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chemical calculations functional.The results show that inhibition efficiency increases with
concentration and immersion time, reaching 9287% at 298 K f@
mM, while increasing temperature reduces inhibition efficiency. The
increase in activation energy in the presence of 2-methylchromeno[2.3-
c|pyrazol-3(2H)-one confirms the predominance of physisorption,
corroborated by activation enthalpy and entropy values, indicating
endothermic  dissolution with increased disorder. Theoretical
calculations reveal that MCP's strong inhibition activity is linked to its
ability to give up and accept electrons, favouring its adsorption by
physico-chemical interactions dominated by electrostatic forces.
Experimental and theoretical approaches converge perfectly,
confirming that the inhibitor used is promising for the protection of
aluminum in acidic media at low temperatures. These results open up
prospects for its use in real-life industrial conditions, and for the
development of more effective anticorrosive strategies.
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Introduction:-

The industrial revolution, which continues to spread throughout the world, brings both benefits
and negative impacts on the environment. Many industries use metals that are frequently exposed
to aggressive environments, making them vulnerable to corrosion [1]. Metal corrosion, and
aluminum corrosion in particular, is a major industrial and economic roblem. Although
aluminum is renowned for its natural resistance to oxidation, thanks to the spontaneous
formation of a protective alumina layer, this barrier becomes unstable in highly acidic
environments [2], particularly sulfuric acid. Under such conditions, aluminum undergoes
accelerated degradation, resulting in material losses, reduced mechanical performancegind higher
maintenance costs [3]. To mitigate the deleterious effects of this degradation, the use of
corrosion inhibitors has emerged as an effective, simple and ecorfgmically viable strategy [4].
Among these, organic inhibiffis are attracting growing interest due to their ability to adsorb onto
the metal surface via their heteroatoms (O, N, S) and conjugated m-systems, thus forming a
protective film capable of reducing corrosive attack [5]. However, the choice of a high-
performance inhibitor relies not only on its experimental efficacy, but also on an understanding
of its electronic properties and kinetic behavior vis-a-vis adsorption and dissolution mechanisms
[6]. At present, organic inhibitors that are accessible and have low toxicity are preferred. In this
context, pyrazoles and their derivatives stand out for their low toxicity, conjugated structure and
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ability to interact effectively with metal surfaces [7]. Furthermore, in order to design more
effective organic inhibitors, numerous studies have turned to quantum chemistry to establish
precise correlations between the molecular properties of compounds and their inhibitory capacity
[8,9]. The molecular structure, including electronic distribution, electron density of active sites
and frontier molecular orbitals, as well as various electronic parameters can be determined m
theoretical calculations [10]. This information not only makes it possible to predict the activity of
an inhibitor on the metal surface, but also to better understand the adsorption mechanisms and
evaluate the relative efficacy of different compounds, paving the way for rational design of more
selective and effective inf#itors.

Within this framework, the main objective of the present study is to evaluate the anticorrosive
properties {f) the compound 2-methylchromeno[2 3-c]pyrazol-3(2H)-one in the prevention of
aluminum corrosion in 1 M sulfuric acid solution.

Material And Methods:-

Chemicals used: (5]
The inhibitor used is 2-methylchromeno[ 2 3-c]pyrazol-3(2H)-one (MCP). It was synthesized and

characterized by a team at Laboratory Organic Chemistry and Natural Synthesis of Félix
Houphouét Boigny University, Cocody (Cote d'lvoim The molecular formula of this inhibitor is
C11H8N202 with a molar mass M = 200.05 g/mol. Its molecular structure is shown in Figure 1.

Figure 1. Molecular structure of 2-methylchromeno| 2.3-c]pyrazol-3(2H)-one (MCP)

n acetone solution with purity P = 99.5%, density d = 0.79 and molar mass M = 58.08 g.mol ™'
was used to remove all traces of grease and native oxide from each aluminum sample. A sulfuric
acid solution with purity P = 98%, density d = 1.84 and molar mass M = 98.08 g.mol ' was used
to prepare a 1M concentration solution. This solution was used as a blank for all gravimetric
tests.

Gravimetric measurements:
Samples of 99%-pure aluminum in the form of cylindrical rods 10mm high and 25mm in

diameter were polished with abrasive papers of successively finer grain sizes down to 800 g
then thoroughly rinsed in distilled watepy They were then washed in an acetone solution to
remove all traces of oxide, before being dried in an ov t 80°C for 10 minutes. Each s

thus treated was weighed on a high-precision balance (+ 0.1 mg), then immersed in 50 mL of a 1
M sulfuric acid solution, in the absence of inwtor. The initial mass recorded (m,) was then
compared with that measured after a one-hour immersion in the sulfuric acid solution, this time
containing the corrosion inhibitor. After this treatment, the samples were carefully rinsed, dried
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and weighed again to obtain the final mass (m;). Mass loss (Am = m; — m,) was calculated by
averaging three trials carried out under the same experimental conditions. To study the influence
of immersion time we maintained the temperature at 298K and while keeping the same MCP
concentrations, mass losses were Elluatcd for 4h, 6h, 8h and 24h. From these data, the average
corrosion rate (W), the rate of coverage ﬁthe metal surface by the inhibitor (6), and the
inhibition efficiency (El%) were calculated as a function of temperature and the concentration of
inhibitor used. The following expressions were used to determine these corrosion parameters

mi-mp _ Am

W = T - § (l)
Wo—W
IE(%) = —— 100 2
(%) = ot s @
Wyand W (expressed in 2h') are respectively the corrosion rate in the absence and

presence of MCP, S, is the total surface area of aluminum sample and ¢ is the immersion time.

Quantum chemical calculations:

To establish a correlation between experimental data and MCP's quantum chemistry parameters,
its geometry was first optimizedgfjsing Gaussview 5.0 computer graphics software. This
optimization was carrifjout using B3LYP correlation exchange functional. in 6-31G(d. p) basis
set [11,12](Figure 2). This basis set enabled precise geometry and electroni@ffroperties to be
obtained for a wider range of organic compounds. Global molecular descriptor calculatiof were
performed using Gaussian 09 software [13]. Thus, quantum chemical parameters such as highest
occupied molecular orbital energy (Epomo). lowest unoccupied molecular orbital energy
(ELumo), energy gap (AE), dipole moment (p). ionization energy (/). electron, affinity (A),
electronegativity (y). global hardness (n), global softness (&), electrophylicity index (w).fraction
of electrons transferred (AN) andtotal energy (Et) were calculated. The expressions below,
derived from conceptual DFT, are used to calculate the quantum descriptors [14,15,16].

I'=—Enomo(3)
A=—EvLumo (4)
AE = Erumo — Enomo(5)

_ (% - _
Up _ﬂ(ﬁN)v(r) =—x (6)

_ L
-2 )
1 2
CH (8)
1-A
n=- 9
2 2
_np _ a+ay
w = T e (10)
— Paki
AN 2 artng) (b

For calculations the theoretical values of¢y; = 4.28 eV [17]and hardness 1, = 0 [17]have
been used for aluminum.
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Figure 2. Optimized structure of 2-methylchromeno[2,3-c]pyrazol-3(2H)-one

Results And Discussion:-

Effect of temperature a ncentration:

To assess the influence of temperature and inhibitor concentration, the inhibitory efficacy
values determined under different experimental condia)ns were plotted as a function of these
two parameters (Figure hThis allows us to visualize the evolution of efficacy as a function of
inhibitor concentration at various temperatures, and conversely to appreciate the effect of
temperature variation for a given concentration.
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Figure 3. Evolution de |’efficacité inhibitrice en fonction de la concentrationet de la température
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The experimental curves show an upward trend in inhibitory efficacy as a function of MCP
concentration. Examination of the figure clearly shows that the effectiveness of this compound
increases with increasing concentration, while it tends to decrease with increasing temperature.
The maximum value recorded is 92.87% at 298 K.

MCP's inhibitory action can be explained by the adsorption of its molecules on the aluminum
surface. This adsorption limits dissolution of the metal substrate and reduces its mass loss. The
improvement in efficiency with increasing concentration results from the progressive covering
of the surface by the inhibitor molecules. The presence of heteroatoms (N, O), combined with
the aromatic character and electron density of its m systems, favors the formation of a stable
protective film. This acts as a physical barrier, increasing in thickness and compactness in
proportion to the concentration of MCP, thus hindering the corrosion process.

On the other hand, higher temperatures lead to a decrease in inhibitory efficiency. This can be
attributed to the partial desorption of adsorbed molecules, or to the increased corrosive activity
of the medium, which accentuates metal dissolution. As a result, the protective layer formed
becomes less and less effective, and aluminum mass loss increases.

These observations are in line with results reported in previous work[18,19], confirming that
the behavior of MCP follows the trend generally observed for organic inhibitors acting by
adsorption.

Immersion time effect:
Figure 4 shows the evolution of inhibition efficiency as a function of immersion time.
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Figure 4. Evolution of inhibition efficiency as gunction of immersion time and concentration
3
Figure 4 glows the evolution of inhibitory efficacy as a function of MCP concentration and
immersion time. Each colored band illustrates the response corresponding to a given inhibitor
concentration. Analysis of the graph shows a progressive increase in inhibitory efficacy as MCP
concentration and immersion time increase. These results show that the higher the concentration
of MCP and the longer the contact time with the metal surface, the greater the inhibitory effect.
In particular, after 24 hours of immersion, the efficacy measured is slightly higher than that
observed for shorter durations (1 h, 4 h, 6 h and 8 h). This suggests that longer immersion times
promote a more complete and stable adsorption process of MCP molecules to the aluminum
surface. Nevertheless, it is important to note that the one-hour duration is still sufficient to
significantly reveal the molecule's iniﬁitory properties. All the observations reveal a progressive
and reinforced attachment of MCP to the metal substrate, leading to the formation of a protective
rier that limits the corrosive attack of the sulfuric medium. This behavior confirms MCP's role
as an effective inhibitor of aluminum corrosion, and underlines its ability to stabilize its
effectiveness under prolonged exposure conditions.

Activation parameters analysis:
Activation energy:

The relationship between temperature and metal corrosion rate is based on the Arrhenius-type
relationship. It is expressed as follows [20].

W = Aexp(— S—;) (12)

Fu Figure 5 shows the evolution of logW as a function

Usinwe relation logW = logA — b EorTE
of % Activation energy values are determined from the slopes of the straight lines obtained, and

are given in Table 1.

o=, s
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LogW
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177 Figure 5. logW Versus% .

178 Table 1. Activation Energy value
Ciun(mM) Equations E, (kjmol™)
1
0 logW = —2.954 * ?+ 7.7481 56.60147584
1
001 logW = —4.5116 = F+ 12.314 86.44658714
005 1 102.191148
logW = —5.3333 *?+ 15.052
1
0-1 logW = =5.4824 F+ 15.183 1050180
0.5 1 1055213228
logW = —5.5071 = 7 +14.98
1
! logW = —5.5514 = T +14.58 106701533
5 1 108.378222
logW = —5.6562 = F+ 14.408
179
180  The straight lines show that the corrow rate increases as the temperature of the reaction
181 medium rises. This rate is mucahigher in the absence (control) of the inhibitor. The values of

182 activation energy (E,)increase with increasing inhibitor conoentration@is analysis shows that
183 the presence of MCP increases activation energy required to dissolve the metal. The adsorption
184  of its molecules onto metal surface requires significant energy, reflecting a blocking of active
185  sites that requires a greater energy input. This rise in E accounts for the slowdown in the
186  dissolution process in MCP presence, a slowdown that is all the more marked the higher the
187 inhil:mr concentration [20].

188 The activation energy values measured in the presence of MCP are significantly higher than
189  those obtained in its absence. This suggests that MCP is adsorbed onto metal substrate via
190 electrostatic bonds. However, these interactions, which are weak and sensitive to temperature
191 variations, do not provide effective corrosion inhibition at high temperatures. Thus, th or
192 inhibiting performance observed at high temperatures is due to the physiosorbed nature of the
193 interaction between the MCP and the metal surface [21].

194

195  Enthalpy and entropy of Activation:

196 Enthalpy variations(AH,)and entropy (AS;)were determined from the alternative formula of
197 Arrhenius equation:

w R ASh AH
198 Iog(?) = Iog(ﬁ) + 138 13T (13)
199  Where A: Prwponential factor ; W : Corrosion rate, R : Perfect gas constant; T : absolute
200  temperature; ¥ : Avogadro number; h : Planck's constant;
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Figure 6 shows the evolution of log (g) depending on % The slopes and intercepts of the lines

obtained were used to determine these activation quantities. Table 2 shows the characteristics of
the lines obtained and the values of AH, et AS;.

0

[T
'

log(W/T)

3.05 31 315 32 3.25 33 335 3.4
1000/T(K™)
ABlank #0.01mM ®0.05mM ®0.1mM *0.5mM ®1mM ®S5mM

Figure 6. log(g) Versus-il: .

The values of activation eaalpy (AH}). are positive and increase with increasing MCP

concentration. The positive enthalpy gpflects the endothermic nature of aluminum dissolution

process in sulfuric acid solution [22]. In addition, the high, positive values of activation entropy

(AS;) indicate that the kinetically decisive step is associated more with a dissociatial

phenomenon than with an association mechanism [23.24]. This positive entropy reflects an

increase in disorder during the transformation of reactants into the activated complex. This

increased disorder results from the desorption of species initially attached to aluminum surface,
progressively replaced by water molecules already present in the reaction medium.

Tableau 2. Values ofenthalpy (AH;). and entropy(AS;;)

Cinp(mM) Equations AH: (kjmol™) | AS: (Jmol™1K™1)

0 logW = —5.007 + ; +11.668 95.93892672 25.795328

001 logW = —5.9614 = % 414609 114.2261469 82.074304

005 logW :—6.2186*%+15.258 119.1543459 94493568

0.1 logW = —7.1841 + ; +18.202 137.6542527 150829952

0.5 logW = —8.5199 » ; +21.728 163.2494631 218303488
1 10gW=—8.9259*;+21.775 171.0288129 219.20288
5 logW = —10978 = % +28.54 210.3490189 348.65792
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Quantum chemical properties of the inhibitor:

Global reactivity:

The quantum chemical properties of the inhibitor are based on the @jpal reactivity quantum
chemical parameters. These parameters were calculated using DFT and are shown in Table 3.

Table 3. Global reactivity parameters

Quantum descriptors of global Valeurs
| Bactivity
EHOMO (CV) -5.5474
ELUMO (CV) -26281
Energy Gap AE (eV) 2.9193
dipole momenty (D) 3.5516
| BZpization energyl (eV) 5.5474
Electron, affinity A (eV) 2.6281
Electronegativityy (eV) 4.0878
Global Bhrdnessn (eV) 1.4597
Global softness (o) eV)! 0.6851
Fraction of electrons transferred AN 0.0658
Electrophylicity indexm 5.7240
Total energy Er(Ha) -683.6605

In light of previous work [25,26] the values obtained for highest occupied molecular orbital
energy (Enomo) and that of lowest unoccupied m@fcular orbital energy (Erumo) are found to be
high and low respectively. These characteristics indicate that the molecule studied has a strong
ability to give up and take up electrons from aluminum. This dual ability favors covalent bondiF)
formation between inhibitor and metal, facilitating its adsorption onto surface and leading a
protective film formation. This acts as an insulating barrier to aggressive environment. This
observation confirms the link between the high inhibition efficiency recorded at low
temperatures and the molecule's ability to act as both electron donor and electron acceptor.
Furthermore, energy gap

AE = Epumo - Enomo constitutes a key parameter of molecular reactivity: the smaller this gap,
the more reactive [2728]. Thus, the low value of AE obtained for MCP reflects a high
reactivity, consistent with its experimentally demonstrated inhibition efficiency.

With regard to dipole moment (), the literature is divided on its role in predicting inhibition
efficiency [29,30]. Sorgfgauthors note no clear correlation between ;i and anticorrosive action,
while others consider that a low value of the dipole momenfjvould favor adsorption of the
molecule and, consequently, its protective efficacy [31,32 ]. Theff§sults of the present study
seem to agree with the latter hypothesis, suggesting that a reduced dipole moment facilitates the
accumulation of MCP on metal surface and enhances its inhibition power.

A comparison of electronegativities shows that of aluminum (4.28 eV) is higher than that
MCP (4.0878 eV), resulting in a positive fraction of electrons transferred (AN). This transfer of
electrons from the molecule to metal helps compensate for the electron deficit caused by
aggressive ions from sulfuric acid.

Finally, a study of electronic distributions of HOMO and LUMO orbitals (Figure 7) reveals that

9
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they are mainly located around nitrogen (N) and oxygen (O) atoms, as well as in aromatic
regions. The mapping shows that the positive phase of the orbitals is represented by color red,
while negative phase appefj in green.

The red/green areas show PEPMO and LUMO electronic distributions within the molecule. The
electronic distributions of the highest occupied molecular orbital (HOMO) highlight localized
areas on nitrogen (N) and oxygen (O) atoms, as well as on aromatic rings. This distribution
suggests that these sites are the main centers of electron donation onto metal surface. Similarly,
the regions associated with the lowest unoccupied mgfgcular orbital (LUMO) also appear on
aromatic rings and on the same heteroatoms, reffE§ting the molecule's ability to accept electrons
from the metal and establish covalent bonds. These results indicate that interaction between
MCP molecule and the metal surface occurs preferentially at sites enriched in m electron
density.

Figure 7. Orbitales HO et BV

Identifying sites of local reactivity:

Active sites were identified using Fukui and dual descriptor functions.
The following formulas are used to determine these local reactivity parameters [32-35]:

% Nucleophilic attack fi = g, (N + 1) — g, (N) (14
% Electrophilic attack fim =g, (N) —q,(N—1)  (15)
%+ Dual descriptor Afi (r) = £ — fis (16)

Whereq, (N + 1), q, (N) et q, (N — 1)are the electronic population of atomic sites k in
(N + 1), N and (N — 1) electronic systems

The values of these local reactivity chemical quantum parameters are listed in Table 4.

These values include both positive and negative values. According to previous studies, the
highest positive value of f," and Agk(r) indicates the most likely site for nucleophilic attacks
[34]. For the molecule Stuﬁiﬂd, carbon C(20) is therefore ost likely site for nucleophilic
attack. In this case, C(20) carbon is a zone ready to recei lectrons from the metal. While a
higher value f;~ and the lowest value of Af; (r) identifies the most likely site for electrophilic
attack. C(9) atom is then the most likely site for electrophilic attack. This site is the zone that
supplies elﬁtrons to metal.

Table 4. Mulliken atomic charges and local reactivity quantum parameters
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fpm @GN +1) qi (V) G (N —1) fi fic Afi(r)
1C -0.007634 -0.076945 0.143311 0.069311 -0.220256 0.289567
2C 0011242 -0.159172 003122 0.170414 -0.127952 0.298366
3C -0.005409 0.339114 0.04238 -0.344523 0.296734 -0.641257
4 C 0.003203 0.074489 -0.06016 -0.071286 0.134649 -0.205935
5C -0.005173 -0.154381 0.192107 0.149208 -0.346488 0.495696
6 C 0.007202 -0.088839 -0.072796 0.096041 -0.016043 0.112084
7C -0.011997 -0.102503 0.396382 0.090506 -0.498885 0.589391
8 C -0.000342 0.015038 0.048092 001538 -0.033054 0.017674
9 C 0.029219 0.553039 0010143 -0.52382 0.542896 -1.066716
10 H 0.000275 0.108887 -0.007338 -0.108612 0.116225 -0.224837
11 H -0.000466 0.119505 0.000852 0.119971 0.118653 1.238624
12 H 0.000222 0.109886 -0.009021 -0.109664 0.118907 0.228571
13 H -0.000286 0.103358 0.002476 -0.103644 0.100882 -0.204526
14 H 0.000451 0.135906 -0.018103 -0.135455 0.154009 -0.289464
15 0 0.01853 -0.5595 0013716 0.57803 -0.573216 1.151246
16 C 0.004862 0.558213 0.144803 -0.553351 041341 -0.966761
17 N 0.020691 -0.326793 0.096373 0.347484 0423166 0.77065
18 N 0.173387 -0.371898 -0.027181 0.545285 -0.344717 0.890002
19 O 0.040142 -0.512522 0.11831 0.552664 -0,630832 1.183496
20 C 0.758347 -0.452087 0042464 1.210434 -0.494551 1.704985
21 H -0.013917 0.20862 -0.004673 -0.222537 0.213293 -0.43583
22 H -0.00632 0.241832 -0.018799 -0.248152 0.260631 -0.508783
23 H -0.01623 0.236756 -0.002119 -0.252986 0.238875 -0.491861

Inhibition mechanism:

MCP mechanism inhibition of aluminum corrosion in H,S04 ,IM can be explained ﬁollows.
MCP compound is protonated in sulfuric acid solution, and the protonated species will be in
equilibrium with its corresponding neutral phase according to the following equation:

2MCP + H,50, 2 2[MCPH]Y + S0§~ (17)

The protonated form of the inhibitor interacts with the negatively charged aluminum surface, due
to the prior adsorption of sulfate ions (S077) from sulfuric acid. This interaction promotes a
protective film formation stabilized by electrostatic forces between the ionic species of inhibitor
and sulfate ions, reflecting a physisorption mechanism. On the other hand, the inhibitor is also
adsorbed by donor-acceptor interactions, involving the free doublets of heteroatoms as well as a-
electrons of aromatic rings. This mode of interaction, associated with a charge transfer between
molecule and metal, corresponds to a chemisorption process. The study of electronic parameters
such as the number of electrons transferred (AN), the energies Enomo, ELumo, as well as energy
gap (AE) confirms this second type of adsorption. The inhibition mechanism is summarized in
Figure 8.

The green line indicates chemisorption, while the red broken line shows the electrostatic
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interaction between the sulfate ion and the cationic form of MCP (physisorption).

Conclusions:-

The study carried ofpn 2-methylchromeno[23-c]pyrazol-3(2H)-one (MCP) highlighted its
notable effectiveness as an aluminum corrosion inhibitor in a 1 M sigffiric acid medium.
Experimental results from gravimetric measurements showed that the inhibition efficiency of
MCP increased with concentration and immersion time, reaching a maximum value of 92.87%
at 298 K for 5 mM, while decreasing with increasing temperature. Analysis of the activatiff§
parameters confirmed the predominance of a physisorption mechanism, supported by an
endothermic process accompanied by an increase in disorder. Quantum-chemical calculations
carried out within DFT framework highlighted@§jICP's dual ability to give up and accept
electrons, a property that favors its interaction with the metal surface via physico-chemical
adsorption. The identification of active sites showed that heffiroatoms (O, N) and aromatic rings
constitute the main centers of reactivity, playing a key role in the formation of a protective film
on aluminum.The convergence of experimental and theoretical data confirms that MCP is a
promising organic inhibitor, capable of effectively limiting aluminum corrosion in acidic media
at moderate temperatures. These results pave the way for the potential use of MCP in industrial
applications, while suggesting that future work could explore its behavior under real-life
conditions, as well as its synergy with other inhibitors.
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