Gastrointestinal microbiota determines feeding behavior and influences metabolic markers in Wistar rats

by Jana Publication & Research

Submission date: 10-Oct-2025 10:22AM (UTC+0300)

Submission ID: 2769515754

File name: IJAR-54261.pdf (852.03K)

Word count: 6046 Character count: 33721

Gastrointestinal microbiota determines feeding behavior and influences metabolic markers in Wistar rats

Abstract

Background and objective: Understanding the mechanisms underlying the role of orogustatory and that of the microbiota on metabolism is essential for maintaining a healthy lifestyle. This study aims to investigate how the intestinal microbiome influence feeding preference. Wistar rats.

Methods: Spontaneous preference for testing solutions was investigated by means of the 2-bottle preference test: linoleic acid (fatty), glucose (sweet), a bitter solution (quinine), and monosodium glutamate (umami). We further assessed classical biochemical and hematological parameters like lipid profile, hepatic enzymes, hematology, and inflammatory markers, to explore systemic metabolic consequences of microbial perturbations.

Results: Antibiotic and germ-free conditions induced profound sharp depletion of Firmicutes and Bacteroidetes with a surge of Proteobacteriaparalleled by reduced preference for energy-rich tastants and higher tolerance for bitterness. These groups also exhibited mild dyslipidemia and elevated C-reactive protein. Probiotic/prebiotic supplementation, *S. boulardii*, or gum arabic restored microbial diversity, normalized taste preferences and mitigated metabolic and inflammatory alterations.

Conclusions: Antibiotic and germ-free conditions induced profound sharp depletion of Firmicutes and Bacteroidetes with a surge of Proteobacteria) paralleled by reduced preference for energy-rich tastants and higher tolerance for bitterness. These groups also exhibited mild dyslipidaemia and elevated C-reactive protein. Probiotic/prebiotic supplementation, *S. boulardii*, or gum arabic restored microbial diversity, normalized taste preferences and mitigated metabolic and inflammatory alterations.

Keywords: Gastrointestinal microbiome; Feeding behavior; Metabolism; Rats

Highlights

- 1. Dysbiosis alters taste preferences and lipid metabolism
- 2. Microbiota depletion reduces fat and sweet preference
- 3. Probiotic restores of feeding behavior in rats.

Introduction:

The Gastrointestinal microbiome is now widely acknowledged as a key modulator of brain function. This influence operates via the gastrointestinal —brain axis, a two-way communication network that integrates metabolic, nutritional, endocrine and immune signals (1). Disruptions in this microbiomeinterplay have been linked not only to central nervous system diseases and various behavioral disorders, but also to the modulation of social behavior (1). When social interactions are affected, well-being and quality of lifecan contribute to metabolic and psychiatric disorders (2). Over the last decade, it has been found thatgastrointestinal microorganisms not only regulate energy balance and nutrient processing but also shape food preferences and feeding behavior through complex bidirectional signaling along the gastrointestinal —brain axis (3,4).

along the gastrointestinal –brain axis (3,4). In rodents, experimental perturbations of the intestinal ecosystem have revealed that the gastrointestinal microbiome is a dynamic modulator of appetite and taste perception. Antibiotic-induced dysbiosis has been shown to alter macronutrient intake and preference patterns (3), whereas supplementation with specific probiotics or prebiotics can restore microbial diversity and modulate central appetite-regulating pathways (5). In particular, Saccharomyces boulardii, a well-characterized probiotic yeast, has gained attention for its

ability to mitigoe antibiotic-associated disturbances and to influence metabolic and immune functions (6). Recent studies suggest that prebiotics reduce anxiety-like behavior and improve social behaviorin rodents, which was accompanied by changes in microbiotacomposition (7). Likewise, 123 ural fibers such as gum arabic are increasingly recognized as potent prebiotics capable of promoting the growth of short-chain-fatty-acid-producing bacteria and improving

Few studies have simultaneously compared multiple microbiota-manipulating strategies, such as germ-free status, broad-spectrum antibiotic depletion, probiotic or prebiotic supplementation, and combined interventions, while assessing their impact on sensory-driven

This study aims to investigate how the intestinal microbiome influence feeding preferences in

51

52

53

54

55 56

57

58

59 60

61 62

65 66 67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88 89

90

91

92

93 94

95

96 97

98

99

Materials and Methods

63 64 Animals and Housing

Sistar rats (8–10 weeks old, 200–250 g) were obtained from a certified breeting facility and housed in individually ventilated cages under controlled temperature (22 \pm 2 °C), humidity $(55 \pm 10 \%)$, and a 12 h light/dark cycle. Animals had ad libitum access to standard laboratory chow and water except where experimental manipulations required specific diets or solutions. All experimental procedures complied with institutional and national ethical guidelines for the care and use of laboratory animals.

Experimental Design

The study comprised six experimental groups (n = 8 rats per group unless otherwise specified):

- 1. Control rats maintained under conventional specific pathogen-free (SPF) conditions.
- 2. Germ-free rats, reared in sterile isolators and confirmed free of cultivable microorganisms.
- 3. Antibiotic-treated rats, receiving a broad-spectrum antibiotic cocktail to induce gastrointestinal microbiota depletion.
- 4. Probiotic/Prebiotic-supplemented rats, receiving a daily mixture of commercially available probiotic strains (Lactobacillus and Bifidobacterium spp.) and prebiotic substrates (inulin/fructo-oligosaccharides).
- 5. Antibiotic + Saccharomyces boulardii rats, first subjected to the antibiotic cocktail and subsequently supplemented with the probiotic yeast S. boulardii.
- Gum arabic-supplemented rats, receiving gum arabic as a dietary prebiotic fiber.

Each intervention lasted four weeks, with daily monitoring of food and fluid intake and weekly measurement of body weight.

Manipulation of the Gastrointestinal Microbiota

- ulation of the Gastrointestinal Microbiota

 Antibiotic treatment: Rats (n=8) received a broad-spectrum cocktail (ampicillin 1 g/L, neomycin 1 g/L, metronidazole 1 g/L, vancomycin 0.5 g/L) in drinking water for 14 consecutive days.
- Probiotics/Prebiotics: A combined preparation of Lactobacillus rhamnosus GG and Bifidobacterium longum (1×10^9 CFU/day) plus inulin (5 g/kg diet) was administered
- Saccharomyces boulardii: Following antibiotic depletion, rats received 1 × 109 CFU/day of S. boulardii by oral gavage for two weeks.
- Gum arabic: Commercial food-grade gum arabic (0.5 g/100 mL) was incorporated into the drinking water ad libitum.

Germ-free rats were maintained in sterile isolators and handled exclusively under aseptic conditions.

 Two-Bottle Choice Test

To assess feeding preferences, we used a two-bottle choice paradigm. Rats were habituated for three days to two identical drinking bottles containing water with 0.01~% (w/v) gum arabic as vehicle. During the testing phase, one bottle continued to provide vehicle water, whereas the second offered vehicle water supplemented successively with:

- 1. Linoleicacid (0.18-3 mM),
- 2. Glucose (100-300 mM),
- 3. A bitter solution (quinine hydrochloride, 0.03–0.1 mM),
- 4. Monosodium glutamate (50–100 mM).

Each tastant was presented for 24 h, with the position of bottles counterbalanced daily to prevent side preference. After each tastant test, a 24-h washout period (vehicle vs. vehicle) was imposed.

Food intake was measured daily by weighing the chow ration; the macronutrient composition of the chow (percentage of carbohydrates, lipids, and proteins) was known and constant throughout the experiment.

The preference ratio was calculated as the ratio of the volume consumed from the tasting bottle to the total volume consumed from both bottles.

118 Sample Collection

Fecal and Intestinal Samples

Fresh fecal pellets were collected before and after the interventions. At the end of the protocol, rats were sacrificed under deep anesthesia and intestinal contents were aseptically collected. Both fecal and intestinal samples were immediately snap-frozen at -80 °C for microbiome analysis.

Blood Samples

Blood was drawn by cardiac puncture at sacrifice. Serum was separated and stored at $-80\,^{\circ}\text{C}$ until biochemical analyses.

Microbiome Analysis

All procedures for 16S rRNA gene sequencing and downstream bioinformatics were performed at the Reference Laboratory for Hemorrhagic Fevers, Cotonou, Bénin, following internationally recognized protocols.

Sample Processing and DNA Extraction

Fresh fecal pellets and intestinal content samples (collected at necropsy) were immediately snap-frozen in liquid nitrogen and stored at $-80\,^{\circ}\mathrm{C}$ until analysis. Total bacterial DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) with an additional mechanical lysis step (bead-beating with sterile zirconia beads) to ensure efficient disruption of both Gram-positive and Gram-negative bacteria. DNA quality and concentration were assessed by Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific) and agarose gel electrophoresis.

16S rRNA Gene Amplification and Sequencing

The V3–V4 region of the 16S rRNA gene was amplified with primers 341F (5'-CCTACGGGNGGCWGCAG-3') and 805R (5'-GACTACHVGGGTATCTAATCC-3') using high-fidelity polymerase (PrimeSTAR Max, Takara, Japan). PCR products were purified using AMPure XP magnetic beads (Beckman Coulter) and quantified by Qubit dsDNA HS Assay (Thermo Fisher Scientific). Equimolar amplicons were pooled and sequenced on the Illumina ISeq 100 platform (Model 1045) at the LRFH Genomics Unit, using paired-end chemistry (2 × 300 bp).

Biochemical and Hematological Analyses

Serum lipid profile (total cholesterol, HDL, LDL, triglycerides viver function tests (alanine aminotransferase [ALAT], aspartate aminotransferase [ASAT]), complete blood count (CBC), and C-reactive protein (CRP) were determined using standard clinical chemistry methods.

153

150

151

152

167 168

Data are expressed as mean ± standard deviation (SD). Inter-group comparisons were 154 155 performed using one-way 11 alysis of variance (ANOVA) followed by Tukey's post hoc test for multiple comparisons. A two-tailed p-value < 0.05 was considered statistically significant. 156 157 All analyses were performed using Microsoft Excel. Apower analysis for the primary outcome 158 (two-bottle preference ratio for linoleic acid) assumed $\alpha = 0.05$, power = 0.80, and a between-159 group effect size of f = 0.35 (medium-to-large), based on pilot data and literature for 160 microbiota manipulations. Under a one-way ANOVA with k = 6 groups, this yields n = 8 rats 161 per group (N = 48). Because tastes assays were assessed within subjects, mixed-effects analyses further increase power relative to a purely between-subjects design. Secondary 162 163 endpoints (alpha diversity, phylum composition, lipid profile, CRP) typically show large 164 effects in dysbiosis vs. control conditions, supporting that n = 8 is adequate to detect 165 biologically meaningful differences. 166

Influence of Gastrointestinal Microbiota on Nutrient-Driven Drinking Preferences

169 The two-bottle choice test revealed that manipulations of the gastrointestinal microbiota markedly shaped the rats' preference for different tastes (n=8) (Fig. 1). 170

171 Fatty stimulus (linoleic acid): Control Wistar rats exhibited the highest preference ratio for 172 linoleic acid (0.68 \pm 0.04). This ratio fell significantly in germ-free animals (0.42 \pm 0.05; p< 173 0.01 vs. control) and in antibiotic-treated rats (0.53 \pm 0.05; p< 0.05). Supplementation with 174 probiotics/prebiotics or Saccharomyces boulardii partially restored the preference (0.61 \pm 0.05 175 and 0.58 ± 0.04 , respectively), whereas gum arabic produced an intermediate value (0.58 \pm 176

Sweet stimulus (glucose): A similar pattern emerged for glucose preference. Controls showed 177 178 a ratio of 0.67 \pm 0.04, which dropped in germ-free (0.49 \pm 0.05) and antibiotic-treated rats 179 (0.54 ± 0.05) . Probiotic/prebiotic and S. boulardii supplementation enhanced preference to near-control levels (0.68 \pm 0.05 and 0.64 \pm 0.05, respectively). Gum arabic supplementation 180 181 yielded a moderate ratio (0.59 ± 0.04) .

182 Bitter stimulus (quinine): For the bitter solution, the trend reversed: germ-free rats displayed a significantly higher preference ratio (0.40 \pm 0.05) than controls (0.28 \pm 0.04; p< 0.05). 183 184 Antibiotic treatment also increased preference slightly (0.36 ± 0.05). Probiotic/prebiotic 185 supplementation brought the ratio back towards control levels (0.32 ± 0.04) , as did S. boulardii and gum arabic $(0.32 \pm 0.04 \text{ and } 0.31 \pm 0.04, \text{respectively})$. 186

187 Umami stimulus (monosodium glutamate): Control rats showed a moderate preference for 188 glutamate (0.49 \pm 0.04). This preference declined in germ-free (0.38 \pm 0.05) and antibiotic-189 treated animals (0.44 ± 0.05). Probiotic/prebiotic supplementation slightly increased the 190 preference (0.53 ± 0.05) , while S. boulardii and gum arabic produced ratios close to the

191 control $(0.51 \pm 0.05 \text{ and } 0.47 \pm 0.05, \text{ respectively}).$

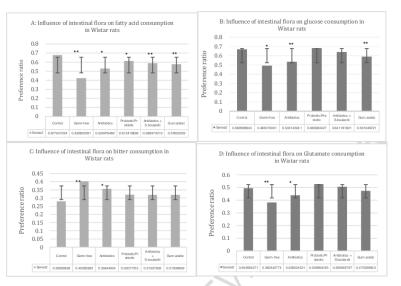


Figure 1 Influence of intestinal microbiota on nutrient-driven drinking preferences in Wistar rats $Mean (\pm SD)$ preference ratios obtained in the two-bout 5-hoice test for (A) linoleic acid, (B) glucose, (C) bitter solution (quinine), and (D) monosodium glutamate (MSG). * indicates p < 0.05 vs. Control; ** indicates p < 0.01 vs. Control (one-way ANOVA followed by Tukey's test).

Representative Microorganisms Identified by 16S rRNA Sequencing

The 16S rRNA sequencing revealed characteristic taxa within each dominant phylum.

- Firmicutes: the community was mainly composed of nactobacillus, Clostridium, Ruminococcus, and Faecalibacterium, genera typically associated with short-chain fatty acid (SCFA) production and maintenance of gastrointestinal barrier integrity.
- Bacteroidetes: this phylum was dominated by Bacteroides and Prevotella species, which are key players in the fermentation of complex polysaccharides and in carbohydrate metabolism.
- Actinobacteria: the most abundant genus was Bifidobacterium, well recognized for its
 probiotic properties and contribution to host immune modulation.
- Proteobacteria the taxa identified included members of the Escherichia/Shigella complex, Klebsiella, and Enterobacter, which are often considered indicators of dysbiosis when present in high abundance.
- Other phyla: minor groups such so as Verrucomicrobia (notably Akkermansiamuciniphila) and Fusobacteria were detected at very low relative abundance (<1 %).

In particular, the marked enrichment of Proteobacteria in the antibiotic-treated group was driven primarily by Escherichia/Shigella and Klebsiella spp., while the restoration of Firmicutes in the probiotic and gum-arabic groups was associated with an increased presence of SCFA-producing Ruminococcus and Faecalibacterium.

Microbiota Diversity

High-throughput 16S rRNA sequencing revealed striking differences in the structure of the gastrointestinal bacterial community across experimental groups (Fig. 2).

Overall sequencing output: After quality control and denoising, each sample yielded on average 5.2×10^4 high-quality reads, providing sufficient depth for robust diversity analyses. Germ-free animals consistently produced negligible bacterial reads, confirming the absence of an established microbiota.

Taxonomic composition:The mean relative abundances of the dominant phyla are summarized in Fig. 2. Controls were dominated by Firmicutes (\approx 50 %) and Bacteroidetes (\approx 41 %), with minor proportions of Actinobacteria (\approx 5 %), Proteobacteria (\approx 1.5 %), and other taxa (\approx 1.6 %). Antibiotic treatment dramatically reduced Firmicutes (\approx 22 %) and Bacteroidetes (\approx 15 %), while Proteobacteria surged to \approx 50 % of total reads, indicating a dysbiotic state. Probiotic/prebiotic and *S. boulardii* supplementation restored a Firmicutes/Bacteroidetes ratio comparable to controls (\approx 45/45 %) and reduced Proteobacteria to < 10 %. Gum arabic supplementation produced a similar though slightly less pronounced re-equilibration (\approx 47 % Firmicutes, \approx 40 % Bacteroidetes, \approx 4 % Proteobacteria).

The Shannon diversity index (H') was calculated directly in Microsoft Excel and yielded a value of 2.31 for the combined dataset. This value of H' reflects both the richness and evenness of the microbial community, with higher values indicating greater diversity. We show here that the depletion of the gastrointestinal microbiota by antibiotics profoundly alters both diversity and taxonomic structure, whereas targeted supplementation strategies (probiotics, S. boulardii, and gum Arabic) can effectively restore a microbial profile that closely resembles that of conventional control rats.

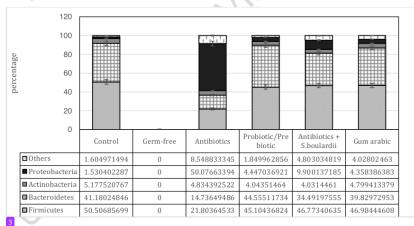


Figure 2: Average relative abundance of major bacterial phyla in each experimental group. Bars represent mean ± SD of eight rats per group.

Microbial community structure at genus level

High-resolution 16S rRNA sequencing of both fecal and intestinal samples revealed clear differences in the relative abundance of key genera across experimental groups (Fig.3). The heatmap shows the percentage abundance of representative taxa.

Germ-free rats (Rats ID Germ_1 to Germ_8) showed, as expected, an almost complete absence of detectable bacterial taxa (red horizontal band of minimal abundance). Antibiotic-treated rats exhibited a marked depletion of Firmicutes and Bacteroidetes with a relative expansion of Proteobacteria, especially Escherichia/Shigella, Klebsiella and Enterobacter. Probiotic/prebiotic supplementation, S. boulardii, and gum arabic progressively restored a genus profile closer to conventional controls, with higher proportions of Lactobacillus, Ruminococcus and Bacteroides. Figure 3 provides a visual synthesis of these differences, highlighting both the near-sterility of the germ-free group and the targeted recovery of beneficial genera in supplemented groups.

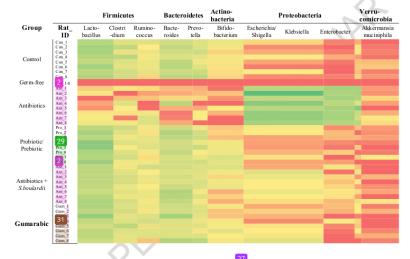


Figure 3 Microbial community structure at genus level in Wistar rats. Heatmap showing the relative abundances (%) of representative bacterial genera in fecal and intestinal samples across experimental groups (Control, Germ-free, Antibiotics, Probiotic(Prebiotic, Antibiotics + Saccharomyces boulardii, Gum rabic). Each column corresponds to a bacterial genus and each row to an individual rat. Color intensity represents the relative abundance of each genus.

Bacterial Phylum-Level Composition

Boxplot analyses of the individual relative abundances of the main bacterial phyla revealed clear group-dependent shifts (Fig. 4).

Firmicutes: Controls showed a stable and high abundance of Firmicutes (median ≈ 50 %), whereas antibiotic-treated rats exhibited a pronounced reduction (median ≈ 22 %, p < 0.01 vs. Control). Probiotic/prebiotic, *S. boulardii* and gum-arabic groups displayed restored Firmicutes levels (≈ 45 –47 %), comparable to controls.

Bacteroidetes: Bacteroidetes were abundant in controls (median \approx 41 %) but dropped sharply under antibiotic treatment (\approx 15 %, p < 0.01). Supplementation with probiotics/prebiotics or gum arabic re-established Bacteroidetes near control values (\approx 40–45 %), whereas S. boulardii produced a partial recovery (\approx 34 %).

Actinobacteria: Across all groups, Actinobacteria remained a minor but stable component ($\approx 4-6\%$) without significant differences between treatments (p > 0.05).

280 Proteobacteria: Proteobacteria showed the most striking increase after antibiotics (median \approx 281 50 %, p < 0.001 vs. Control). Probiotic/prebiotic and gum-arabic supplementation lowered 282 Proteobacteria to below 10 %, while S. boulardii maintained intermediate levels (\approx 10 %). 283 Other phyla: The category "Others" remained low in all groups (< 5 %) except in antibiotic-

treated rats where a modest rise was observed ($\approx 12 \%$).

These results confirm that broad-spectrum antibiotic treatment profoundly disrupts the normal phylum-level balance of the gastrointestinal microbiota—especially by reducing Firmicutes and Bacteroidetes and promoting Proteobacteria-while probiotic, S. boulardii, and gumarabic interventions partially or fully restore a composition similar to that of conventional

291

284

285

286

287

288

289 290

292

293

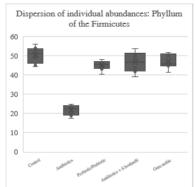
297

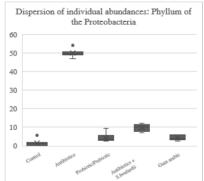
303 304

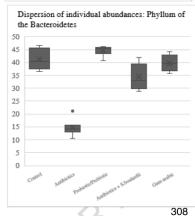
305

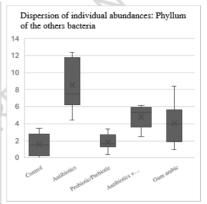
306

307

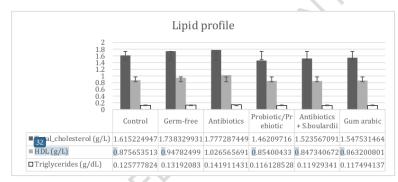

Blood Biochemistry and Inflammatory Markers


The biochemical profile of the different experimental groups highlighted the systemic impact of gastrointestinal microbiota modulation (Table 1, Fig. 4).


294 Lipid profile: Control rats displayed total cholesterol levels around 1.6 g/L with HDL near 295 0.88 g/L and triglycerides around 120 mg/dL. Germ-free animals exhibited slightly higher 296 total cholesterol (≈1.75 g/L) and triglycerides (≈128 mg/dL), while HDL levels remained comparable to controls. Antibiotic-treated rats showed the highest lipid values, with mean 298 total cholesterol ≈1.85 g/L and triglycerides often exceeding 150 mg/dL (p < 0.01 vs. 299 Control), together with a moderate rise in HDL.


300 Liver enzymes: Serum ALAT and ASAT activities remained within physiological ranges in all 301 groups (typically 30-40 U/L), without significant intergroup differences, suggesting no overt hepatocellular damage. 302

Inflammatory marker: C-reactive protein (CRP) concentrations were lowest in controls (≈1.0 mg/L). Germ-free and antibiotic-treated rats exhibited higher CRP values (≈1.2−1.3 mg/L, p < 0.05), reflecting a mild systemic inflammatory response. Probiotic/prebiotic supplementation, as well as S. boulardii or gum arabic treatment, brought CRP levels back to values similar to controls (\approx 0.9–1.0 mg/L).



 $Figure\ 4\ Dispersion\ of\ individual\ relative\ abundances\ of\ the\ five\ dominant\ bacterial\ phyla\ across\ experimental\ groups.\ Boxplots\ represent\ the\ median,\ interquartile\ range,\ and\ outliers\ for\ each\ phylum.$

Dispersion of individual abundances:
Phyllum of the Actinobacteria

319 Table 1 Serum biochemical parameters and inflammatory marker (mean \pm SD) for each experimental group.

			25			
Group	Total_cholesterol	HDL (g/L)	Triglycerides	ALAT	ASAT	CRP
	(g/L)		(mg/dL)	(U/L)	(U/L)	(mg/L)
Control	1.63 ± 0.07	0.88 ± 0.03	122 ± 6	34 ± 3	29 ± 3	1.0 ±
						0.1
Germ-free	1.76 ± 0.09	0.94 ± 0.03	128 ± 7	39 ± 3	33 ± 3	1.2 ±
						0.1
Antibiotics	1.85 ± 0.08	1.00 ± 0.04	150 ± 12	42 ± 4	35 ± 3	1.3 ±
						0.1
Probiotic/Prebiotic	1.49 ± 0.07	0.84 ± 0.03	118 ± 7	33 ± 3	31 ± 3	0.9 ±
						0.1
Antibiotics +	1.57 ± 0.07	0.85 ± 0.03	121 ± 7	33 ± 3	30 ± 3	0.95 ±
S.boulardii						0.1
Gumarabic	1.57 ± 0.07	0.87 ± 0.03	118 ± 8	32 ± 3	30 ± 3	0.93 ±
					V)	0.1

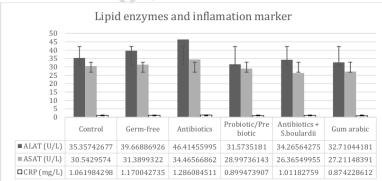


Figure 5 Lipid profile (total cholesterol, HDL, triglycerides), liver enzymes (ALAT, ASAT) and CRP concentrations across the six experimental groups. Data are expressed as mean \pm SD; p < 0.05 vs. Control.

Discussion

326

360

361

362

363

364

365

366

327 This study demonstrates that alterations of the intestinal microbiota strongly modulate both 328 feeding behavior and systemic metabolic status in Wistar rats, confirming and extending 329 recent observations in the field. The two-bottle choice test, first described in by Dramane et al. 330 (9), evaluates taste preference by offering two bottles simultaneously, one with a neutral 331 vehicle and the other with a tastant such as linoleic acid or a bitter solution.Our study adapts 332 this protocol to Wistar rats for the first time, combining it with experimental manipulation of 333 the gastrointestinal microbiota (germ-free, antibiotic treatment, probiotics, Saccharomyces 334 boulardii, and garallel analysis of metabolic markers and microbiome 335 profiles through 16S rRNA sequencing of both fecal and intestinal samples. Agranyoniet al. 336 revealed that a comprehensive 16S rRNA gene sequence analysis of dominant mice with 337 stress-resilient, higher brain activity, and a tendency for territorial behavior and submissive 338 mice that are stress ensitive, have different gut microbiota, and exhibit more passive social 339 behaviors revealed a significantly different gut microbiota composition that clearly 340 distinguishes between the two behavioral modes (10). These results on the relationship 341 between fat and bitter taste perception in Wistar rats are similar to observations in 342 humans.Karmouset al.reported that human obese participants displayed higher detection 343 thresholds for both linoleic acid and the bitter compound PROP, and that these thresholds were positively correlated with BMI (11). This supports the concept that alterations in 344 345 orosensory fat and bitter perception can influence dietary fat intake and metabolic status. The 346 broad-spectrum antibiotic regimen (ampicillin, neomycin, metronidazole, and vancomycin) 347 produced a marked dysbiosis, characterized by a sharp decline in Firmicutes and 348 Bacteroidetes accompanied by a parallel bloom of Proteobacteria, whereas, as anticipated, 349 m-free animals exhibited an almost complete absence of bacterial taxa. High-throughput 350 16S rRNA gene sequencing of the V3-V4 region on the Illumina ISeq 100 platform enabled 351 not only phylum-level analysis but also identification of representative genera: Lactobacillus, 352 Clostridium, Ruminococcus and Faecalibacterium among Firmicutes; Bacteroides and 353 Prevotella within Bacteroidetes; Bifidobacterium among Actinobacteria; Escherichia/Shigella, 354 Klebsiella and Enterobacter among Proteobacteria; and minor phyla such as Verrucomicrobia 355 represented by Akkermansiamuciniphila. Such antibiotic-induced depletion of the 356 gastrointestinal microbiota and expansion of Proteobacteria is consistent with previous 357 reports of microbiota disruption and metabolic impact in rodents (Zarrinparet al., 2022; Liu et 358 al. 2023) 359

Behavioral assays mirrored these microbial states. Antibiotic-treated and germ-free rats showed a significant drop in preference for energy-dense tastants (linoleic acid and glucose) and a relative increase in bitter acceptance, reflecting an alteration of reward-related gustatory pathways. Gastrointestinal microbial composition influences sweet taste preference and energy intake in rodents (12). We included gum arabic supplementation because this natural soluble fiber has been repeatedly associated with improved lipid metabolism and reduced circulating cholesterol and triglycerides in both animal models and human studies (13). Such hypolipidemic properties make it a relevant prebiotic candidate for evaluating whether microbial modulation of fat metabolism can also influence fat-driven feeding behaviour.

368 Recolonisation strategies progressively normalised these preferences. Supplementation 369 consisted of a combined probiotic mixture of Lactobacillus rhamnosus GG and 370 Bifidobacterium longum (10° CFU/day) together with prebiotic inulin (5 g/kg diet), or oral 371 administration of Saccharomyces boulardii (109 CFU/day), or dietary gum arabic (0.5 g/100 372 mL). These interventions restored a Firmicutes/Bacteroidetes profile close to controls and 373 limited Proteobacteria expansion, underlining the capacity of a balanced microbiota to sustain 374 normal appetite for caloric nutrients and to modulate aversion to bitterness. Similar beneficial 375 effects of S. boulardii and prebiotic fibres on microbial diversity and host metabolism have 376 been reported in human and animal studies (6, 8, 13).

377 Blood analyses revealed that in the same dysbiotic groups higher total cholesterol and 378 triglyceridesand elevated CRP, indicating low-grade systemic inflammation. Probiotic and prebiotic interventions reversed these alterations and maintained liver enzyme levels (ALAT, 379 380 ASAT) within normal limits, excluding overt hepatic injury. These results support the growing 381 evidence that the gastrointestinal microbiota modulates systemic metabolic and inflammatory 382 pathways (3, 14).

Taken together, these findings draw a coherent picture: disruption of the gastrointestinal ecosystem affects both central regulation of food preference and peripheral metabolic homeostasis, while restoration of microbial diversity and function through specific probiotic/prebiotic strategies mitigates rese disturbances. Our results align with the current understanding of the gastrointestinal -brain axis, where microbial metabolites such as shortchain fatty acids influence neural circuits regulating appetite and reward (3).

389 By analysing microbial composition down to the genus level, taste-driven consumption 390 patterns and key biochemical markers side by side, this study demonstrates that the 391 gastrointestinal microbiota is a central determinant of dietary behaviour and metabolic health. 392 Targeted manipulation, using a well-defined probiotic mixture of L. rhamnosus GG and B. 393 longum, S. boulardii or prebiotic fibres such as gum Arabic, emerges as a promising strategy 394 to influence food preferences and reduce metabolic risk. These findings not only meet the 395 initial objective of clarifying the role of the microbiota in feeding behaviour but also resonate 396 with previous studies employing comparable 16S rRNA sequencing methodologies (15, 16) 397 and underscore the translational potential of microbiota-directed interventions.

Conclusion

383

384

385

386

387 388

398 399

400 This study provides robust experimental evidence that the gastrointestinal microbiota exerts a 401 decisive influence on food-related behaviour and systemic metabolism, offering insights that 402 resonate far beyond the field of basic physiology. By demonstrating that, antibiotic-induced 403 depletion, germ-free rearing, and supplementation with defined probiotics (Lactobacillus 404 rhamnosus GG and Bifidobacterium longum), Saccharomyces boulardii, or prebiotic gum 405 Arabic, can profoundly modify both taste-driven preferences and key biochemical markers, 406 our work highlights the microbiome as a pivotal interface between biological processes and 407

408 From a social sciences perspective, these findings illuminate the complex interplay between 409 diet, culture, and microbial ecology. Food choices are not solely determined by availability or 410 cultural norms; they are also shaped by microbial signals that modulate appetite and taste

411 perception.

- 412 Our results support the emerging concept of microbiota-targeted therapies. The clear
- 413 association between microbiome balance, lipid metabolism and low-grade inflammation
- suggests that probiotics, prebiotics and years based treatments could become practical tools to
- 415 modulate dietary preferences and prevent metabolic disorders such as obesity, type 2 diabetes
- 416 and cardiovascular disease.
- 417 The present findings open several avenues for translational and clinical research aimed at
- 418 understanding and harnessing the gastrointestinal microbiota to improve human health.

Acknowledgments

- 421 The authors gratefully acknowledge the Reference Laboratory for Hemorrhagic Fevers,
- 422 Cotonou, Benin, for providing access to sequencing facilities and technical support in
- 423 microbiome analysis. We also thank the National University of Science, Technology,
- 424 Engineering and Mathematics (UNSTIM), Natitingou, Benin, for institutional support and the
- 425 coordination of animal experiments. Special appreciation goes to the Université de
- 426 Bourgogne, Dijon, France, for scientific guidance and collaborative input throughout the
- 427 design and interpretation of the study.

428 Ethical Considerations

- 429 This research was conducted in full compliance with national and institutional guidelines for
- 430 the care and use of laboratory animals. The starty protocol received favourable ethical
- 431 approval from the Research Ethics Committee of the Institute of Applied Biomedical Sciences
- 432 (CER-ISBA) in Cotonou, Benin (Decision N°223, 09 January 2025). The scientific and ethical
- 433 aspects of the project were reviewed and judged compliant with the national regulations in
- 434 force.

438

441

442

443

444

445

446

447 448

449

450

451

452

453

435 Conflict of Interests

- The authors declare that they have no conflicts of interest related to the research, authorship,
- 437 or publication of this article.

References:

- Martin CR, Mayer EA. Gastrointestinal-brain axis and behavior. Nestle Nutr Inst
 Workshop Ser. 2017;88:45–53. doi:10.1159/000461732.
 - Vuong HE, Yano JM, Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, et al. Assessment of social interaction behaviors. J Vis Exp. 2011;(47):2473. doi:10.3791/2473.
 - Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–712. doi:10.1038/nrn3346.
 - Sudo N. Microbiome, HPA axis and the regulation of stress response. Neurobiol Stress. 2021;14:100317. doi:10.1016/j.ynstr.2021.100317.
 - Zarrinpar A, Chaix A, Yooseph S, Panda S. Antibiotic-induced gut microbiome depletion alters host feeding behaviour and metabolism. Nat Commun. 2018;9:2655. doi:10.1038/s41467-018-05336-9.
 - Rao S, et al. Probiotic and prebiotic modulation of gut microbiota: impact on appetite and food preference. Nutrients. 2021;13(7):2430. doi:10.3390/nu13072430.

 Szklany K, Wopereis H, de Waard C, van Wageningen T, An R, van Limpt K, et al. Supplementation of dietary non-digestible oligosaccharides from birth onwards improves social and reduces anxiety-like behaviour in male BALB/c mice. NutrNeurosci. 2019;23(11):896–910. doi:10.1080/1028415X.2019.1576362.

454

455

456

457

458

459

460 461

462

463

464

465

466

467

468

469 470

471

472

473

474

475

476

477

478

479

480 481

482

483

484

- Sang LX, et al. Saccharomyces boulardii and gut microbiota modulation: a review.
 World J Gastroenterol. 2020;26(23):3475–3490. doi:10.3748/wjg.v26.i23.3475.
- Dramane G, Abdoul-Azize S, Hichami A, Vögtle T, Akpona S, Chouabe C, et al. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest. 2012;122(6):2267–2282.
- Agranyoni O, Meninger-Mordechay S, Uzan A, Ziv O, Salmon-Divon M, Rodin D, et al. Gut microbiota determines the social behavior of mice and induces metabolic and inflammatory changes in their adipose tissue. NPJ Biofilms Microbiomes. 2021;7:28. doi:10.1038/s41522-021-00193-9.
- 11. Karmous I, Plesník J, Sayed Khan A, Serý O, Abid A, Mankai A, et al. Orosensory detection of bitter in fat-taster healthy and obese participants: genetic polymorphism of CD36 and TAS2R38. Clin Nutr. 2018;37(1):313–320. doi:10.1016/j.clnu.2017.06.004.
- Ladino L, Sánchez N, Vázquez-Frias R, Koletzko B. Latin American considerations for infant and young child formulae. Nutrients. 2021;13(11):3942. doi:10.3390/nu13113942.
- 13. Nasir O, et al. Gum arabic as a prebiotic dietary fiber: effects on gut microbiota and metabolic health. Front Nutr. 2022;9:878456. doi:10.3389/fnut.2022.878456.
- Liu Y, et al. Altered gut microbiota contributes to dyslipidemia and low-grade inflammation in antibiotic-treated rodents. Front Microbiol. 2023;14: (e-locator non vérifié).
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9.
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.

Gastrointestinal microbiota determines feeding behavior and influences metabolic markers in Wistar rats

ORIGINA	ALITY REPORT	tabolic markers		
SIMILA	0% ARITY INDEX	8% INTERNET SOURCES	7% PUBLICATIONS	3% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	new.esp.	_		1 %
2	www.har	mplus.com.br		1 %
3	assets-el	u.researchsqua •	ire.com	1%
4	www.fro	ntiersin.org		1%
5	www.nat			<1%
6	cps.org.t			<1%
7	mail.fort	unejournals.co	m	<1%
8	www2.m	•		<1%
9	Pequita l Deitrich, trait loci	Bludeau, Richai Richard A. Rad for sensitivity t consummatory	arson, Tina Fay, rd M. Allen, Rich cliffe. "Quantita o acute ethanol behaviors in ra	ard A. tive and
10	WWW.res	earchgate.net		<1%

11	repository.ubn.ru.nl Internet Source	<1%
12	link.springer.com Internet Source	<1%
13	www.jci.org Internet Source	<1%
14	www.ujecology.com Internet Source	<1%
15	www.grafiati.com Internet Source	<1%
16	"From Obesity to Diabetes", Springer Science and Business Media LLC, 2022 Publication	<1%
17	Oryan Agranyoni, Sapir Meninger-Mordechay, Atara Uzan, Oren Ziv et al. "Gut microbiota determines the social behavior of mice and induces metabolic and inflammatory changes in their adipose tissue", npj Biofilms and Microbiomes, 2021	<1%
18	atrium.lib.uoguelph.ca Internet Source	<1%
19	qa1.scielo.br Internet Source	<1%
20	www.degruyter.com Internet Source	<1%
21	www.wikizero.org Internet Source	<1%
22	Pelloux, Y "Novelty preference predicts place preference conditioning to morphine and its oral consumption in rats", Pharmacology, Biochemistry and Behavior, 200605	<1%

23	gala.gre.ac.uk Internet Source	<1%
24	Assad Bio-sya, Georgia Barikissou Damien, Adolphe C. Kpatchavi, Aurel C. Allabi. "Prevalence, associated factors and level of dependence of substance use among urban secondary school students, Benin", Basic & Clinical Pharmacology & Toxicology, 2022 Publication	<1%
25	docplayer.net Internet Source	<1%
26	epidemiologie-france.aviesan.fr Internet Source	<1%
27	Al-Kharusi, Samiha, Raeid M.M. Abed, and Sergey Dobretsov. "Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones", International Biodeterioration & Biodegradation, 2016.	<1%
28	Amira S. Khan, Babar Murtaza, Aziz Hichami, Naim A. Khan. "A cross-talk between fat and bitter taste modalities", Biochimie, 2018	<1%
29	dspace.uii.ac.id Internet Source	<1%
30	iris.uniroma1.it Internet Source	<1%
31	wiki2.org Internet Source	<1%

Åshild Krogdahl, Alexander Jaramillo-Torres, Øystein Ahlstrøm, Elvis Chikwati, Inga-Marie Aasen, Trond M. Kortner. "Protein value and health aspects of the seaweeds Saccharina latissima and Palmaria palmata evaluated with mink as model for monogastric animals", Animal Feed Science and Technology, 2021

Exclude quotes

On

Exclude matches

Off

Exclude bibliography Or