section.
Definition 2.1 We defined fuzzy set F in a universal set X as
F = {(X, QF(X)):X € X}'

where gp: X — [0,1] is a mapping that is known as the fuzzy membership function.
The complement of o is defined by o(x) = 1 — o(x) forall x € X and denoted by ¢.
Definition 2.2 A fuzzy ideal o of aring R is called fuzzy primary ideal, if for all a,b € R either
o(ab) = o(a) orelse g(ab) < (b™) for some m € Z™.
Definition 2.3 A fuzzy ideal ¢ of aring R is called fuzzy semiprimary ideal, if for all a,b € R either
o(ab) < o(a™), forsome n € Z*, or else p(ab) < (b™) for some m € Z*
Definition 2.4 An intuitionistic fuzzy set (IFS) A in X is defined as

A= {<x' 04 (X), 19A(x)):x € X}'
where the g, (x) is the worth of membership and 9, (x) is the worth of non-membership of the element
x € X respectively.

Also 04: X = [0,1],94: X = [0,1] and satisfy the condition
0<p,(x)+99(x) <1,

for all x € X.
The degree of indeterminacy hy(x) = 1 — g4(x) — Y4 (x).
Definition 2.5 A Pythagorean fuzzy set P in universe of discourse X is represented as

P = {{x,0p (x),9p (x))|x € X},
where op(x): X — [0,1] denotes the worth of membership and 9p(x): X — [0,1] represents the worth to
which the element x € X is not a member of the set P, with the condition that

0 < (ep(0))* + @p(x))* < 1,
forall x € X.

The worth of indeterminacy hp(x) = /1 — (0p (¥))? — (9p(x))?.

Definition 2.6 A fermatean fuzzy set A in a finite universe of discourse X is furnished as

A = {(x,04(x), 94 (2))|x € X},
where p,(x): X — [0,1] denotes the worth of membership and 9, (x): X — [0,1] represents the worth to
which the element x € X is not a member of the set A, with the predicament that

0<(ea(0))® + Wa(0))* <1,
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forall x € X.

The worth of indeterminacy hy (x) = /1 — (04(x))3 — (¥, (x))3.
Definition 2.7 Let X be a non empty set, and £ = (£, <) be a lattice with least element 0 and greatest
element 1 and Q be a non empty set. A Q-L-fuzzy subset u of X isafunction u: X x Q — L.
Definition 2.8 Let £ = (£, <) be a complete lattice with an evaluative order reversing operation
N:L — £ and Q be anonempty set.
Definition 2.9 A Q-Fermatean L-fuzzy subset (QFLFS) u in X is defined as an object of the form
u={xq),0,(xq),9,(x,q)):x €EX and q€ Q} Wwhere ,:XXQ—>L and 9,:XXQ—>L
define the degree of member ship, and the degree of non membership of the element x € X, respectively,
and for every x € X and g € Q.
Definition 2.10 Let R be a ring. A Q-Fermatean L-fuzzy subset u of R is said to be a Q-Fermatean L-fuzzy
sub ring (QFLFSR) of R if it satisfies the following axioms:
(I) Ou (x - Q) = min{@y (x' C[); Ou (y' C[)}
(i) @, (xy,q) = minfe, (x,q), 0, (v, @)}
(iii) 9, (x — y,q) < max{d, (x,q), 9, (v, q)}
(iv) 9, (xy,q) < max{d, (x,q),9, (v, )}
Definition 2.11 Let R be a ring. A Q-Fermatean L-fuzzy sub ring u of R is said to be a Q-Fermatean
L-fuzzy normal sub ring (QFLFNSR) of R if
() 0. (xy,q) = 0, (yx, @)
(i) 9, (xy,q) = 9, (yx,q) forall x,y € R and q € Q.
Definition 2.12 Let u be a QFLFS of a ring R. And let t € [0,1], then the u' of R is called the
t-Q-Fermatean fuzzy subset (tQFLFS) of R with respect to (QFLFS) u and is defined as u® = (gﬂt_ﬁ#t),

where ¢, (x,q) = min{o, (x,q),t} and 9,:(x,q) = max{J,(x,q),1 —t}, for all x € R.

Definition 2.13 Let X, Y be two non empty setsand ¢: X — Y be a mapping. Let u and y be two
tQFLFS of X and Y respectively. Then the image of u under the map ¢ is denoted by ¢ (u) and is defined

as ¢(u ) (v, @) = (0o W, @), 94 (W) (¥, q)), where 1
¢ _ (sup{o,:(x, @)}, x €D (),
%9 WO = {O, ’ otherwise,

_(inf{¥,:(x, @)}, x € dTL(),
9 W a) = {1 ! otherwise,

also the pre-image of y under ¢ is denoted by qb"l(yf) and is defined as
¢ (% q) = (051 (¥ (x, @), g1 (¥ (%, @),
where 04-1(¥)(x,q) = 0,:(d(x),q) and 9y-1(y*)(x,q) = I, (d(x), Q)
This means that ¢~ (y*)(x, @) = (o, (¢(x), ), 9,: (#(x), 9))-
Definition 2.14 Let ¢: X — Y be a mapping.Let u and y be two tQFLFS of X and Y respectively. Then
o7 () =@ ()" and p(u') = (p(w))" forall ¢ €[0,1].
Definition 2.15 Let u be a QFLFS of aring R. And let t € [0,1], then u is called t-Q-Fermatean L-fuzzy
sub ring (tQFLFSR) of R if is QFLFSR of R. This means that u¢ satisfies the following conditions:
1 o,:(x—y,q) =2 minfo,:(x,q),0,:(y, 9}
2. 0,t(xy,q) 2 min{g,¢(x,q), 0,: (v, D};
3. 9ye(x —y,q) Smax{d,c(x,q9),9,: (v, 9}
4. 9,c(x —y,q) <max{d,:(x,q),9,:(y,q)}; forall x,y € R and q € Q.
Theorem 2.1 If u is QFLFNSR of a ring R, then u is also tQFLFNSR of aring R.
Proof. Let x,y € R be any elements, then

0, (xy,q) = min{(xy, q), t} = ming,, (yx,q),t = 0,:(¥x, q).
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Similarly, 9,¢(xy, q) = max{(xy, q),1 — t} = max{g,, (yx,q),1 —t} = 9, (yx,q).
Therefore is also tQFLFNSR of R.
Definition 2.16 Let u be a QFLFS of aring R. And let ¢t € [0,1], then p is called t-Q-Fermatean L-fuzzy
left ideal (tQFLFLI) of R. If
(1) 0,¢(x —¥,q) = min{g,:(x,q),0,: (¥, q)}
(i) 0 e (xy, @) = {0,: v, )}
(iii) 9,e(x — ¥, @) < max{9,:(x,q),9,: (¥, q)}
(iv) 9,e(xy,q) < {9,:(y,q)} forall y e R and q € Q.
Definition 2.17 Let u be a QFLFS of aring R. And let t € [0,1], then u is called t-Q-Fermatean L-fuzzy
right ideal (tQFLFRI) of R. If
(1) 0,¢(x —¥,q) 2 min{g,:(x,q),0,: (¥, 9}
(i1) 0.t (xy,q) = {o,: (x, )}
(iii) 9,c(x — ¥, @) < max{9,:(x,q),9,: (¥, q)}
(V) 9,c(xy, @) < {9,¢(x, @)}
Theorem 2.2 If p is QFLFLI of a ring R, then u is also tQFLFLI of a ring R.
Proof. It is required to prove that ¢,:(xy,q) = {¢,:(y,q)} and 9,:(xy,q) <{I,:(y,q)} for all
X,y €R.
Again, g,:(xy,q) = min{(xy, q), t} = ming,, (¥,q),t = 0, (¥, q).
Thus ¢,:(xy,q) = {¢,:(¥,q)}. Similarly, we can show that 9, (xy, q) < {9J,: (v, )}.
Hence is also tQFLFLI of a ring R.
Definition 2.18 If u is QFLFRI of aring R, then u is also tQFLFRI of a ring R.
3 Main Results
In this section, we have undertaken a detailed discussion of several significant results concerning the
homomorphic behavior of t-Q Fermatean L-fuzzy subrings. These results highlight how such structures
interact under homomorphisms, providing deeper insights into their algebraic properties and contributing to
a broader understanding of Fermatean fuzzy algebra within the framework of L£-fuzzy subrings.
Theorem 3.1 Let ¢: R; = R, be a ring homomorphism from the ring R, into aring R,. Let y be
tQFLFSR of R,. Then ¢~ (y) istQFLFSR of R;.
Proof. Let x,y € Ry, since y be tQFLFSR of R,. Then
POE—y.9) = (04-14H& — ¥, @) Ip-146(F* = ¥, Q).
oY1) = (0 (dx —y,9)
0,t(p(x) —p(¥), q
min{o,« (¢(x),q), 0,: (@ (¥), Q}
minfo~' (y) (%, q), 041 () ¥, ). }
Thus @' (y)(x = y,q) = minfo~' (¥ ) (%, 4), 051 (¥ (v, D}-
Similarly, it can be prove that 9 ,-1,¢y(x — ¥, q) < max{Jy-1(x — q), 41 (v, @)}.
Again,

0

\VA!

Vy-105x =y,q9) = 0,:(d(xy), q)

= 0,t ()P (¥), q) = min{o, ¢ (4y),4)}

= minfo~ ' (¥ (%, 9), 051 (¥, ).}

Thus, 041t (¥, @) = minfo™ () (x, 9), 041 (¥ ) (¥, )}
Also,
Vy-16y(xy, q) < max{Py-1(x — q), 941 (y, @)}

Therefore, ¢~1(y") = (¢ (y))! is QFLFSR of R; and hence ¢~1(y?) is tQFLFSR of R;.
Theorem 3.2 Let ¢: R; = R, be a ring homomorphism from the ring R, into aring R,. Let y be
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tQFLFSR of R,. Then ¢~1(y)is tQFLFSR of R;.
Proof. Let x,y € Ry, since y be tQFLFSR of Ry. Also ¢~ (¥)(xy) = (04-1¢,1y(x¥, 9,
¢ Dy, @), 9 p-146 (X, Q).
Hence, it is enough to show that
0p-105(Y, @) = 05140y, @), ¢ (YD (xy) and Y y-10,6(xy, @) = 91,1V, Q).
Now,
0p-15t (XY, q) = @,¢(¢(xy), @)
=0,: ()P 9)
=0,t(d(M)P(x), @)
=0,t(¢(xy),q)
= 04-1(t)(¥X, q).
Moreover,
Vy-106(xy, q) = 9, (P(xy), q)
=0, (P(x)P(¥), q)
=9,:(¢(V)P(x), q)
=1, (p(xy), Q)
=Jy-144 VX, Q).

Thus ¢~ 1(y") = (¢ (y))! is QFLFNSR of R; and hence ¢~1(y?) is tQFLFNSR of R;.
Theorem 3.3 Let ¢p: Ry —» R, be a ring homomorphism from the ring R, into aring R,. Let y be
tQFLFLI of R,. Then ¢~1(y!) is tQFLFLI of R;.

Proof. Since y be tQFLFSR of R, and let x,y € R;.
We need only to prove
01XV, q) < 041ty (¥, q) and Iy-1(,6y(xy, @) < I y-1(,6y(V, q).

NOW, @4-1¢,ty(x¥,q) = 0t (P(x¥), q) = 0,:(P(X)P(¥), q) = 0,:(P(¥), @) = 24-1(,-)(V, D).

Therefore, 04-1¢,y(xy,q) = 04-1(,4)(xy, @)

041Xy, q) = 0,t (P(xy), @) = 0,:(P(X)P(¥), @) = 0t (P (V). q) = 04-1(,1)(V, Q).
Similarly, 9 y-1(,6)(xy, q) < 9y-10,6y(¥, 9)-
Therefore ¢~ (") = (¢~1(y))¢ is QFLFSR of R; and hence ¢~ (y*) is tQFLFSR of R;.
Theorem 3.4 Let ¢: R; = R, be a ring homomorphism from the ring R, into aring R,. Let y be
tQFLFRI of R,. Then ¢~1(y*) is tQFLFRI of R;.
Proof. Straight forward.

Theorem 3.5 Let ¢p: R; = R, be epimorphism fromthe ring R; intoaring R, and u be tQFLFSR of R;.

Then ¢(u) is tQFLFSR of R,.

Proof. Let x,y € R,. Then there exist a, b € Ry such that ¢(a) = x, $(b) = y we know that a, b need

not be unique also u is tQFLFSR of R;.
Now, ¢(u)(x =¥,9) = (0 uty(x =¥, @), 9 uty(X — ¥, D).
05 (uty(X =¥, @) = Qg (uy)t (X — ¥, q) = min{gy(,,(¢(a) — d(b), q), t}
o (D —y,q) = minfo ' (¥ (%, q), 051 (¥, D)}
Similarly, ,-1¢,)(x —¥,q) < max{g,-1(x — q),0,~1 (¥, 9)}-
Also,
V-1 (x —¥,q) = 0,:($(xy), q)
= 0,t ()P (¥), q) = min{Q, ¢, () )}
= min{fo~ ' (¥ (x,q), 051 (¥ (¥, @)- }.
Thus, 0, (_1y¢,5(x¥, @) = min{e™' (¥ ) (x, @), 041 (¥ ) (¥, @)}-
It is easy to show that g,,-1(,¢)(xy, q) < max{g,-1(x — q), 941 (¥, q)}.
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Similarly, we can show that
Dty =¥, q) < max{dy 0y (%, 9), gty (¥, D}
04ty (XY, @) = Qg (uyy: (¥, @) = min{Iy 1y (¢(a). $(b), 9), t}
= min{oy ) (¢(ab), q), t} = minfe, (ab,q), t} = ¢, (ab,q)’
forall a,b € R; suchthat ¢(a) = x,d(b) = y.
= min{sup{o, ,+)(a, q); $(a) = x}, sup{ey (b, q); $(b) = y}}
= min{Qy,ty(x, @), 04 (u,ty (¥, 0 }-
Thus 04,6y (xy, ) = min{oy,t)(x,q), 0 uty (¥, O}
Similarly, we can show that min{e,, ¢, (%, @), 04 .ty (¥, @3-
Thus ¢p(ut) = (¢p(ut))'t is QFLFSR of R, and hence ¢ (u) is tQFLFSR of R,.
Theorem 3.6 Let ¢p: Ry —» R, be epimorphism from the ring R, into aring R, and u be tQFLFNSR of
R;. Then ¢(u) tQFLFNSR of R,.
Proof. Let x,y € R,. Thenexist a,b € Ry suchthat ¢(a) = x,¢$(b) = y we know that a, b need not be
unique also p istQFLFNSR of R;. ¢p(ut)(xy,q) = 0 ut) (XY, @), Vg (uty (XY, @))- Now, we have to prove
that 04,1y (xY, @) = 04ty (¥, @) and Jy, 0y (XY, @) = I,y VX, q);
0¢(uty(XY, @) = 04ty (P(@)P(D), 9)
= 04 uty(@P(ab),q)
= sup{Qy(,t)(xy,q); p(ab) = xy}
= sup{oy .t (Vx, q); p(ab) = xy}
= Q(p(#t)(‘p(ab): q)
= Q¢(#t)(¢(a)¢(b)' q)
=04 uy(Vx, q)
Similarly, we can show that 9(xy, q) = 9(yx, q);.
Hence the result.
Theorem 3.7 Let ¢: R; — R, be epimorphism from the ring R, intoaring R, and u be tQFLFLI of R;.
Then ¢(u) is tQFLFLI of R,.
Proof. Let x,y € R,. Then there exist a,b € R,, then there exist a unique a,be R; such that ¢(a) =
x, ¢(b) =y,
(AW xy, @) = () ¥, D), (0(p (1))* Xy, @))-
Since p be IQFLFLI of Ry, then 94,6y (v, q) = 94,1y (v, @) and
therefore o (1))* (xy,q) = o) (xy, ).
Similarly, it can be shown that
P (xy, @), < 9 p(W)* (xy, 9))-
Hence (u') is QFLFLI of R, and hence ¢(u) is tQFLFLI of R,.
Theorem 3.8 Let Ry, R, be any two rings. The homomorphic image of a tQFLFSR of ¢(R;) isa
tQFLFSR of ¢(R;) = R,.
Proof. Let u be atQFLFSR of R;. We have to prove that y is tQFLFSR of R,.
Now, for ¢(x), ¢(v) € R, and q € Q.
0,:(P(x) — ¢(¥), @) = ¢,:(P(x — ¥),q) = ming, {(¢(x —¥),q), t}
= ming, {¢(x — ¥, q), t} = min{o,: (¢(x), @), 0, (¢(¥), 9)}-
Also, for ¢(x),¢(y) € R, and q € Q,
0,t(@()P(¥), q) = 0, (P(xy), q) = minfo, (¢(xy), q), t}
= min{g, (xy, q), t} = minfo,¢(x,9),0,: (¥, 9)}.
Thus, @,:(¢(x)¢(¥), q) = minfe,«(¢(x, q), ¢(¥, 9))}-
Similarly, in can be prove that

0, (¢(x) = d(¥), @) < max{d, (¢ (x),q), 9, (¢(¥), )} and
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0,1 ()P (), @) < max{d,:(¢(x,q), ¢(v, )}
Hence y isatQFLFSR of R,.
Theorem 3.9 Let Ry, R, be any two rings. The homomorphic image of a tQFLFNSR of R; isatQFLFNSR
of ¢(R;) = R,.
Proof. Since u isatQFLFSR of R;. We have to prove that y is a tQFLFSR of R,.
Now for ¢(x), ¢(y) € R, and q € Q, clearly y is tQFLFSR of R,.
Also, u is tQFLFSR of R;.

Again, ¢, (@(x)P(), @) = 0,:(P(x¥), q) = 0,: (xy, q)
=0,:(yx,q) = 0,:(¢(¥x), q) = 0,:(P(V)P(x), q).
Thus, @, (@(x)P(¥), @) = 0,: (P(V)P(x), q) forall ¢(x), ¢(¥) ER; and q € Q.
Also, 9,: ()P (¥), q) = 9,:(p(xy), q) < Ve (xy, @) = T (¥x,q) = 0,,e (P(¥)P(x), 9).
Thus, 9, (@(x)P(¥), @) =V, (V)P (x), @)
Therefore, y is tQFLFSR of R;.

4 Conclusion

In order to deal with cognitive uncertainty in a more comprehensive manner, Fermatean fuzzy sets have
emerged as a powerful extension of intuitionistic fuzzy sets, offering greater flexibility in modeling
hesitation and imprecision. Motivated by these advantages, this paper focuses on the study of t-Q
Fermatean L-fuzzy ideals in the context of normal rings. We introduce and investigate their structural
characteristics, establishing several important properties related to their homomorphic behavior. These
results not only enrich the theoretical foundation of Fermatean fuzzy algebra but also provide useful
insights for further applications. Looking ahead, a promising direction for future research lies in extending
the framework to incorporate the concept of rough Fermatean fuzzy sets. In particular, we aim to develop
and prove a number of significant theorems concerning rough Fermatean fuzzy sets in rings, which would
further enhance the applicability of this theory in handling uncertainty and approximation in algebraic
systems.
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