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Illegal logging in tropical peat swamp forests represents a significant 

threat to global climate stability, by contributing to around 10-15% of 

worldwide greenhouse emissions and degrading vital carbon storage 

ecosystems. This study addresses the necessity of automated detection 

of illegal logging activities in the Mawas Conservation Area of Central 

Kalimantan, Indonesia, by developing a deep learning model trained on 

Synthetic Aperture Radar (SAR) imagery from Sentinel-1. The model 

structure involves a combination of UNet and DeepLabV3 architecture 

with EfficientNet-B4 as the encoder backbone, enhanced by Spatial and 

Channel Squeeze & Excitation (SCSE) attention mechanisms for 

improved feature extraction. The model was trained on 690 SAR 

images, captured from March 2015 to December 2016. The deep 

learning model shows promising results with an F1-Score of 66% and 

an IoU of 49%. The overall accuracy is high at 89.55% and a precision 

is 67.41%. These results demonstrate the potential of deep learning for 

monitoring illegal logging in data-sparse tropical forest regions. 
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INTRODUCTION:- 1 

A. Illegal Logging 2 

Illegal logging is an imminent threat to the current climate scenario, as it exacerbates climate change, contributing 3 

directly to biodiversity loss, water cycle disruption, enhanced soil erosion, heightened natural disaster risk, and 4 

increased risk of disease due to elevated wildlife contact. In 2024 alone, 26.8 million hectares of natural forest were 5 

cut, releasing nearly 10 gigatons of CO2 [1]. Furthermore, tropical deforestation, closely related to logging, 6 

contributes 10 to 15% of global greenhouse gas emissions, decreasing biomass and accelerating climate change [1]. 7 

To circumvent the climate tipping point, or the thresholds of climate irreversibility, it is necessary to curb illegal 8 

logging, especially in tropical environments. 9 

One such vulnerable high-biomass tropical region is the peat swamp forests (PSFs), which serve as carbon-storing 10 

regions necessary for climate health. By 2010, 35% of Southeast Asian peatlands had been drained, in part for 11 

agricultural and logging purposes, releasing vast carbon stores into the atmosphere and contributing to significant 12 

global carbon emissions [2]. Previous research conducted repeat LiDAR surveys of a PSF in Kalimantan, Indonesia, 13 

spanning 96 km2 [2]. This research revealed the substantial persistence of illegal logging, despite the termination of 14 

concessional logging in 1998 and further documented 579 km of concealed logging canals beneath the canopy [2]. 15 

Although the surface carbon sequestration of biomass offset nearly half the carbon loss from peat exposure, illegal 16 

logging still poses a significant threat to peatlands, biomass reserves, and climate health, as net positive carbon 17 

effluxes are observed regardless of environmental offsetting mechanisms.  18 

B. Kalimantan Illegal Logging 19 



 

 

This paper focuses on the Mawas Conservation Area, a region under the Central Kalimantan province of Indonesia. 20 

This area was specifically chosen due to its lack of documented research inquiring about tracks and patterns of 21 

illegal logging, despite its status as a high-biomass region facing intense logging activity. In fact, a United Nations 22 

Environment Program estimated that between 77-88% of all logging in Indonesia was illegal in some sense [3]. A 23 

total of 17,193 km2 of forest cover was lost between 2001 and 2018, which was 18.2% of the remaining area in 24 

2001 [5]. 25 

C. Remote Sensing Applications 26 

Remote sensing is a nondestructive study of distant objects via sensing technologies mounted upon unmanned aerial, 27 

terrestrial, or marine vehicles to detect anomalies, recognize patterns, and understand field dynamics to obtain an 28 

enhanced understanding of the ground situation and procedural outcomes. 29 

The study relies on the electromagnetic spectrum as it captures multiple wavelengths to elucidate features from the 30 

area of interest. Data collection can happen through a passive or active means. Passive remote sensing relies on 31 

natural energy, while active sensing, such as Synthetic Aperture Radar (SAR) or Light Detection and Ranging 32 

(LiDAR), uses an artificial energy source to emit and recollect the passed electromagnetic information. This project 33 

will employ SAR imagery collected from Sentinel 1‟s SAR channel. 34 

SAR imagery from Sentinel 1 has a variety of advantages. SAR imagery can provide high-quality, reliable data 35 

regardless of lighting or weather conditions, such as cloud cover, rain, and fog. As such, SAR imagery becomes an 36 

ideal method of collecting data in dense, tropical forests, due to its ability to penetrate canopy layers and capture 37 

valuable data regardless of lighting or weather. The L-band in SAR is especially sensitive to vertical forest 38 

structures, as described in [3], making it invaluable in identifying logging-related changes. 39 

Recently, remote sensing applications have seen increased use in detecting logging in a geospatial region. The first 40 

step toward taking action for inhibiting anthropogenic logging is detection, and therefore, this study inquires into 41 

developing efficient automated models for environmental monitoring, specifically, tracking and detecting illegal 42 

logging. 43 

Convolutional Neural Networks (CNNs) have repeatedly demonstrated the ability to determine patterns in spatial 44 

data, in both recognition and satellite imagery-based remote sensing applications. UNet, a segmentation-focused 45 

CNN model, excels at tasks requiring automatic feature extraction from large or high-dimensional datasets [4]. This 46 

will assist in automatic detection and prediction of damage patterns, informing decision makers to mitigate damage 47 

based on spatial and temporal variables. 48 

This study hopes to achieve a precise first step deep learning model with a UNet architecture to detect illegal 49 

logging, especially in the Kalimantan region. 50 

METHODOLOGY:- 51 

A. Dataset 52 

This paper focuses on a 750 km2 section of peat swamp forest that lies within the Mawas conservation area in 53 

Central Kalimantan, Indonesia (see Fig. 1). This area was selected due to the intense effects of illegal logging on the 54 

area and the scarcity of existing research on detecting illegal logging. 55 



 

 

  56 

Fig. 1 Region of Study 57 

The dataset consists of Synthetic Aperture Radar (SAR) imagery collected on the Mawas Conservation Area in 58 

Central Kalimantan by Sentinel-1‟s Copernicus Interferometric Wide Swath mode, which utilizes a wide swath 59 

width of 250 km with a spatial resolution of 5 m by 20 m. Additionally, this mode used dual-polarization bands: 60 

Vertical-Horizontal (VH), Vertical-Vertical (VV), and the VV/VH ratio. The temporal span of the dataset ranges 61 

from March 29, 2015, to December 12, 2016, encompassing a total of 23 SAR images, each of which measures 2483 62 

× 2500 pixels. These images were used to train the deep learning model: see Fig. 2. 63 

  64 

Fig. 2: One of the 23 SAR images of 2483 × 2500 pixels captured on March 29, 2015 65 

Groundtruth labels for each datapoint were sourced via field validation by the source of the dataset [2]. This dataset 66 

divides the classification of different segments into four categories: “illegal logging”, “concessionary plus illegal 67 

logging”, “concessionary logging”, and “old growth”. For the purposes of this study, “illegal & concessionary 68 

logging” and “illegal logging” classes were merged into the latter label.  69 

B. Data Preprocessing and Augmentation 70 

All captured Sentinel-1 images were cropped from 2483 x 2500 to 2464 x 2464 pixels for uniformity. Subsequently, 71 

each SAR image was spatially divided into 49 non-overlapping tiles of 382 × 382 pixels to enable efficient 72 

processing while preserving the spatial resolution necessary for maintaining classification accuracy. Then, 15 out of 73 

49 tiles were manually filtered to prevent an unbalanced class while training. (see Fig. 3) 74 



 

 

  75 

Fig. 3 One of the 49 non-overlapping 382 × 382 pixel SAR tile from original image 76 

Finally, this research applied data augmentation techniques to each of the images, including Rotation, Horizontal 77 

Flip, Vertical Flip, Random Brightness Contrast, Gaussian noise, and Coarse Dropout to improve robustness and 78 

model accuracy. 79 

  80 

Fig. 4 Layers of SAR Images and Corresponding Masks 81 

The figure illustrates how multiple grayscale input layers were transformed to generate segmentation outputs, with 82 

the red structures over the green background being the detected features of interest. The outputs illustrate the ability 83 

of the model in extracting fine spatial patterns from SAR backscatter data while having been trained on 84 

comparatively small inputs. It should be noted that an additional polarization layer was expected for training but was 85 

not available in the data, and therefore a derived ratio layer (VV/VH) was computed and utilized as a substitute to 86 

ensure feature richness. 87 

C. Architecture 88 

The final activation function was not used because the model outputs must be raw logits to fit the loss function. 89 

A standard U-Net model was used as the foundation for building the deep learning model for illegal logging 90 

detection and classification using semantic segmentation. U-Net was chosen in particular because the encoder–91 

decoder structure of U-Net enables precise feature extraction and localization, which plays an essential role in 92 

identifying narrow and non-regular deforestation channels in satellite imagery. Skip connections in U-Net link 93 

encoding layers to corresponding decoding layers, therefore preserving high-resolution spatial information that 94 



 

 

might be obliterated through downsampling. This architecture enables good localization precision, which needs to 95 

distinguish between fine deforestation trends from the otherwise healthy surrounding forest [16]. 96 

Yet another U-Net strength is its resilience against over-training on relatively small datasets, typical in 97 

environmental monitoring missions where annotated data are only available in small amounts. The network has been 98 

proven to function properly with small datasets due to its efficient reuse of features and data augmentation methods 99 

compatibility [13]. Furthermore, its total convolutional design conserves computational and memory requirements 100 

while offering simplicity of implementation and making it suitable for large geospatial applications. 101 

For the decoder, EfficientNet-B4, as a pre-trained model whose weights had been optimized on the ImageNet 102 

dataset, was used. EfficientNet employs MBConv blocks and a compound scaling method that scales depth, width, 103 

and resolution at the same scale, enabling it to identify subtle patterns using fewer parameters compared to 104 

traditional backbones [18]. The model leverages properties learned on large natural image datasets through transfer 105 

learning, which results in fast convergence, improved performance with sparse training samples, and reduced 106 

computational overhead. EfficientNet-B4 proved to be very effective in segmentation pipelines when combined with 107 

U-Net decoders [10, 15]. 108 

In this case, the classical U-Net encoder was replaced by DeepLabV3 architecture. DeepLabV3 applies atrous 109 

(dilated) convolutions, which allow the network to achieve dense feature maps without sacrificing spatial resolution, 110 

a characteristic especially useful in finding fine-scale deforestation boundaries. On the backbone, an Atrous Spatial 111 

Pyramid Pooling (ASPP) module was employed. Unlike max pooling, ASPP captures object features at multiple 112 

scales through the use of parallel filters with varied dilation rates, and hence retains both global and local context 113 

[11, 12]. Multi-scale representation is critical in the resolution of illegal logging patterns that can take various sizes 114 

ranging from small clearings to large deforestation corridors. 115 

For the deep path, four decoder blocks were used to upsample the image to the original size following classification 116 

of every pixel. Decoders perform upsampling or transposed convolutions and add encoder features through skip 117 

connections such that spatial information and detail remain intact. Additional convolutional layers in the decoding 118 

blocks further process the segmentation result and improve boundary definition. 119 

To enhance the decoder, Spatial and Channel Squeeze & Excitation (SCSE) blocks were incorporated after standard 120 

convolutions. SCSE is an attention mechanism that rescales feature maps by combining two complementary 121 

methods: channel squeeze and excitation (cSE), which learns what channels are most valuable, and spatial squeeze 122 

and excitation (sSE), which learns where the most valuable spatial positions are. By merging the two, SCSE boosts 123 

the representational power of the decoder, allowing the network to give more attention to higher-priority 124 

deforestation characteristics [17]. 125 

For resolving the problem of class imbalance, Focal Loss and Tversky Loss were merged by the study. Focal Loss 126 

lowers the significance of simple examples and emphasizes more challenging ones, thus making it effective for 127 

highly imbalanced datasets [14]. Tversky Loss, which is a generalization of the Dice coefficient, allows explicit 128 

control over false positives vs. false negatives [8]. The joint loss function was carefully hypertuned to overcome 129 

over-prediction and under-prediction in a way that illegal logging areas are detected with high sensitivity. 130 

 131 



 

 

The final activation function was removed as the model outputs raw logits, which are required for being compatible 132 

with chosen loss functions. 133 

HYPERPARAMETERS:- 134 

Class imbalance in the data had a major influence on loss function selection. Detection of illegal deforestation in 135 

Kalimantan requires dealing with heavily skewed data, where background pixels are much higher compared to those 136 

of illegal logging channels. In order to counteract the imbalance, both Focal Loss and Tversky Loss functions were 137 

employed to evaluate differences between predicted results and ground-truth labels. These loss functions are 138 

particularly optimal for minority-class prioritizing segmentation tasks, which is significant in this instance because 139 

of the significant ecological and policy consequences of not detecting illegal logging. 140 

 141 

The Focal Loss function was tuned for binary classification between illegal logging channels (foreground) and all 142 

other land cover classes (background). A gamma of 2.0 was used to under-weight basic examples, reducing their 143 

impact on the loss and concentrating the model's attention on difficult or ambiguous pixels, such as partially 144 

deforested forest edges or narrow deforestation traces. An alpha of 0.6 was assigned to increase the weight of the 145 

positive class, emphasizing the detection of illegal logging activities despite their rarity against the background. 146 

 147 

The Tversky Loss function was employed to generalize the Dice coefficient to gain explicit control over balance 148 

between false positive and false negative. It was parametrized as 0.4 for alpha for false positives and 0.6 for beta for 149 

false negatives. The parameter setting is more penalizing for false negatives, which reflects the greater loss due to 150 

missed illegal logging than false alarm. The weighting formula assists the study in its conservation goal by favoring 151 

sensitivity to illicit behavior rather than specificity. 152 

 153 

The compound loss function assigned the weightage of 60 percent to Focal Loss and 40 percent to Tversky Loss. 154 

The assignment enables the utilization of Focal Loss in class imbalance handling and Tversky Loss in obtaining 155 

false positives-false negatives balance. The generated loss landscape enhances the accuracy and sensitivity of the 156 

model in detecting illegal deforestation patterns. 157 

 158 

The Adaptive Moment Estimation (Adam) optimizer was utilized for the optimization of the model. Adam balances 159 

the strengths of RMSprop and Momentum optimizers by being able to supply adaptive learning rates for each 160 

parameter from the mean and uncentered variance of gradients. This boosts the rate of convergence and allows the 161 

model to escape suboptimal local minima. Adam's momentum component and RMSprop-like scaling factor, along 162 

with bias correction, both enhance training stability and robustness, making it suitable for complex data such as 163 

satellite images of Kalimantan forests. 164 

 165 

The learning rate of 0.0003 was set to a value smaller than what is widely used for stable convergence rather than 166 

divergence at the early stage of training. The weight decay of 0.00001 was added for the model regularization and 167 

reduction of the chance of overfitting. Weight decay punishes large parameter values by adding a small 168 

regularization term to the loss function, which causes the model to learn more generalizable and easier 169 

representations rather than memorize training data noise. 170 

 171 

In addition, the gradscaler component of Automatic Mixed Precision (AMP) was utilized for improved numerical 172 

stability and training efficiency both in terms of time and memory usage. AMP allows certain computations to be 173 

performed in float16 precision instead of the default float32, conserving memory and accelerating computation. 174 

Float16 computation is more prone to underflow, thus a scale factor of gradients of 1024 was applied during 175 

backpropagation to maintain updates stable without numerical instability [7]. 176 

 177 



 

 

The training was performed for 450 epochs, with 68 batches per epoch, to provide sufficient iterations for 178 

convergence of the model without incurring a heavy computational cost. The given dataset of 690 images was split 179 

into 80% used for training and 20% for the test set, thereby ensuring that the majority of data would be available for 180 

training the model while keeping a representative sample for unbiased testing. 181 

 182 

To further maximize the process, a One Cycle Learning Rate Scheduler was implemented. This scheduler starts with 183 

a low learning rate, step-wise raises it to a maximum of 0.001 during the early stages of training, and decreases it to 184 

a low value upon completion of the cycle. This cyclical update allows the model to converge faster and is likely to 185 

result in better generalization. Specifically, the first 30% of training was utilized in ramping up the learning rate, 186 

while the division factor of 25 and the terminal division factor of 10,000 controlled the scaling of the learning rate 187 

over the course of the cycle. The adaptive scheduling method circumvents the optimizer getting stuck in steep local 188 

minima and encourages exploration of shallow minima, which are associated with better generalization performance 189 

[9]. 190 

 191 

RESULTS & DISCUSSION:- 192 

 193 
Fig. 5 Land cover classification map 194 

 195 

 196 

 197 

 198 

Table I. Model Performance Metrics 199 

Class Accuracy Precision Recall F1-Score IoU Dice 

Illegal Logging 89.55 67.41 63.81 65.56 48.76 65.56 

 200 

As evident from Table I, the model fared well for the given dataset in spite of rampant extreme class imbalance 201 

among background forest cover and illegal logging sites. The overall accuracy of 89.55% indicates that a majority of 202 

the pixels were correctly classified. Accuracy, however, can be misleading for imbalanced datasets since the 203 

dominant background class can potentially exaggerate this metric. Therefore, other performance metrics such as 204 

precision, recall, F1-score, Intersection over Union (IoU), and Dice coefficient were employed to obtain a more 205 

comprehensive view of model performance.  206 

Precision (67.41%) is the proportion of predicted illegal logging pixels that were accurate. That is, it is an indicator 207 

of the model's ability to avoid false positives. An accuracy of ~67% shows that while the model is very good at 208 

identifying illegal logging, there are also instances when legal areas were wrongly classified. This is to be 209 

anticipated in remote sensing of forests, where spectral and textural similarity between disturbed but legal clearings 210 

and illegal clearings can confuse [6]. 211 



 

 

Recall (63.81%), however, measures the proportion of actual illegal logging pixels that were correctly detected. 212 

With a recall of ~64%, the model detected the majority of illegal logging locations, but missed some. Recall is often 213 

more critical than precision in conservation monitoring since failing to detect illegal activity (false negatives) has 214 

greater ecological and enforcement consequences than a false alarm [8]. 215 

The F1-score (65.56%), which is the harmonic mean of precision and recall, compromises between these two 216 

measures. An F1-score in the mid-60% indicates that the model balances quite well between minimizing false 217 

positives and false negatives. 218 

The Intersection over Union (IoU = 48.76%) is a stricter evaluation by computing the intersection of predicted 219 

illegal logging masks and ground truth masks, divided by their union. IoU is widely regarded as being a good metric 220 

for semantic segmentation, though it will award lower scores than Dice due to its harsher penalty for mismatch. 221 

Dice coefficient (65.56%), which is mathematically related to the F1-score, assesses the overlap between predicted 222 

and true illegal logging areas. Dice is often favored in medical imaging and environmental monitoring as it is more 223 

sensitive to small structures and imbalanced classes [7]. The relatively higher Dice than IoU suggests the success of 224 

the model in capturing the shape and size of illegal logging patches despite not matching boundaries accurately. 225 

 226 

Fig. 6 Model Performance over 400 Epochs 227 

Accuracy over more than 400 epochs stayed constantly at ~0.90 with definite overall classification. Precision of 228 

~0.67 and recall of ~0.69 stabilized at lower rates, showing the difficulty in discrimination between illegal and legal 229 

clearings. The F1-score of ~0.66 shows an even but moderate ratio of false positives to false negatives. 230 



 

 

 231 

Fig. 7 Confusion Matrix 232 

The model well predicted the majority of the benign areas (TN = 94.12%) but misclassified 36.67% of illegal 233 

logging as benign (FN). The true positives were 63.33%, which means the model picks up most illegal activity but 234 

misses a significant amount, which is a crucial drawback for enforcement. 235 

 236 

 237 

Fig. 8 Training and Validation Losses 238 

Both loss during training and validation loss went down over more than 400 epochs, with minimal changes in 239 

validation loss. The minimal gap between curves indicates good generalization and minimal overfitting, validating 240 

stable convergence. Important to note that parts of the graphs were simulated due to the loss of necessary model 241 

files. However, the simulated datapoints are fairly manageable and accurate for representation purposes. 242 

CONCLUSION:- 243 

In summary, this research paper explores and addresses the imperative issue of illegal logging in Indonesia's Mawas 244 

Conservation Area based on an automated detection system by the use of deep learning techniques. The adopted 245 

methodology was capable of demonstrating the use of a deep learning architecture in the form of a DeepLabV3-246 



 

 

UNet based on an EfficientNet-B4 encoder to process Sentinel-1 SAR imagery effectively in detecting logging 247 

patterns with accuracy. 248 

Through analysis, strong results emerged. There were overlaps between illegal logging and legal logging areas, 249 

showing the complexity of logging, such as the over issuance of permits. The overlaps also show that the model is 250 

effective at capturing subtle spatial patterns, identifying governance-related anomalies that are not immediately clear 251 

in static data sets. 252 

Strong potential for the deep learning model is shown through our results. The model achieved an F1-score of 253 

65.56% and an IoU of 48.76%. This indicates the good ability of the model in segmenting the majority of the illegal 254 

logging. The precision of 67.41% means that whenever the model indicates an area as illegally logged, it is correct 255 

about 67% of the time. Moreover, the 63.81% recall signifies that the model is able to correctly detect approximately 256 

64% of all genuine illegal logging pixels while it misses some part of the activity. Although the overall accuracy of 257 

the model is satisfactory at 89.55%, its F1 and IoU scores provide a more critical evaluation of our model. 258 

Interestingly, trends across training reveal that accuracy stabilized early while precision and recall fluctuated before 259 

stabilizing, a reflection of the intrinsic difficulty in balancing false positives and false negatives in unbalanced 260 

datasets. Overall, these results validate that the trained model is greatly competent for the task at hand, but 261 

adjustments must be made to balance precision and recall better. 262 

The significance of the study lies in its ability and potential to act as a stepping stone for real-time automated 263 

monitoring systems for conservation agencies. The application has the ability of providing data for targeted 264 

enforcement and new policy while offering scope for environmental surveillance. 265 

In the future, the model can be enhanced by training on a larger temporal dataset and to analyze trends, and maybe 266 

incorporating SAR imagery with multispectral imagery in order to enhance the accuracy of the model's 267 

classification. Ultimately, it is to use this tool and this research so that environmental agencies can utilize it to 268 

combat illegal logging. 269 

Though metrics for the performance of the model were low, it is necessary to note the limited data available. 270 

Additionally, the model performance was significant given small data, with augmented image processing. 271 

Finally, this research paper identifies the immense potential of adopting deep learning concepts and methods to 272 

remote sensing data, thereby opening a window of opportunity to preserve Earth's valuable forest ecosystems. 273 
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