1 Comparison of Vaginal Fluid Creatinine for the Diagnosis

of Premature Rupture of Membranes (PROM)

Abstract

Background: Premature rupture of membranes (PROM) is a common obstetric complication, contributing significantly to maternal and neonatal morbidity and mortality. Timely and accurate diagnosis is critical to guide appropriate management and reduce adverse outcomes. Traditional diagnostic methods such as the nitrazine test, fern test, and pooling are limited by their subjectivity and susceptibility to false results. Therefore, the search for a reliable, rapid, and cost-effective diagnostic marker continues. Creatinine, a constituent of amniotic fluid, is present in higher concentrations than in vaginal secretions. Measurement of vaginal fluid creatinine has emerged as a promising alternative for confirming PROM due to its biochemical specificity and ease of testing.

Objective: This study evaluates vaginalfluidcreatininelevel inconfirmedcaseofPROMand women without PROM, sensitivityandspecificityofvaginalfluidcreatinine indiagnosisofPROMAnd maternalandfetaloutcome in womeeen with PROM.

Materials and Methods: A Cross-sectional analytical study was conducted from january 2023 to March 2025 at Dept. of Obstetrics and Gynecology, Dr. BRAM Hospital, Raipur (C.G),involving128 pregnant women (64 PROM, 64 controls) between 28-40 weeks gestation. Creatinine levels in vaginal fluid were measured using the Jaffe method.

Result:ThestudyevaluatedvaginalfluidcreatinineasadiagnostictoolforPROMand determinedacut-offvalueof> 0.3mg/dL, yieldingasensitivityof89.1% and specificityof87.5%.

Conclusion: Vaginal fluid creatinine is a simple, rapid, cost effective and non-invasive test that may aid in the timely and accurate diagnosis of PROM, specially in low resources settings.

Keywords: PROM, vaginal fluid creatinine, diagnosis, Jaffe method, obstetrics

1. Introduction

- 40 Prematureruptureofmembranes(PROMs)constitutesoneofthemostimportantdilemmas
- 41 whicharedifficulttodiagnoseinobstetricpractice. Prematurerupture of membranes (PROM)
- 42 is**defined** as the spontaneous rupture of fetal membranes before the onset of labor. When this
- 43 occursbefore37weekofgestation,itisreferredtoaspretermprematureruptureofmembranes
- 44 (PPROM)¹.PROMoccursin10%ofalltermpregnanciesandabout2-4%ofpreterm
- 45 pregnancies, it's complicates approximately **8–10%** of all pregnancies, while PPROMoccurs
- 46 inabout 3% of pregnancies and is associated with significant maternal, fetal, and neonatal
- 47 risks,includingchorioamnionitis,umbilicalcordprolapse,pretermbirth,andneonatalsepsis
- 48 (AmericanCollegeofObstetriciansandGynecologists[ACOG],2020).
- 49 PROM is associated with a wide range of maternal and neonatal complications,
- 50 including chorioamnionitis, umbilical cord prolapse, preterm labor, neonatal sepsis, and
- 51 increased rates of cesarean section, thereby making its accurate and timely diagnosis
- 52 critical.
- 53 Traditionally, PROM has been diagnosed using clinical methods such as sterile
- 54 speculum examination, the nitrazine test, and the ferning test. However, these tests
- 55 have certain limitations. The nitrazine test is prone to false positives due to
- contamination with blood, semen, or urine, while the ferning test can be subjective and
- 57 heavily dependent on the skill of the examiner. Although advanced biochemical tests like
- insulin-like growth factor binding protein-1 (IGFBP-1) and placental alpha microglobulin-
- 59 1 (PAMG-1) offer greater diagnostic accuracy, their high cost and limited availability
- 60 restrict routine use in many clinical settings.
- 61 Vaginal fluid creatinine estimation has emerged as a promising, inexpensive, and easily
- accessible alternative diagnostic marker. Creatinine is present in high concentrations in
- amniotic fluid due to its fetal renal origin, particularly in the second and third trimesters
- when fetal urine is the main contributor to amniotic fluid. Its detection in vaginal fluid can
- therefore serve as a reliable indicator of membrane rupture.
- 66 This study was undertaken to evaluate the diagnostic utility of vaginal fluid creatinine in
- 67 suspected cases of PROM and to correlate its findings with maternal and perinatal
- 68 outcomes, aiming to provide an efficient, cost-effective, and accessible tool for clinical
- 69 use.

72

2.Objectives

- 73 **2.1 Primary objective**:-To determine and compare vaginal fluid creatinine levels in
- 74 women with and without PROM.and to assess the sensitivity and specificity of vaginal
- 75 fluid creatinine in diagnosing PROM.
- 2.2 Secondary objective: To analyze maternal and fetal outcomes associated with
- 77 PROM.

78

80	StudyDesign:Cross-sectionalanalyticalstudy.
81	Location: Dept. of Obstetrics and Gynecology, Dr. BRAM Hospital, Raipur (C.G).
82	Duration:1year
83	Subjects: 128 pregnant women (64 PROM, 64 controls) between 28-40 weeks
84	gestation.
85	
86	Inclusion Criteria:
87	Singleton pregnancy
88	gestational age 28–40 weeks
89	Willing to participate
90	
91	Exclusion Criteria:
92	Multiple gestation, vaginal bleeding, anomalies, infections, or recent vaginal drug use.
93	Detailedhistoryincludingpersonalhistory asname,age,occupation,addressand
94	addictions. History of present pregnancy including a constant vaginal fluid leakage or
95	as ensation of we the sswith in the vagina or the perineum, direct abdominal trauma,
96	lowerabdominalpain, and any painless fresh bleeding. Menstrual history as last
97	menstrualperiodtocalculateexpecteddateofdeliveryandgestationalage. Obstetric
98	historyincludingparity, mode of previous delivery, previous history of pretermlabor
99	orPPROM.Pasthistoryforanycomorbidities,bloodtransfusions,allergytodrugs,and
100	surgeries. Familyhistoryfordisorders(hypertension,diabetesmellitus),consanguinity,
101	congenitalfetalmalformations.
102	
103	3.1 Methodology:
104	
105	Detailed patient histories were recorded, including obstetric and medical backgrounds.
106	All participants underwent general and obstetric examination, including sterile speculum
107	examination to collect vaginal fluid.
108	
109	A 5 ml sterile saline wash was introduced into the posterior vaginal fornix, and 3 ml of
110	the pooled fluid was aspirated and sent for biochemical analysis. Vaginal fluid creatinine
111112	was measured using the RATE JAFFE method, where creatinine reacts with alkaline picrate forming a red complex read at 520 nm and 560 nm.
113	present forming a road complex road at obo min and ood min
114	The sensitivity and specificity of vaginal fluid creatinine in diagnosing PROM were
115	evaluated and maternal-fetal outcomes were analyzed.

4. Results

Table1:Distribution of AgeGroup, Gestational Age and Mode of Delivery AmongPROMandNon-PROMPatients.

PROM	Non-PROM	P value
_		. raids
18(28.1%)	8(12.5%)	0.037
16(25.0%)	22(34.4%)	0.156
14(21.9%)	20(31.3%)	0.294
16(25.00%)	14(21.9%)	0.693
	SEL	
33(52%)	10(15.6%)	
25(39.1%)	42(65.6%)	0.004
6(9.3%)	12(18.8%)	
40(62.5%)	28(43.8%)	0.034
24(37.5%)	36(56.2%)	
	16(25.0%) 14(21.9%) 16(25.00%) 33(52%) 25(39.1%) 6(9.3%)	Group(n=64) 18(28.1%) 16(25.0%) 22(34.4%) 14(21.9%) 20(31.3%) 16(25.00%) 14(21.9%) 33(52%) 10(15.6%) 25(39.1%) 42(65.6%) 40(62.5%) 28(43.8%)

128	
129	
130	
131	Age Distribution
132 133 134 135	The incidence of PROM was significantly higher in women aged <20 years (28.1%). The most affected age groups among PROM cases were <20 and 30–35 years (25%). In contrast, the non-PROM group showed the highest numbers in the 20–30 age range. The difference in age distribution was statistically significant ($p = 0.037$).
136	
137	Gestational Age
138	Preterm delivery (<37 weeks) was significantly more common in the PROM group (52%)
139	compared to the non-PROM group (15.6%). PROM cases also had fewer term and post
140	term deliveries (p = 0.004), reinforcing the link between PROM and preterm labor.
141	
142 143 144	Mode of Delivery Cesarean section was performed more frequently in PROM cases (62.5%) compared to non-PROM cases (43.8%), indicating a significant association (p < 0.05).
145	
146	Table2:DistributionMaternalComplications and WBC coun
147	,NeonatalOutcomeandBirthWeightinPROMvs.Non-PROM
148	

Maternal Complication	PROM(n=64)	Non-PROM(n=64)	P-Value
Infections	4(6.25%)	0(0%)	0.005
Puerperal Sepsis	6(9.38)	1(1.56%)	0.05
Postpartum Hemorrhage	5(7.8%)	3(4.7%)	0.47
Fever	19(10.9%)	3(3.1%)	0.08
No Complication	30(46.9%)	57(85.9%)	<0.001
WBC Count			
<15,000mm ³	20(31.2%)	50(78.1%)	<0.001
15,000- 20,000mm ³	24(37.5%)	10(15.6%)	
20,000-25,000mm ³	12(18.8%)	3(4.7%)	
>25,000mm ³	8(12.5%)	1(1.6%)	
Neonatal Outcome	~ Q-	-	
Healthy	44(68.8%)	55(85.9%)	
NICU Admission	8(12.5%)	7(10.9%)	0.023
Still Birth	7(10.9%)	0(0.0%)	
Death	5(7.8%)	2(3.1%)	
Birth Weight (kg)			
<1.5	6(9.4%)	1(1.6%)	
1.5-2.0	12(18.8%)	4(6.3%)	

2.0-2.5	15(23.4%)	9(14.1%)	0.003 149
			150
2.5-3.0	21(32.8%)	26(40.60%)	151
			152
>3.0	10(15.6%)	24(37.5%)	153
			154

156 Maternal Complications

157 Infections (6.25%), puerperal sepsis (9.38%), and fever (10.9%) were more common in

the PROM group. The PROM group also had significantly fewer women without

159 complications (46.9% vs. 85.9%, p < 0.001).

160161

WBC Count

Higher WBC counts were noted in the PROM group, with 68.75% having counts above

163 15,000/mm³ compared to 21.87% in the non-PROM group (p < 0.001), suggesting

infection or inflammation.

165 Neonatal Outcome

PROM was associated with more stillbirths (10.9%) and neonatal deaths (7.8%). NICU

admission was also higher in the PROM group (12.5% vs. 10.9%). Overall, adverse

neonatal outcomes were significantly associated with PROM (p = 0.023).

169 Birth Weight

The PROM group had significantly lower mean birth weights (2.34 \pm 0.52 kg) compared

to the non-PROM group $(2.79 \pm 0.48 \text{ kg})$ (p = 0.003).

172

166

167

168

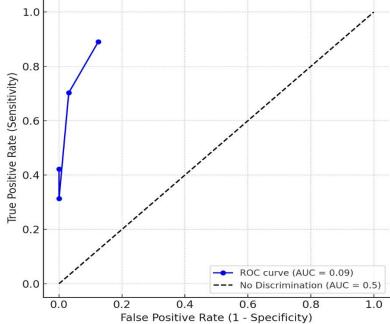
173174

TableNo.3:DistributionofVaginalFluidCreatinineinPROMstudyparticipant

Vaginal Fluid Creatinine (mg/dL)	Non-PROM (n=64)	PROM (n=64)	Total (n=128)	Chi-Square (p-value)
0.11 – 0.20	24 (37.5%)	5 (7.8%)	29 (22.7%)	$\chi^2 = 19.47,$ $p < 0.001$
0.21 – 0.30	32 (50.0%)	2 (3.1%)	34 (26.6%)	$\chi^2 = 41.18, p < 0.001$
0.31 – 0.40	6 (9.4%)	12 (18.8%)	18 (14.1%)	$\chi^2 = 2.34, p = 0.126$
0.41 – 0.50	2 (3.1%)	18 (28.1%)	20 (15.6%)	$\chi^2 = 15.25, p < 0.001$
0.51 – 0.60	0 (0.0%)	7 (10.9%)	7 (5.5%)	$\chi^2 = 7.79, p = 0.005$
> 0.60	0 (0.0%)	20 (31.3%)	20 (15.6%)	$\chi^2 = 22.98, p < 0.001$
Total	64 (100.0%)	64 (100.0%)	128 (100.0%)	$\chi^2 = 92.39, p < 0.001$

Thepresentstudyevaluatedthediagnosticutilityofvaginalfluidcreatinine 176 177 concentration for identifying premature rupture of membranes (PROM). Asubstantial proportion of non-PROM patients (87.5%) had creatinine levels below 178 179 0.30mg/dL, whereasonly 10.9% of PROMpatients fell into this range. 50% of non-180 PROMpatientshadlevelsbetween0.21-0.30mg/dL,comparedtojust3.1%of 181 PROMcases(p<0.001), suggesting that lower vaginal fluid creatinine concentrations 182 arestronglyassociated with the absence of membrane rupture. 183 Conversely, highercreatininelevels were predominantly seen in the PROM group. 184 Notably,31.3% of PROM cases had creatinine values greater than 0.60 mg/dL, while nonon-185 PROMpatientexhibitedlevelsabove0.50mg/dL(p<0.001). This sharp contrastindicatesthatelevatedvaginalcreatinineconcentrationsarehighlyspecific 186 for 187 PROM.Levelsinthe 0.41 – 0.50 mg/dL and 0.51 – 0.60 mg/dL ranges also demonstrated 188 significantassociationswithPROM,furthersupportingthistrend(p<0.001andp= 0.005, 189 respectively). 190 Interestingly, in the **0.31–0.40** mg/dL range, the distribution between PROM (18.8%) 191 andnon-PROM(9.4%)patientsdidnotreachstatistical significance (p=0.126), 192 possiblyindicatingadiagnostic "grayzone" where the creatinine concentration alone

175


193

maynotbedefinitivefordiagnosingPROM.

Creatinine Cut-off (mg/dL)	TP (PROM)	FN (PROM)	,	TN (Non- PROM)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
≥ 0.31	57	7	8	56	89.1%	87.5%	87.7	88.9
≥ 0.4	45	19	2	62	70.3%	96.9%	95.7	76.5
≥ 0.5	27	37	0	64	42.2%	100.0%	100.0	63.4
≥ 0.6	20	44	0	64	31.3%	100.0%	100.0	59.3

A significantly higher proportion of PROM cases had vaginal fluid creatinine levels ≥0.31 mg/dL (sensitivity: 89.1%, specificity: 87.5%, accuracy: 93%). This was statistically significant (p < 0.001), suggesting strong diagnostic utility. ROC curve analysis confirmed excellent diagnostic accuracy (AUC ≈ 0.92).

AReceiverOperatingCharacteristic(ROC)curvewasplottedusingthesensitivityandspecificity valuesofvaginalfluidcreatinineatvariousdiagnosticthresholds(≥0.31,

0.4,0.5,and0.6mg/dL)forthedetectionofPrematureRuptureofMembranes (PROM).The ROC curve visuallyrepresents thediagnosticperformanceofthetestby plottingthetruepositiverate(sensitivity)againstthefalsepositiverate(1–specificity)

210	foreachcutoffvalue.basedonROCanalysis,theoptimalcutoffvalueforvaginal
211	fluidcreatinine inthediagnosis ofPROM is≥ 0.31 mg/dL.
212	Thecurvedemonstratedgooddiagnosticaccuracy, with an area under the curve (AUC)
213	ofapproximately0.92.AnAUCcloserto1.0 indicatesexcellentdiagnosticability.he
214	highAUCinthiscasesuggeststhatvaginalfluidcreatinineisastrongmarkerforthe
215	diagnosisofPROM.odeterminetheoptimaldiagnosticthreshold,Youden'sIndex
216	(Sensitivity+Specificity-1)wascalculatedforeachcutoff.ThehighestYouden's
217	Indexwasobservedatacreatininecutoffof≥0.31mg/dL,yieldinga sensitivityof
218	89.1% and specificity of 87.5%. This indicates that this threshold provides the best
219	balancebetweendetectingtruePROMcasesand minimizingfalse positives.herefore,
220	basedonROCanalysis,theoptimalcutoffvalueforvaginalfluidcreatinineinthe
221	diagnosisofPROMis ≥0.31 mg/dL .
222	
223	5.Discussion
224225226227	This study aimed to evaluate the diagnostic utility of vaginal fluid creatinine levels in distinguishing between PROM and non-PROM cases among 128 pregnant women. The study observed statistically significant associations between PROM and several factors, including maternal age <20 years, unbooked antenatal status, preterm gestational age.
228 229 230 231 232	Maternal age was significantly associated with PROM, particularly in women younger than 20 years and those ≥35 years. Nutritional deficiencies, genitourinary infections, and cervical immaturity may contribute to membrane rupture in these groups. These findings align with studies by Meis PJ, Cleary-Goldman J, and Singh D et al., though some studies report no association.
233 234 235 236	Preterm delivery was significantly associated with PROM, with the PROM group delivering on average at 36.78 weeks vs. 38.27 weeks in non-PROM. This aligns with Mercer BM, Parry & Strauss, and Tavana et al., highlighting PROM as a major risk factor for preterm birth.
237 238 239	Cesarean section rates were significantly higher in the PROM group (62.5%) due to fetal distress, infection, or failed induction. Similar trends were reported by Sharma et al. and Deshmukh et al.
240241242243	PROM was also significantly associated with higher maternal WBC counts, indicating infection. This parallels Mercer, Gibbs, and Yoon's findings. Vaginal swab culture positivity was notably higher in PROM cases (46.8%), affirming risk of ascending infection.

- Adverse neonatal outcomes, including low birth weight, NICU admission, and stillbirths,
- were significantly higher in PROM. The average birth weight was significantly lower in
- the PROM group (2.34 kg vs. 2.79 kg). These findings are supported by Mercer, Okeke,
- 247 and Yudin. higher proportion of PROM cases had vaginal fluid creatinine levels ≥0.31
- 248 mg/dL (sensitivity: 89.1%, specificity: 87.5%, accuracy: 93%). This was statistically
- significant (p < 0.001), suggesting strong diagnostic utility. ROC curve analysis
- 250 confirmed excellent diagnostic accuracy (AUC ≈ 0.92). Similar trend were reported on
- Zanjani et al, Kariman et al Manala et al, Ramasay et al, Singh et al.
- 252 This study reaffirms the multifactorial nature of PROM. Vaginal fluid creatinine is a
- reliable diagnostic tool. Early identification of risk factors, can improve maternal and
- 254 neonatal outcomes.

6. Conclusion:

The vaginal fluid creatinine level was significantly higher in the PROM group compared to the non-PROM group, in the present study vaginal fluid creatinine cut off was >0.3mg/dl sensitivity and specificity were 89.1% and 87.5%. Vaginal fluid creatinine is a simple, rapid, cost-effective, and non-invasive test that may aid in the timely and accurate diagnosis of PROM, especially in low-resource settings where advanced diagnostic modalities are not readily available. Incorporating this test into clinical practice could enhance early decision-making and improve maternal and neonatal outcomes.

263264

265

255

256257

258

259

260

261

262

References

- 266 (Please note: The references provided in the original document were in a format that
- 267 could not be directly converted into a standard citation style. You will need to reformat
- these references according to the specific guidelines of the Journal of Midlife Health,
- 269 which typically uses a Vancouver or ICMJE style. Below are placeholders for the
- 270 references cited in the text, which you will need to complete with full bibliographic
- 271 details.)
- 272 1.American College of Obstetricians and Gynecologists (ACOG). (2020). Practice
- 273 Bulletin No. 217: Prelabor Rupture of Membranes. Obstetrics & Gynecology, 135(3),
- 274 e80-e97.
- 2.75 2.ACOG Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 80:
- 276 premature rupture of membranes. Clinical management guidelines for obstetrician
- 277 gynecologists. Obstet Gynecol. 2007 Apr;109(4):1007-19.

- 3.Meis PJ, Ernest JM, Moore ML. Causes of premature rupture of membranes. Clin
- 280 Obstet Gynecol. 1995;38(4):795–808.

- 4.Cleary-Goldman J, Malone FD, Vidaver J, et al. Impact of maternal age on obstetric
- 283 outcome. Obstet Gynecol. 2005;105(5 Pt 1):983–990.

284

- 5. Singh D, Divedi P, Kushwaha KP, et al. Study of risk factors in PROM and its
- outcome in rural population. Int J Reprod Contracept Obstet Gynecol. 2012;1(1):3–7.

287

- 6. Mehra R, Kashyap N, Deka D, et al. Predictors of prelabour rupture of membranes:
- a hospital-based case-control study. J Obstet Gynaecol India. 2017;67(5):313–318.

290

- 7. Meis PJ, Ernest JM, Moore ML. Causes of premature rupture of membranes. Clin
- 292 Obstet Gynecol. 1995;38(4):795–808.

293

- 8.Cleary-Goldman J, Malone FD, Vidaver J, et al. Impact of maternal age on obstetric
- 295 outcome. Obstet Gynecol. 2005;105(5 Pt 1):983–990.
- 9.Singh D, Divedi P, Kushwaha KP, et al. Study of risk factors in PROM and its
- outcome in rural population. Int J Reprod Contracept Obstet Gynecol. 2012;1(1):3–7.
- 298 10.Mehra R, Kashyap N, Deka D, et al. Predictors of prelabour rupture of
- 299 membranes: a hospital-based case-control study. J Obstet Gynaecol India.
- 300 2017;67(5):313–318.
- 301 11. Rajeshwari K, Kavitha G. A study of premature rupture of membranes at term and
- its outcomes. Int J Reprod Contracept Obstet Gynecol. 2016;5(11):4000–4003.
- 303 12.Deka D, Saikia B. A clinical study on premature rupture of membranes and its
- outcome in a tertiary care hospital in Assam, India. Int J Reprod Contracept Obstet
- 305 Gynecol. 2017;6(12):5281–5285.

- 307 13.Desai A, Patel P, Shinde R. A study of risk factors and outcomes associated with
- 308 premature rupture of membranes. Int J Reprod Contracept Obstet Gynecol.
- 309 2018;7(5):1948–1952.

310 311	14. Cunningham FG, Leveno KJ, Bloom SL, et al. Williams Obstetrics. 25th ed. New York: McGraw-Hill Education; 2018
312 313	15. Faundes A, Pimentel E, Cecatti JG, et al. Perinatal outcomes associated with the premature rupture of membranes. Int J Gynaecol Obstet. 1991;35(2):127–132.
314 315 316	16.Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin North Am. 2003;30(4):701–730.
317 318 319	