Jana Publication & Research

Agronomic performance of cowpea [Vigna unguiculata (L.) WALP.] varieties as influenced by combined application of Pou...

P VRC38

Document Details

Submission ID

trn:oid:::2945:315702624

Submission Date

Oct 1, 2025, 10:34 AM GMT+5:30

Download Date

Oct 1, 2025, 10:38 AM GMT+5:30

File Name

IJAR-54114.pdf

File Size

962.7 KB

17 Pages

6,922 Words

33,462 Characters

23% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text

Match Groups

84 Not Cited or Quoted 18%

Matches with neither in-text citation nor quotation marks

99 23 Missing Quotations 5%

Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

O Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

14% 📕 Publications

10% La Submitted works (Student Papers)

Match Groups

84 Not Cited or Quoted 18%

Matches with neither in-text citation nor quotation marks

23 Missing Quotations 5%

Matches that are still very similar to source material

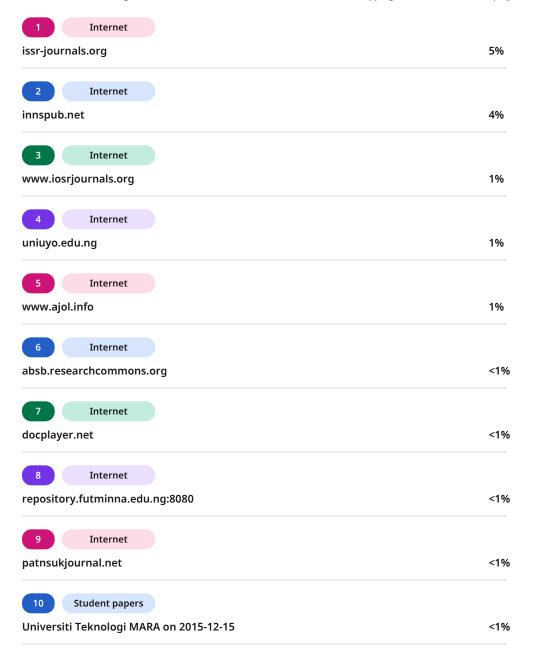
0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources


20% Internet sources

14% 📕 Publications

10% L Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

11 Internet	
www.researchgate.net	<1%
12 Publication	
Innovations as Key to the Green Revolution in Africa, 2011.	<1%
13 Internet	
oar.icrisat.org	<1%
14 Publication	
"Essential Plant Nutrients", Springer Science and Business Media LLC, 2017	<1%
15 Publication	
E. Ndor, U. D. Faringoro. "Response of Cowpea (Vigna unguiculata L. Walp) to Tim	<1%
16 Student papers	
Kenyatta University on 2018-06-21	<1%
17 Internet	
taas.in	<1%
18 Publication	
Nasreen, S, MN Yousuf, ANM Mamun, S Brahma, and MM Haquc. "Response of ga	<1%
19 Internet	.40
cgspace.cgiar.org	<1%
20 Internet	
hu.edu.et	<1%
21 Internet	-4.04
www.hummingbirdpubng.com	<1%
22 Publication	
Bachir Bounou Issoufa, Ali Ibrahim, Robert Clement Abaidoo. "Agronomic and ec	<1%
23 Internet	
easpublisher.com	<1%
24 Internet	
mafiadoc.com	<1%

25 Internet	
pmc.ncbi.nlm.nih.gov	<1%
26 Internet	
researchspace.ukzn.ac.za	<1%
27 Internet	
file.techscience.com	<1%
28 Student papers	
ucr on 2025-06-02	<1%
29 Internet	
www.mdpi.com	<1%
30 Internet	
www.nepjol.info	<1%
31 Student papers	
Agronomski fakultet / Faculty of Agriculture	<1%
32 Internet	
www.cropj.com	<1%
33 Publication	
G.D. Yang, Z.Y. Hu, Z.Y. Hao, J.H. Li, B.S. Sun, X.X. Meng, Q. Wang. "Breeding of Kid	<1%
34 Student papers	
Higher Education Commission Pakistan on 2011-04-22	<1%
35 Student papers	
Higher Education Commission Pakistan on 2013-07-14	<1%
36 Student papers	
Piedmont Governor's School on 2018-11-26	<1%
37 Student papers	
University of Western Australia on 2021-10-22	<1%
38 Publication	
Waltram Ravelombola, Ainong Shi, Yuejin Weng, Beiquan Mou et al. "Association	<1%

39 Internet	
article.sapub.org	<1%
40 Internet	
erepository.uonbi.ac.ke	<1%
41 Internet	
hdl.handle.net	<1%
42 Internet	
journalcra.com	<1%
43 Internet	
ouci.dntb.gov.ua	<1%
44 Internet	
44 Internet www.scirp.org	<1%
45 Publication B. Karikari, E. Arkorful, S. Addy. "Growth, Nodulation and Yield Response of Cowp	<1%
46 Student papers CCS Haryana Agricultural University Hisar on 2022-07-16	<1%
Publication Ehizogie Joyce Falodun, James Osaretin Ehigiator, Sunday Aghafekokhian Ogedeg	<1%
Zinzogie joyee raiouan, james osaretin zingiator, sanaay rigitarekokinan ogeaegii.	
48 Publication Elmahdy Metwally, Mohamed Sharshar, Ali Masoud, Benjamin Kilian et al. "Devel	<1%
Emilandy Metwany, Monamed Sharshar, An Massad, Benjamin Kinan et al. Bevel	-170
49 Student papers Higher Education Commission Polyietan on 2000 00 26	~10/
Higher Education Commission Pakistan on 2009-09-26	<1%
50 Student papers	-40/
Higher Education Commission Pakistan on 2014-03-06	<1%
51 Student papers	
Kenyatta University on 2021-09-06	<1%
52 Publication	
Koirala, Saurabha. "Genetic Variation in Black Gram and Guar for Phenology, Phy	<1%

Publication

Rajan Katoch. "Ricebean", Springer Science and Business Media LLC, 2020

<1%

54 Publication

Yahaya, Damba. "Evaluation of Cowpea (Vigna unguiculata (L.) Walp) Genotypes f... <1%

Agronomic performance of cowpea [Vignaunguiculata(L.) WALP.] varieties as influenced bycombined application of Poultry Manure and Mineral Fertilizer in two agro-ecological zones of Burkina Faso.

4

5

6 7

8 9

10

11

12

13

14

15

16

17

18 19

20

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

1

2

3

Abstract

21

22

23 24

Field experimentwas laid in a split plot design in 2019 and 2020 at rainy seasons at Farako-Ba in soudanianandKamboinse insoudano-sahelian agro-ecological zones of Burkina Faso. The fertilizer levels (0 kg/ha, 100 kg/ha NPK as control, 60 kg/ha NPK + 1.5 t/ha poultrymanure, 100 kg/ha NPK + 1.5 t/ha poultry manure and 75 kg/ha TSP (P_2O_5) + 1.5 t/ha poultry manure) occupied the main plots while the cowpea varieties (KVx745-11P, Komcalle, Tiligre and Neerwaya) were assigned to the sub-plots. The results of the study showed that location as well as fertilizer application rate have significantly affected most of agronomic characters. The average yield recorded in Farako-Ba were 1013.79 kg/ha and 1030.51 kg/ha for 2019 and 2020 while in Kamboinse it was 1166.59 kg/ha and 1165.03 kg/ha, in 2019 and 2020, respectively. The highest grain yield was recorded with combined application of poultry manure with mineral fertilizer at 100 kg/ha NPK + 1.5 t/ha poultry manure. This was followedby 75 kg/ha TSP (P₂O₅) + 1.5 t/ha poultry manure. Theresults suggest that combinedapplication of poultry manure and chemical fertilizer can restore soils and lead to high yields in cowpea.

Keywords: Poultry manure, mineral fertilizer, agro-ecological zones, Cowpea Yield

Introduction: -

Cowpea (Vignaunguiculata (L.) Walp.) is one of the most important and widely cultivated legumes in the world, particularly in Africa, Latin America and some parts of Asia and the United States (Xiong et al., 2016). Cowpea is cultivated for its leaves, green pods, fodder and mature pods. Traditionally, in West Africa, it is intercropped with other food crops. Increasingly, with developing of seeds companies, cowpea is cropped in sole. In Africa, particularly in western region where cowpea production is important and widespread, the lowest yields have been observed among rural poor farmers. Ehlers and Hall (1997) have reported that average cowpea yield in Africa was less than 300 kg ha⁻¹. Various reasons such as traditional cultivation systems, low soil fertility, inadequate planting systems, inappropriate cultivars and existing planting practices limit cowpea yield in Africa (Ajeigbe et al., 2010; Kamara et al., 2018).

In Burkina Faso, agriculture is characterized by a low productivity due to natural poor soils in mineral elements (nitrogen, potassium and phosphorus) and continuous decline in soil fertility through practice of extensive and mining farming (SNGIFS, 2015). According to the estimation of Ministry of Agriculture (1999), Burkina Faso soils contains less than 1% of organic matter, less than 0.06% of nitrogen and less than 0.06% of phosphorus. Fallow land which was the traditional way of soil fertility enhancement is less practiced because of high demand of arable soils (Bado, 2002). The rapid demographic growth is putting pressure on agricultural lands which become under permanent cultivation. Add to the fact that soils in semiarid West Africa are inherently low in nitrogen and phosphorus, soils productivity tends to decline and even fertilizer resilient crops like cowpea yields are declining despite breeding efforts to release highperforming varieties.

- 45 Application of poultry manure prior to sowing combined with mineral fertilizer at seedling
 - 46 emergence and use of improved cowpea germplasm may increase agronomic efficiency and
 - 47 restore soil fertility.
- 8 48 Materials and Methods: -
- The study was carried out during rainy seasons (July-October) of two consecutive years (2019)
 - and 2020) in two agro-ecological zones (AEZ) of Burkina Faso. At Kamboinse Research Station
 - 51 (12°27' N 1°32' W; 295 m) and Farako-Ba Research Station (11°5' N 4°18' W; 439 m).
 - The experiment comprised of 4 cowpea varieties (KVx745-11P (dual-purpose variety), Komcalle
 - 53 (KVx442-3-25SH), Tiligre (KVx775-33-2G) and Neerwaya (KVx780-6). and 5 fertilizer levels
 - 54 (0 kg/ha, 100 kg/ha NPK as control, 60 kg/ha NPK + 1.5 t/ha poultrymanure, 100 kg/ha NPK +
 - 55 1.5 t/ha poultry manure and 75 kg/ha TSP $(P_2O_5) + 1.5$ t/ha poultry manure). These were laid out
 - in a Split Plot Design (SPD) with three replications. Fertilizer levels were assigned to the main
 - plotswhile the sub-plots were occupied by cowpea varieties. Poultry manure (PM) at a rate of 1.5
 - tons per hectare was incorporated to the soil at two weeks before sowing. Compound NPK (14-
 - 59 23-14) and TSP (46 % P₂O₅) fertilizer was applied by micro-dose at two weeks from sowing
 - date. The fertilizer levels were: 0, 100 kg/ha NPK, 60 kg/ha NPK + 1.5 t/ha PM, 100 kg/ha NPK
 - date. The retained levels were. 0, 100 kg/ha 14 k, 00 kg/ha 14 k, 1.5 t/ha 1 k, 100 kg/ha 14 k
 - + 1.5 t/ha PM and 75 kg/ha TSP + 1.5 t/ha PM. The number of rows per sub plot was six (6) and
 - data were collected from the net plots made up of two innermost rows of each sub plot. The two
 - 63 rows on either side of innermost rows were considered as a sampling rows. Cowpea varieties
 - were sown at plant spacing of 70 cm x 30 cm, corresponding to a plants population of 95,238 per
 - 65 hectare. The size of each main plot was 40.8 m². Sub plot measure was 8.4 m² while each net
 - plot size was 3.36 m². A distance of 1 m was left between sub plots while the main plots and
 - 67 replications were separated by 1.5 m.
- Prior to sowing, land was cleared, harrowed and leveled. seeds were treated with a combination
 - of chlorpyrifos-ethyl and thiram (*Calsio*) an insecticide-fungicide at a rate of 20 g per kg⁻¹ of
 - seeds. Weeds were controlled manually by hoe weeding at 3 and 6 weeks after sowing. At 8
 - weeks after sowing, weeds were uprooted manually. Pesticide application was done at 5 and 7
 - weeks after sowing by using *Deltamethrin*at the dose of 1 litre/ha
- 39 73 Six plants from the middle two rows were randomly selected and tagged, on which growth
 - parameters were collected at 6 and/or 9 weeks after sowing (WAS). Data on plants height at
 - 6WAS and 9 WAS, branches number were taken at 9 WAS. The average number of leaves,
 - shoots dry weight and leaves chlorophyll content were recorded at 6 WAS. Data on reproductive
 - should dry weight and leaves emorophyn content were recorded at o was. Data on reproductive
 - traits and grain yield components such as: day to 50% flowering, day to 95% pods maturity, pods
 - length, number of seeds per pod, 100 seeds weight as well as shelling percentage, fodders yield
 - and grains yield were estimated or/and computed from data collected in each two innermost
 - 80 rows.

- 2) 81 Data collected were subjected to analysis of variance (ANOVA) done by using JMP Pro 2017
 - statistical package, while Student Newman's Keuls(SNK) test was used to sort out significant
- 12 83 treatment means ($P \le 0.05$).

Results and Discussion: -

- Table 1 shows that soil texture class was sandy-loam at Farako-Ba and loamy at Kamboinse.
- 87 Chemical properties of soils in both locations were similar. The pH values were 6.59 and 6.13

for Farako-Ba and Kamboinse respectively. Soils in experimental sites were poor in organic carbon and total nitrogen. An organic amendment could improve their physical and chemical status. Poultry manure used as background fertilizer pH was little bit acidic (5.61). According to (Agbede *et al.*, 2008), soil physical and chemical properties is improved when poultry manure is added to the nutrients subtract.

Table 1 : Physical and Chemical Property of Soils at Farako-Ba and Kamboinse and Poultry Manure chemical

Soil Physical	Farako-Ba	Kamboinse	Chemical Properties	Farako-Ba	Kamboinse	Poultry Manure
Properties						
Sand	63.37	46.75	pН	6.59	6.13	5.61
Silt	21.18	40.54	Organic C (%)	0.50	0.64	13.27
Clay	15.45	12.71	Total N (%)	0.047	0.051	0.66
Texture Class	Sandy-Loam	Loamy	Available P (mg/Kg)	4.89	3.45	4.75
			Ex.cations (cmol ⁺ /Kg)			
			K	0.15	0.13	1.13
			Na	0.10	0.06	0.12
			Ca	1.40	1.55	2.05
			Mg	0.43	0.60	0.81
			EA (cmol ⁺ /Kg)	0.02	0.09	0.16
			CEC (cmol ⁺ /Kg)	2.09	2.43	3.11

Source: Soil Lab, Centre for Dryland Agriculture, Bayero University, Kano

Meteorological data were recorded from experimental sites. The average rainfall values were 1370.20 mm and 1131.50 mm for Farako-Ba in 2019 and 2020 respectively. At Kamboinse, the values were 932.30 mm and 912.50 mm for 2019 and 2020 respectively. The average minimum and maximum temperature was (22.32°C and 33.81°C) and (22.38°C and 34.07°C) for Farako-Ba in 2019 and 2020 respectively. The average values recorded at Kamboinse were (23.20°C and 35.72°C) and (23.21°C and 35.93°C) for 2019 and 2020 respectively. Over the two years, as expected, the annual rainfall was higher in Farako-Ba than Kamboinse. Also, average temperatures were slightly lower in Farako-Ba than Kamboinse. Temperature and rainfall might significantly affect cowpea production. According (Khan *et al.*, 2010) and (Mohammed *et al.*, 2021) too more rainfall inhibit good performance of cowpea yield while positive relationship exists between temperature and cowpea yield.

The results of plants height at six and nine weeks after sowing according tocropping year, fertilizer rate and cowpea varieties at Farako-Ba and Kamboinse are presented in Table 2. At 6 WAS, the effect of cropping year was not significant, however contrasted effect was found with fertilizer application concerning both locations. At 9 WAS, fertilizer effect was not significant on plants height even if positive trends were found with combined application of mineral and organic fertilizer. This result is in concordance with findings of Abayomi *et al.*, (2008) who reported that lowest plants height were recorded in plots with no application of fertilizer. Also, Karikari *et al.*, (2015) showed that fertilizer rate, particularly P fertilizer affects significantly plant height. The average plants height show that varieties have different growth capacities. These results were consistent with Karikari and Arkorful, (2015) and El-Naim & Jabereldar,

121

129

130

131

132

133

134

135

136

137

138

139 140

141

142

117 (2010) who reported that differences in plants height could be explained by genetic effect of individual varieties. Also, similarly, Bisikwa *et al.*, (2014) showed that there was significant difference in plants height among sownes varieties.

difference in plants height among cowpea varieties.

The average number of leaves per plant at 6 WAS presented in Table 3 shows significant

Plants height (cm) 6WAS

Plants height (cm) 9WAS

as growing environment has significantly impacted theaverage number of leaves per plant. Fatahi et al., (2014)demonstrated that manure application has significant effect on number of leaves. Tiligre and Neerwaya which were prostrate recorded the highest leaves followed by KVx745-11P whileKomcalle recorded lowest leaves number. This may be due to genetic constitution of varieties. This result is in conformity with the investigation of earlier workers who observed significant difference in number of leaves per plant among different cowpea varieties Agyeman et al., (2014); Miheretu & Sarkodie-Addo, (2017).

difference as result of fertilizer application rate. Also, it is noticed that cowpea varieties as well

In Table 3, it is noticed that average branches number per plant was not statistically different for cropping year and for different fertilizers application rate excepted at Farako-Ba at 9 WAS where fertilizer application induced significant difference. The control plot (0 kg/ha) recorded the lowest average branches number. The relative high number of primary branches could be explained by the fact that adequate nutrients were available for optimum growing of cowpea plants. This result is in agreement with investigations of Olusegun, (2014) and Miheretu & Sarkodie-addo, (2017) who found that combined application of organic manure and inorganic nitrogen fertilizer increase average number of branches of cowpea as compared to sole application of mineral fertilizer or no fertilizer application. This trait shows significant differences between varieties. Tiligre and Neerwaya produced higher average number of branches per plants and KVx745-11P produced lower. This variation might be due to the differences in genetic composition among the cowpea varieties. Agyeman *et al.*, (2014) and Miheretu & Sarkodie-Addo (2017) reported significant differences in average number of branches per plant among different cowpea varieties.

Table 2: Cropping Year, Fertilizer Levels and Varietal Effects on Plant Height, at 6 and 9 WAS
 at Farako-Ba and Kamboinse

	Farako-Ba	Kamboinse	Farako-Ba	Kamboinse
Cropping Year				
2019	36.72	42.56	54.08a	52.83b
2020	I3€a&∉s nun	nber 6 443.468)	4 B.95% hes n	umber69V674S
Prob.	Falako Ba	Kahabolia se	Faraloo Ba	Kahlobiase
Epoping Year	1.82	1.62	2.33	1.94
Fertilizer levels				
0	26.42c	38.21	43.59	55.46
100 NPK	33.08bc	46.46	41.97	55.72
60 NPK + PM	35.28ab	43.85	47.86	61.15
75 TSP +PM	42.94a	45.57	50.95	54.36
100 NPK + PM	38.63ab	41.29	53.21	59.47
Prob.	0.0017	0.1514	0.1642	0.4653
SE±	2.88	2.56	3.69	3.07
Varieties				
KVx745-11P	38.79a	45.62b	56.57a	55.61b
Komcalle	14.04b	16.03c	15.89b	16.93c
Tiligre	43.42a	56.31a	58.84a	79.11a
Neerwaya	44.83a	54.34a	58.7a	77.27a
Prob.	<.0001	<.0001	<.0001	<.0001
SE±	2.58	2.29	3.30	2.75

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

147

145

146

148

149

150

151

152

153

154

Table 3: Cropping Year, Fertilizer Levels and Varietal Effects on Plant Leaves number (6 155 WAS) and Branches number (9 WAS) at Farako-Ba and Kamboinse 156

2019	29.19	36.51b	3.91	3.88
2020	30.75	38.74a	3.97	3.96
Prob.	0.0598	0.0318	0.6413	0.4477
SE±	Leaves chlore	ophyll 6₩AS	Shoots dry we	eight (g) 6\WAS
Fertilizer levels	Farako-Ba	Kamboinse	Farako-Ba	Kamboinse
Cropping Year	26.45c	34.06b	3.61	3.81
2 9 0 9NPK	2 § 34 § 7c	55 :9 5 a	26 93 4	33 1, 96
8930PK + PM	3 525 49b	58:89b	247.07 5 4	29.65
Propsp +PM	92.589	99.247	0 <u>37.94</u> 7	0,0596
PETNPK + PM	3 9.44 a	39. 4 6a	4.68	4.83
Fertilizer levels	<.0001	0.0127	0.1102	0.3146
§ E±	504.9320	514.1451	1 8.04 b	2 8 . ∅ 1b
Varieties				
KVx745-11P	29.50b	38.16a	3.46b	3.63b
Komcalle	26.21c	31.23b	4.06a	3.77b
Tiligre	32.60a	40.80a	4.20a	4.18a
Neerwaya	31.58ab	40.30a	4.04a	4.10a
Prob.	<.0001	<.0001	0.0002	0.0003
SE±	0.82	1.03	0.12	0.10

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

Table 4 shows that there is no variation of leaves chlorophyll content according to fertilizer application. This result is opposite to the findings of El-Waraky (2007) who showed that cowpea leaves chlorophyll content is positively impacted by nitrogen fertilizer. The differences in leaves chlorophyll content according to varieties could express their differences in term of photosynthetic capacity. This result is supported by Dong *et al.*,(2019)who found that cowpea genotypes are inherently different in chlorophyll content. Also, the results demonstrated that growing environment may have significant influence on leaves chlorophyll content.

At the stage of 6 WAS, the results of shoots dry weight were statistically similar within the location across the years (Table 4). The results showed that the average shoots weight according to cowpeas varieties was not significant at Farako-Ba while in Kamboinse contrasted results were found. The effect of fertilizer was remarkable at 6 WAS which can be explained by the fact that fertilizer application accelerates plants growth, as evidenced by the increase in shoot dry weight.

179

180

181

182

183 184

185

186

187

188

189

190

100 NPK	51.65	54.28	28.97a	30.47b
60 NPK + PM	53.50	54.22	27.89a	30.14b
75 TSP +PM	53.55	53.51	29.55a	31.1b
100 NPK + PM	53 50 % Flo	owering _{4.45}	$\frac{32.27a^{95\%}}{}$	Maturity 06a
Prob.	Farako _{t-} Ba	Kambojase	Faradoo Ba	Kamboinse
<u>Sæ</u> pping Year	0.69	0.72	2.35	1.93
Varieties	39.52a	38.92a	65.77a	64.84a
K ₩745-11P	39:93B	<i>53</i> 8.742b	637.589	2 3 :398
Rrob Komcalle	53.9901b	€2.89b	≥ 20041	27.800ab
\$ H±gre	5940ab	5 <u>9</u> . 1 8a	28.140	34.0 6 a
Rectilizer levels	54.87a	55.3a	29.74	33.96a
Prob.	89072	3.8348	06.47983	0.0220
\$ <u>@Q</u> NPK	3 0.25 b	3 % 3850c	624.1664	64.700
60 NPK + PM	39.04bc	38.21c	64.67	64.14

Table 4: Cropping Year, Fertilizer Levels and Varietal Effects on Leaves chlorophyll content (6WAS) and PlantShoots dry weight (6WAS) at Farako-Ba and Kamboinse

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

In Table 5, it is showed that 50% flowering varied significantly according to cropping season, fertilizer rate and varietal difference in both experimental sites. The results indicated that 50% flowering cycle slightly decrease when fertilizer was applied. This result is in line with findings of Nkaa *et al.*, (2014) who stated that enhancement of growth by P fertilizer induced earlier flowering. There was a significant difference in number of days to 50% flowering among cowpea varieties. Genetic constitution of each variety may explain the difference of phenological attributes. Similar results were obtained by authors such (El-Naim *et al.*, 2012) and (Bisikwa *et al.*, 2014).

The results showed that cropping year as factor may significantly affect 95% maturity trait (Table 5). None significant difference was observed on this character as result of fertilizer application. Furthermore, cowpea varieties show some differences concerning their maturity cycle. This could be attributed to genetic attributes of each variety. Comparable results were found by Bisikwa *et al.*, (2014).

75 TSP +PM	39.13bc	38.17c	64.88	63.54
100 NPK + PM	38.75c	38.71ab	64.29	63.55
Prob.	0.0016	0.0075	0.3912	0.0636
SE±	0.16	0.16	0.24	0.23

Varieties				
KVx745-11P	39.80as len	oth (cm) 50b	66.81a	eeds per pods
Komcalle	Farako-Ba	gth (cm) ³⁰⁰ Kambojnse	Farako-Ba	Kamboinse
Cropping Year Need waya 2019 Prob. 2020	39.43a 39.53a <.0001 15.75	38.97a 39.07a 16.075 <.0001 16.68a	64.50c 66.13b -{0001 11.08a	63.40d 64.84¢ 10.886 ₹0001 11.32a

Table 5: Cropping Year, Fertilizer Levels and Varietal Effects on 50% Flowering and 95%

192 Maturityat Farako-Ba and Kamboinse

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

Some contrasted variations in average pods length were noticed according to cropping year and fertilizer rate (Table 6). The effect of cropping year was not significant at Farako-Ba, which wascontrary to what obtained in Kamboinse. In addition, fertilizer effect on pods length was not significant at Frako-Ba, while in Kamboinse, the effect was significant. A significant varietal effect on average pods length was recorded. KVx745-11P and Komcalle recorded similar values while Neerwaya and Tiligre recorded the highest values of average pods length. These results could be explained by genotypes differential response. This is in concordance with the findings of Ezeaku *et al.*, (2015); but contrasted with the results of Alidu, (2019) who did not observe significant difference of pods length among three cowpea varieties. The average pods length was higher in Kamboinse when compare to Farako-Ba. Differences in growing environment could explain these results.

Cropping year, fertilizer and cowpea variety can induce significant variation of average number of seeds per pod (Table 6). In both locations, none tangible relationship was found between fertilizer application and number of seeds per pod. However, Olusegun, (2014) and Karikari *et al.*, (2015)reported a relative increase or significant difference in number of seeds per pod with fertilizer application. In this study, the variety Kvx745-11P recorded the highest mean while Komcalle, Neerwaya and Tiligre recorded more or less statistically similar average number of seeds per pod. These results were supported by (El-Naim & Jabereldar, 2010; Nwofia *et al.*, 2014) who demonstrated that average seeds/P is a character highly correlated to cowpea variety.

Prob.	0.4835	0.0018	<.0001	<.0001
SE±	0.15	0.13	0.14	0.13
Fertilizer levels				_
0	15.27	16.94a	10.18b	11.12a
100 NPK	15.36	16.22bc	10.03b	10.82ab
60 NPK + PM	15.97	16.67ab	10.63ab	10.78ab
75 TSP +PM	15.88	16.14bc	10.61ab	10.28b
100 NPK + PM	15.86	15.90c	11.10a	10.49b
Prob.	0.1297	0.0047	0.0100	0.0389
SE±	0.24	0.21	0.23	0.20
Varieties				
KVx745-11P	14.10b	14.75b	11.69a	11.76a
Komcalle	13.70b	14.49b	9.63c	10.20b
Tiligre	17.70a	18.24a	10.67b	10.66b
Neerwaya	17.19a	18.01a	10.04c	10.17b
Prob.	<.0001	<.0001	<.0001	<.0001
SE±	0.22	0.19	0.20	0.18

Table 6: Cropping Year, Fertilizer Levels and Varietal Effects on 50% Flowering and 95%
 Maturityat Farako-Ba and Kamboinse

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

For shelling percentage, the results showed that within the same location, there is no significant variation of shelling percentageresulted fertilizer application effect (Table 7). Nevertheless, location may have significant effect on shelling percentage as its average values were lower in Farako-Ba than Kamboinse. Agroecological zone could have significant influence on pods filling. Our results were corroborated by the findings of Ezeaku *et al.*, (2015) who showed that shelling percentage can varies significantly across seasons for the same location or between different locations regarding to climate variability. The results showed significant difference of shelling percentage between varieties grow in the same location. Previous studies conducted by Sakariyawo *et al.*, (2017) and (Momohjimoh & Tanko, 2021) corroborate these findings.

The results show that cropping year as well as location can significantly influence 100 seeds weight (Table 7). Climatic factors characterized by rainfall and temperature variations across years and locations could explain the differences. These are consistent with the findings of Ezeaku *et al.*, (2015) who obtained similar results after conducted research in two different environment. Fertilizer levels did not show significant variations of this character. Ndor *et al.*, (2012) found similar results. In opposition, Singh *et al.*, (2011) and Karikari *et al.*, (2015) showed significant variation of 100 seeds weight in plot with no fertilizer compared to plots with different P levels. There was highly significant difference of 100 seeds weight between the four cowpea varieties which can be grouped into three. The lowest values were recorded by KVx745-11P followed by Komcalle. Neerwaya and Tiligre recorded the highest means of 100 seeds weight. The fact that this trend is maintained from one location to another and across seasons is the evidence that the character is varietal dependent. These results are supported by several research works from authors such (Bisikwa *et al.*, 2014; Ezeaku *et al.*, 2015; El-Naim *et al.*, 2012; Sakariyawo *et al.*, 2017) who pointed out the difference between cowpea varieties

247 248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

according to their 100 seeds weight. This is inconsistent with the findings of (Singh et al., 2011) 243 244 and (Karikari et al., 2015) who did not observe significant difference for that character between

Shelling percentage (%)

100 Seeds weight (g)

245 cowpea varieties.

> Cowpea fodder yield did not significantly influence by cropping year (Table 8). At Farako-Ba, the average fodder yields were 4055.97 kg/ha and 4374.46 kg/ha for 2019 and 2020 respectively. At Kamboinse experimental site, fodder yields were 5270.28 kg/ha and 5408.80 kg/ha for 2019 and 2020 respectively. Fertilizer application effect was significant on cowpea fodder yield. From combined results obtained at Farako-Ba and Kamboinse, the lowest fodder yields were recorded in control plot (0 kg/ha). The positive response of fodder yield to fertilizer application could be attributed to the fact that fertilizer releases more nutrients which increase photosynthetic activity and it results more production of leaves, branches, which contribute to biomass yield. The observed results are in conformity with the findings reported by (Singh et al., 2011; Nkaa et al., 2014; Namakka et al., 2018) who demonstrated a positive effect of P fertilizer on cowpea fodder yield. In line with these authors, (Bado et al., 2006; Olusegun, 2014) found that sole application of manure or with mineral fertilizer increase significantly fodder yield. Concerning varietal influence on fodder yield, the two years' data showed that the lower yield was recorded by Komcalle while for the respective variety KVx745-11P, Neerwaya and Tiligre, fodder mean was statistically similar.

> The average grain yield obtained in Farako-Ba was 1013.79 kg/ha and 1030.51 kg/ha respectively for 2019 and 2020 cropping year (Table 8). The means recorded at Kamboinse were 1166.59 kg/ha and 1165.03 kg/ha for 2019 and 2020 cropping year. The values were higher in Kamboinse than Farako-Ba. The results (Table 8) showed that cowpea grains yield vary in function of fertilizer rate. AtFarako-Ba, the highest GY (1242.93 kg/ha) was achieved by 100 kg/ha NPK+1.5 t/ha PM followed by the treatment 75 Kg/ha TSP+ 1.5 t/ha PM (1209.94 kg/ha).

267 268

269

270

271

272

273

274

275 276

Table 7: Cropping Year, Fertilizer Levels and Varietal Effects on Shelling percentage (%) and 100 Seeds weight (g)at Farako-Ba and Kamboinse

-	Farako-Ba	Kamboinse	Farako-Ba	Kamboinse
Cropping Year				
2019	66.34	75.44	14.49b	18.11a
2020	Fødder Yi	eld (kg/ha) ₂	16 Orains Y	ield (kg/ha)
Prob.	0.2502	0.1065	<.0001	<.0001
SE±	0.58	0.40	0.12	0.15
Fertilizer levels				
0	65.74	74.99	15.42	17.40a
100 NPK	64.17	73.78	15.47	16.69b
60 NPK + PM	66.68	74.84	15.28	17.19ab
75 TSP +PM	65.52	75.82	15.05	17.31ab
100 NPK + PM	67.22	75.47	15.20	16.90ab
Prob.	0.1673	0.2017	0.5190	0.1652
SE±	0.91	0.63	0.19	0.23
Varieties				
KVx745-11P	66.26ab	75.05b	10.48c	11.45c
Komcalle	67.71a	77.48a	15.39b	16.74b
Tiligre	65.20b	73.96bc	17.66a	20.22a
Neerwaya	64.30b	73.43c	17.61a	19.97a
Prob.	0.0248	<.0001	<.0001	<.0001
SE±	0.82	0.56	0.17	0.21

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test

The control plot (0 kg/ha) recorded the lowest GY (438.19 kg/ha). At Kamboinse, the combined data results indicate that fertilizer effects were similar as Farako-Ba with a relative higher means. The highest GY was recorded with 100 kg/ha NPK+1.5 t/ha PM (1481.06 kg/ha), followed by the treatment 75 Kg/ha TSP+1.5 t/ha PM (1344.13 kg/ha). The lowest GY were recorded with 0 kg/ha (501.58 kg/ha). It can be noticed that grain yield is influenced by variety type. At Farako-Ba and Kamboinse, KVx745-11P recorded the lowest GY which respective means were 876.4 kg/ha and 930.2 kg/ha. The highest GY were recorded with cowpea variety Neerwaya. At Farako-Ba, its mean was 1081.85 kg/ha while at Kamboinse, it was 1250.76 kg/ha. The crop performs better at Kamboinse than Farako-Ba environment.

Table 8: Cropping Year, Fertilizer Levels and Varietal Effects onFodder Yield (kg/ha) and Grains Yield (kg/ha) at Farako-Ba and Kamboinse

	Farako-Ba	Kamboinse	Farako-Ba	Kamboinse
Cropping Year				
2019	4055.97	5270.28	1013.79	1166.59
2020	4374.46	5408.80	1030.51	1165.03
Prob.	0.0864	0.4844	0.1548	0.9278
$SE\pm$	130.17	139.61	8.25	12.14
Fertilizer levels				
0	2712.60d	3435.76c	438.19c	508.58d
100 NPK	4231.12bc	5402.43b	1110.81b	1237.94c
60 NPK + PM	4127.10c	5810.09b	1108.88b	1257.33c
75 TSP +PM	4764.32ab	5603.35b	1209.94a	1344.13b
100 NPK + PM	5240.94a	6446.06a	1242.93a	1481.06a
Prob.	<.0001	<.0001	<.0001	<.0001
SE±	205.82	220.74	13.05	19.20
Varieties				
KVx745-11P	4498.92a	5497.25a	896.62c	973.99b
Komcalle	3601.41b	4679.50b	1042.49b	1206.84a
Tiligre	4364.50a	5648.78a	1081.85a	1250.76a
Neerwaya	4396.03a	5532.63a	1067.64ab	1231.64a
Prob.	0.0026	0.0025	<.0001	<.0001
SE±	184.09	197.44	11.67	17.17

Means followed by the same letter (s) within a treatment group are not significantly different at 5% level of probability using Student Newman Keuls (SNK) test.

The figure 1 shows cowpeas varieties average yield trend. The charts indicate that the crop performs better in Kamboinse than Farako-Ba. The figure 2 indicates that no application of fertilizer in cowpea production lead to grain yield lossof about 60% if compare to control plant with recommended rate of 100 kg/ha.

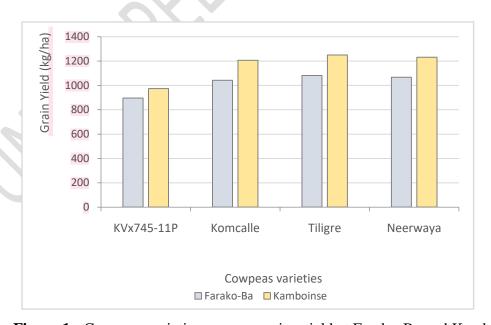


Figure 1: Cowpeas varieties average grains yield at Farako-Ba and Kamboinse

334

335

336

337 338

339

340

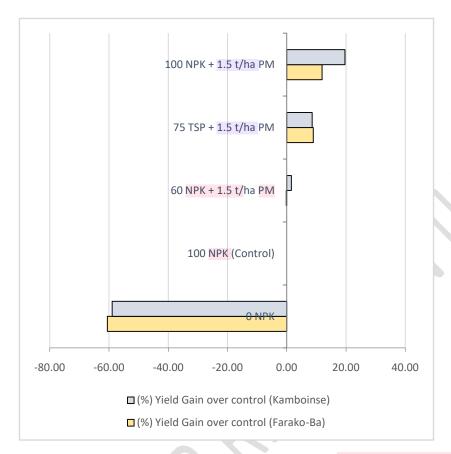


Figure 2: Cowpea grain yield gain over the control plot at Farako-Ba and Kamboinse

Conclusion: -

The results of this study are more relevant as they can improve cowpea yield productivity. Indeed, the experiments revealed that cowpea fodder and grain yields significantly increase with treatments with combined application of poultry manure and mineral fertilizer. This study highlights the intrinsic difference of grain and fodder yield among the four cowpea genotypes involved in this study.

Recommendation: -

- In sub-Saharan Africa where poor soils are among mains constraint for increasing crops productivity, application of poultry manure and chemical fertilizer could restore the soils and increase crops productivity.
- 344 Acknowledgements: -
 - The authors are grateful to the Centre for Dryland Agriculture, Bayero University, Kano which support the field experiments by giving research grant under ACE-project. They are also thankful to the Institute of Environment and Agricultural Research, Burkina Faso which also support financially and provide facilities when conducting field experiments.
- 25 349 **Conflict of Interest: -** The authors reported no conflict of interest.

References: -

- 1. Abayomi, Y. A., T.V Ajibade, O.F. Sammuel and B.F Sa'adudeen. 2008. Growth and Yield Responses of Cowpea (*Vignaunguiculata* (L.) Walp) Genotypes to Nitrogen Fertilizer (NPK) Application in the Southern Guinea Savanna Zone of Nigeria. Asian Journal of Plant Sciences 7(2): 170-176 https://doi.org/10.3923/ajps.2008.170.176
- 2. Agbede, T.M., Ojeniyi, S. O. and A.J Ademoyo. 2008. Effect of Poultry Manure on Soil Physical and Chemical Properties, Growth and Grain Yield of Sorghum in Southwest, Nigeria. American-Eurasian Journal of Sustainable Agriculture, 2 (1), 72–77.
- 3. Agyeman, K., Berchie, J. N., Osei-Bonsu, I., TettehNartey, E., and Fordjour, J. K. (2014). Growth and Yield Performance of Improved Cowpea (*Vignaunguiculata* L.) Varieties in Ghana. Agricultural Science, 2(4), 44–52. https://doi.org/10.12735/as.v2i4p44
- 4. Ajeigbe, H.A., Ekeleme, F. and Chikoye, D. (2010). Improved crop-livestock system for Enhanced food security and income generation in West Africa. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. 50 p.
- 5. Alidu, M. S. (2019). Evaluation of Planting Dates on Growth and Yield of Three Cowpea [*Vignaunguiculata* (L) Walp.] Genotypes in Northern Ghana. Advances in Research, 18(4), 1–14. https://doi.org/10.9734/air/2019/v18i430097

387 388

389

390

391

392

393

394

395

396

397

398

399

400

401 402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

- 6. Bado, B. V. (2002). Rôle des Légumineuses sur la Fertilité des Sols Ferrugineux Tropicaux des Zones Guinéenne et Soudanienne du Burkina Faso. Thèse, 197 p. Université Laval, Quebec, Canada.
 - 7. Bado, V.B., A. Bationo and Cescas, M.P. (2006). Assessment of Cowpea and Groundnut Contributions to Soil Fertility and Succeeding Sorghum Yields in the Guinean Savannah Zone of Burkina Faso (West Africa). BiolFertil Soils 171–176. https://doi.org/10.1007/s00374-006-0076-7
 - 8. Bisikwa, J., Kawooya, R., Ssebuliba, J. M., Ddungu, S. P., Biruma, M., and Okello, D. K. (2014). Effects of plant density on the performance of local and elite cowpea [*Vignaunguiculata* L. (Walp)] varieties in Eastern Uganda. African Journal of Applied Agricutural Sciences and Technologies, 1(1), 28–41.
 - 9. Dong, L., Ravelombola, W., Weng, Y., Qin, J., Zhou, W., Bhattarai, G., Zia, B., Yang, W., Shi, L., Mou, B., and Shi, A. (2019). Change in Chlorophyll Content over Time Well Differentiated Salt-tolerant, Moderately Salt-tolerant, and Salt-susceptible Cowpea Genotypes. HortScience, 54(9), 1477–1484. https://doi.org/10.21273/HORTSCI13889-19
 - 10. Ehlers, J. D. and Hall, A. E. (1997). Cowpea (*Vignaunguiculata* (L.) Walp.). Field Crops Research 53, 187–204.
 - 11. El Naim, A. M., and Jabereldar, A. A. (2010). Effect of plant density and cultivar on growth and yield of cowpea (*Vignaunguiculata*L.Walp). Australian Journal of Basic and Applied Sciences, 4(8), 3148–3153.
 - 12. El-Naim, A. M., Jabereldar, A.A., Ahmed S. E., Ismael F. M., and Ibrahim E. A. (2012). Determination of Suitable Variety and Plants per Stand of Cowpea (*Vignaunguiculata* L.Walp) in the Sandy Soil, Sudan. Advances in Life Sciences, 2(1), 1–5. https://doi.org/10.5923/j.als.20120201.01
 - 13. El-Waraky, Y.B. (2007). Effect of Genotypes, Plant Population and Nitrogen Fertilizer Level for the New Superior Line of Cowpea. Journal of Plant Production, 32(10), 8525–8539. https://doi.org/10.21608/jpp.2007.220927
 - 14. Ezeaku, I. E., Mbah, B. N. and Bayeri K. P. (2015). Planting date and cultivar effects on growth and yield performance of cowpea (*Vignaunguiculata* (L.) Walp). African Journal of Plant Science, 9(11), 439–448. https://doi.org/10.5897/ajps2015.1353
 - 15. FAOSTAT. (2022). Food and agriculture data. www.fao.org/
 - 16. Fatahi, E., Mobasser, H. R., and Akbarian, M. M. (2014). Effect of Organic Fertilizer on Wet Weight, Dry Weight and Number of Leaves in Cowpea. Journal of Novel Applied Sciences 440–443. www.jnasci.org
 - 17. Kamara, A. Y., Omoigui, L., Kamai, N., and Ewansiha, S. (2018). Achieving sustainable cultivation of grain legumes. 20 p. https://doi.org/10.19103/AS.2017.0023.30
- 18. Karikari, B., and Arkorful, E. (2015). Effect of phosphorus fertilizer on dry matter production and distribution in three cowpeas (*Vignaunguiculata* L. Walp.) varieties in Ghana. Journal of Plant Sciences, 10(5), 167–178. https://doi.org/10.3923/jps.2015.167.178
- 423 19. Karikari, B., Arkorful, E., and Addy, S. (2015). Growth, Nodulation and Yield Response 424 of Cowpea to Phosphorus Fertilizer Application in Ghana. Journal of Agronomy, 14(4), 425 234–240. https://doi.org/10.3923/ja.2015.234.240

- 20. Khan, A., Bari, A., Khan, S., Shah, N. H., &Zada, I. (2010). Performance of Cowpea Genotypes at Higher Altitude of NWFP. Pak. J. Bot., 42(4), 2291–2296.
 - 21. Miheretu, A., and Sarkodie-Addo, J. (2017). Response of cowpea (*Vignaunguiculata* [L.] Walp) varieties following application of nitrogen fertilizers and inoculation. IOSR Journal of Agriculture and Veterinary Science. https://doi.org/10.9790/2380-1004013238
 - 22. Ministère de l'Agriculture, Burkina Faso. (1999). Stratégie Nationale de Gestion Intégrée de La Fertilité Des Sols. 44p.
 - 23. Mohammed, I., Alawa, D. A., Mshelia, J. S., Betiang, J. A., Azu, S. B., and Bishieunung, S. S. (2021). Effect of climate variation on the yield of cowpea (*Vignaunguiculata*). African Journal of Agricultural Research 17(3), 456–462. https://doi.org/10.5897/AJAR2020.14960
 - 24. Namakka A., Djibrin D. M., Hamma I.L., and Bulus, J. (2017). Effects of Phosphorus Levels on Growth and Yield of Cowpea (*Vignaunguiculata* (L.) Walp.) in Zaria, Nigeria. Journal of Dryland 3(1). p 85 93
 - 25. Ndor, E., Dauda, N. S., Abimuku, E. O., Azagaku, D. E., and Anzaku, H. (2012). Effect of Phosphorus Fertilizer and Spacing on Growth, Nodulation Count and Yield of Cowpea (*Vignaunguiculata* (L) Walp) in Southern Guinea Savanna Agroecological Zone, Nigeria. Asian Journal of Agricultural Sciences, 4(4), 254–257.
 - 26. Nkaa, F. A., Nwokeocha, O. W., and Ihuoma, O. (2014). Effect of Phosphorus Fertilizer on Growth and Yield of Cowpea (*Vignaunguiculata*). IOSR Journal of Pharmacy and Biological Sciences, 9(5), 74–82.
 - 27. Nwofia, G. E., Nwanebu, M. C., and Mbah, E. U. (2014). Yield and Yield Component Responses of Some Cowpea Varieties to Population Density Structures Under RainfedConditions in Lowland Tropics of Southeast Nigeria. World Journal of Agricultural Sciences, 10(2), 68–75. https://doi.org/10.5829/idosi.wjas.2014.10.2.1815
 - 28. Ogbona, P. E. and Obi, I. U. (2005). Effect of Time of Planting and Poultry Manure Application on Growth and Yield of Egusi melon (*colocynthiscitrullus* L.) in derived Savannah Ago-ecology. 33–38.
 - 29. Olusegun, O. S. (2014). Influence of NPK 15-15-15 Fertilizer and Pig Manure on Nutrient Dynamics and Production of Cowpea, *Vignaunguiculata* L. Walp. American Journal of Agriculture and Forestry, 2(6), 267. https://doi.org/10.11648/j.ajaf.20140206.16
 - 30. Sakariyawo, O. S., Soremi, P. A. S., Okeleye, K. A., and Aderibigbe, S. G. (2017). Variation in the Performance of Contrasting Maturity Class of Cowpea Cultivars (*Vignaunguiculata* L. Walp) in the derived Savanna. Agro-Science, 15(2), 41. https://doi.org/10.4314/as.v15i2.6
 - 31. Singh, A., Baoule, A. L., Ahmed, H. G., Dikko, A. U., Aliyu, U., Sokoto, M. B., and Alhassan, J. (2011). Influence of phosphorus on the performance of cowpea (*Vignaunguiculata* (L) Walp.) varieties in the Sudan savanna of Nigeria. 2(3), 313–317. https://doi.org/10.4236/as.2011.23042
 - 32. SNGIFS. (2015). Institutional Context of Soil Information in Burkina Faso. 54 p. (2015)
- 33. Momohjimoh, Y. and Tanko, M., U. (2021). Effect of Nitrogen Starter Dose and Phosphorus Fertilizer Application on Growth, Yield Characters and Grain Crude Protein

Content of Three Varieties of Cowpea in Anyigba, Kogi State, Nigeria. Journal of Innovative Agriculture, 8(1), 1. https://doi.org/10.37446/jinagri/rsa/8.1.2021.1-10
34. Xiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., Ma, J., Weng, Y., Yang, W., and Wu, D. (2016). Genetic diversity and population structure of cowpea (*Vignaunguiculata* L. Walp). PLoS ONE, 11(8), 1–15. https://doi.org/10.1371/journal.pone.0160941

