1 Ketamine Combined With Dextromethorphan-Bupropion

2 for Depression in the Context of Nitrous Oxide Misuse

з Abstract:

- 4 **Background:** Treatment-resistant depression (TRD) affects up to a third of
- 5 patients with major depressive disorder and remains difficult to manage with
- 6 conventional therapies. Rapid-acting antidepressants targeting the glutamatergic
- 7 system, such as ketamine, esketamine, and dextromethorphan-bupropion, have
- 8 emerged as promising alternatives. Nitrous oxide, also an NMDA receptor
- 9 antagonist, has demonstrated antidepressant properties in clinical trials but carries
- significant risks when used recreationally.
- 11 Case Presentation: We describe a 27-year-old male with no prior psychiatric
- 12 history who presented with escalating nitrous oxide use following the suicide of his
- 13 cousin. He reported compulsive urges to continue use despite associated
- 14 psychiatric symptoms. The patient endorsed depressive features without suicidal
- intent or psychosis. Given the limited two-week timeframe prior to his wedding,
- 16 rapid-acting treatment was initiated with esketamine infusion and
- 17 dextromethorphan-bupropion (Auvelity), along with naltrexone for craving
- management. At two-week follow-up, the patient reported abstinence from nitrous
- 19 oxide, reduced irritability, and symptomatic improvement.
- 20 **Discussion:** This case underscores the clinical overlap between recreational nitrous
- 21 oxide use and emerging therapeutic applications of NMDA receptor antagonists.
- 22 esketamine provided rapid symptom reduction, while dextromethorphan-bupropion
- 23 supported early maintenance of response. The combination highlights a potential
- 24 therapeutic pathway for patients who self-medicate with nitrous oxide, substituting
- 25 maladaptive use with evidence-based, clinically supervised interventions.
- 26 Conclusion: This report describes a novel treatment strategy combining
- esketamine and dextromethorphan-bupropion in the context of nitrous oxide
- 28 misuse. Further research is warranted to explore the biological underpinnings of
- 29 this approach and to evaluate its generalizability to broader patient populations
- 30 with comorbid depression and substance misuse.

32

Introduction

- 33 Treatment-resistant depression (TRD) remains one of the most difficult conditions
- to manage in psychiatry, with up to one-third of patients failing to respond to
- 35 conventional antidepressants such as selective serotonin reuptake inhibitors
- 36 (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) [1]. In recent
- years, rapid-acting antidepressants targeting the glutamatergic system, particularly
- N-methyl-D-aspartate (NMDA) receptor antagonists, have shown promise in
- 39 addressing this critical gap in care [2,3].
- 40 Nitrous oxide, a non-competitive NMDA receptor antagonist long used for
- anesthesia and analgesia, has been shown in recent studies to produce rapid
- antidepressant effects [2]. However, its growing prevalence as a recreational
- substance is concerning, as misuse is associated with significant neurotoxicity and
- 44 adverse outcomes, including hematologic abnormalities, neurologic deficits, and
- 45 psychiatric disturbances [3].
- 46 Ketamine, another NMDA receptor antagonist, has demonstrated robust efficacy in
- 47 reducing depressive symptoms and suicidal ideation in TRD, leading to the FDA's
- 48 2019 approval of intranasal esketamine, the first antidepressant in decades to act
- via a novel mechanism [4-6]. More recently, Auvelity, a fixed-dose combination of
- 50 dextromethorphan and bupropion, was approved in 2022 as another rapid-acting
- agent targeting the glutamatergic system, with clinical trials confirming its early
- and sustained antidepressant effects [6].
- Here, we present the case of a young adult male with escalating recreational
- 54 nitrous oxide use in the setting of bereavement-related depression. This report
- 55 highlights the clinical challenges of replacing maladaptive self-medication with
- safe, evidence-based alternatives, and describes a novel treatment strategy
- 57 combining esketamine with dextromethorphan-bupropion.

58 Case presentation

- We describe the case of a 27-year-old male, with no significant past psychiatric or
- 60 medical history, presenting for urgent psychiatric evaluation two weeks prior to his
- scheduled wedding. The referral was prompted by escalating nitrous oxide use
- 62 ("huffing") following the suicide of his cousin who had been his closest friend and
- 63 confidant.
- The patient reported a six-month history of intermittent nitrous oxide use that
- 65 intensified after his cousin's death, progressing to three times daily. He described
- associated symptoms of euphoria, slurred speech, dizziness, headaches,
- 67 drowsiness, and impaired coordination.
- He denied any formal family history of depression and anxiety, though noted that
- 69 his mother may experience depressive symptoms. The patient endorsed low mood
- and depressive features but denies manic or psychotic symptoms, delusions,
- 71 nightmares or suicidal intent. Despite acknowledging compulsive urges to use
- 72 nitrous oxide, he emphasized a desire to live and build a family. He had previously
- briefly engaged in psychotherapy, though found it unhelpful.
- 74 The patient was initiated on esketamine infusion,in combination with Auvelity
- 75 (dextromethorphan-bupropion 45/105 mg) for depressive and trauma related
- symptoms, and naltrexone 50 mg for craving management.
- At two week follow up, patient had been compliant with pharmacotherapy and had
- 78 received 2 infusions of Ketamine. He demonstrated reduced irritability and
- 79 agitation, with self-reported maintenance of abstinence from nitrous oxide use.

Discussion

81

Nitrous oxide and ketamine share overlapping neurobiologic effects through their 82 non-competitive inhibitory nature of the NMDA receptor [1,2]. Both agents have 83 demonstrated rapid antidepressant effects in patients with TRD, with ketamine 84 showing particular efficacy by enhancing glutamate-mediated synaptic 85 transmission in the hippocampus and prefrontal cortex [1]. At subanesthetic, but 86 therapeutically significant concentrations, nitrous oxide produces ketamine-like 87 effects on hippocampal synaptic function, further suggesting convergence in their 88 mechanism of action [1]. 89 90 Despite these similarities, the clinical and recreational contexts differ significantly. 91 While nitrous oxide has been in medical use for more than 150 years, recreational 92 misuse has been associated with severe adverse outcomes including hematologic 93 94 abnormalities, frostbite, impaired bowel and bladder function, paralysis, heart palpitations, and psychiatric disturbances such as psychosis [3]. In contrast, 95 ketamine, when administered in a controlled clinical setting, is associated with a 96 more favorable risk-benefit profile and is recognized as a rapid-acting 97 antidepressant [5-7]. esketamine, the S-enantiomer of ketamine, received FDA 98 fast-track and breakthrough therapy designations, reflecting both its novel 99 mechanism beyond traditional monoaminergic agents and efficacy in reducing both 100 depressive symptoms and suicidal ideation [4,5]. 101 102 At the cellular level, NMDA receptor antagonism triggers downstream 103 glutaminergic signaling, including transient glutamate release, stimulation of α-104 amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and 105 activation of neurotrophic factor pathways. These changes ultimately promote 106

synaptogenesis in brain regions critical to mood regulation [7]. Ketamine's rapid 107 108 effects may also involve stimulations of the mammalian target of rapamycin complex 1 (mTORC1) pathway, which enhances brain-derived brain-derived 109 neurotrophic factor (BDNF) production and restores dopaminergic 110 111 neurotransmission [7]. These effects contrast with the delayed onset of SSRIs and SNRIs, making esketamine particularly useful in acute or time-sensitive clinical 112 113 scenarios such as suicidality or major psychosocial stressors [4,5]. 114 In this case, the patient's reliance on nitrous oxide to self-manage his depressive 115 symptoms necessitated substitution with a safer, evidence-based alternative. The 116 limited two-week timeframe before his wedding justified the use of a rapid-acting 117 118 intervention. esketamine provided a clinically meaningful reduction in depressive and trauma-related symptoms, while Auvelity (dextromethorphan-bupropion) was 119 initiated to sustain this early response. Dextromethorphan acts as both an NMDA 120 receptor antagonist and sigma-1 receptor agonist; when combined with bupropion, 121 which prolongs its half-life through CYP2D6 inhibition, the combination produces 122 rapid and robust antidepressant effects. Clinical trials have demonstrated 123 reductions in Montgomery-Asberg Depression Rating Scale (MADRS) scores 124 within two weeks of treatment initiation [6]. 125 126 127 Importantly, recent research suggests that dextromethorphan-based therapy may also help maintain the antidepressant effects of ketamine over time [8]. Given their 128 129 shared pharmacologic properties, including modulation of NMDA receptors, sigma-1 receptors, and mu-opioid receptors, a synergistic effect in sustaining mood 130 stabilization is biologically plausible [8]. This raises the possibility that 131 dextromethorphan-bupropion may function not only as a rapid-acting 132 antidepressant, but also as a maintenance strategy following ketamine treatment. 133

134

135

136

137

138

139

140

141

To our knowledge, this is the first reported case describing combined esketamine and dextromethorphan-bupropion in the context of nitrous oxide misuse. It highlights a potential therapeutic pathway in which clinically supervised NMDA receptor antagonists can substitute for maladaptive self-medication, providing both acute symptom relief and sustained stabilization. Further studies are warranted to clarify the biological underpinnings of this approach and to evaluate its broader applicability in patients with comorbid depression and substance misuse.

142

143

144

145

146

147

148

149

150

151

152

153

Conclusion

This case illustrates a novel therapeutic strategy in which rapid-acting glutamatergic agents, esketamine and dextromethorphan-bupropion, were successfully employed to treat depressive symptoms in a patient with maladaptive nitrous oxide use. By substituting recreational NMDA receptor antagonism with clinically supervised, evidence-based interventions, the approach provided rapid symptom relief within a time-sensitive context and facilitated abstinence from nitrous oxide. Future research should investigate the biological rationale and clinical utility of this combination, particularly in patients with comorbid depression and substance misuse.

References

Izumi, Y., Hsu, F. F., Conway, C. R., Nagele, P., Mennerick, S. J., & 154 Zorumski, C. F. (2022). Nitrous Oxide, a Rapid Antidepressant, Has 155 Ketamine-like Effects on Excitatory Transmission in the Adult 156 Hippocampus. Biological psychiatry, 92(12), 964–972. 157 158

https://doi.org/10.1016/j.biopsych.2022.06.016

- 159 2. Kalmoe, M. C., Janski, A. M., Zorumski, C. F., Nagele, P., Palanca, B. J., &
- 160 Conway, C. R. (2020). Ketamine and nitrous oxide: The evolution of
- NMDA receptor antagonists as antidepressant agents. *Journal of the*
- *neurological sciences*, 412, 116778.
- https://doi.org/10.1016/j.jns.2020.116778
- 164 3. Program, H. F. (n.d.). *Safety alert*. U.S. Food and Drug Administration.
- https://www.fda.gov/food/alerts-advisories-safety-information/fda-advises-
- 166 consumers-not-inhale-nitrous-oxide-
- products#:~:text=Inhaling%20nitrous%20oxide%20can%20result,palpitatio
- ns%2C%20paralysis%2C%20psychiatric%20disturbances%20(
- 169 4. Nawaz, A., Mamoon, B., Batool, T. E., Khattak, M. I., Amir, F., Akbar, A.,
- 470 & Khan, S. (2024). Advances in Antidepressant Therapy: Comparing the
- 171 Efficacy of Selective Serotonin Reuptake Inhibitors (SSRIs), Serotonin-
- Norepinephrine Reuptake Inhibitors (SNRIs), and Novel Agents. *Cureus*,
- 5. Aboujaoude, E., & Salame, W. O. (2016). Naltrexone: A pan-addiction
- treatment? CNS Drugs, 30(8), 719–733. https://doi.org/10.1007/s40263-016-
- 176 0373-0
- 6. McCarthy, B., Bunn, H., Santalucia, M., Wilmouth, C., Muzyk, A., &
- Smith, C. M. (2023). Dextromethorphan-bupropion (Auvelity) for the
- 179 Treatment of Major Depressive Disorder. Clinical psychopharmacology and
- 180 neuroscience: the official scientific journal of the Korean College of
- *Neuropsychopharmacology*, *21*(4), 609–616.
- https://doi.org/10.9758/cpn.23.1081
- 7. Vasiliu O. (2023). Esketamine for treatment-resistant depression: A review
- of clinical evidence (Review). Experimental and therapeutic medicine,
- 185 25(3), 111. https://doi.org/10.3892/etm.2023.11810