Development and validation of Analytical Method for Simulataneous Estimation of Empagliflozin and Linagliptin in Tablet Dosage Form.

by Jana Publication & Research

Submission date: 16-Oct-2025 08:31AM (UTC+0300)

Submission ID: 2770461970 **File name:** IJAR-54353.pdf (1.22M)

Word count: 3289 Character count: 15839 Development and validation of Analytical Method for Simulataneous Estimation of Empagliflozin and Linagliptin in Tablet Dosage Form.

ABSTRACT:

 This study outlines the establishment and evaluation of a straightforward, economical, as well as dependable UV-based analytical method for the assessment of Empagliflozin as well as Linagliptin both pure compounds and tablet dosage forms. Ethanol served as the solvent, with the maximum absorbance wavelengths identified at 222.80 nm for Empagliflozin and 294 nm for Linagliptin. The method underwent thorough validation as per ICH guidelinesconfirming its suitability for routine pharmaceutical analysis.

its suitability for routine pharmaceutical analysis. A linear response was observed within ranging between 2 to 16 µg/mL, showing high Rvalue ($R^2 = 0.998$), which confirmed a consistent relationship between concentration and absorbance. Precision was evaluated through intraday and interday analyses at 10, 20, and 30 µg/mL, along thepercent RSD values falling within permissible range, demonstrating the analytical precision and reliability. Recovery studies at low, medium, and high concentrations (50%, 100%, and 150%) demonstrated the accuracy of the method., with recovery rates consistently falling between 98% and 102%, highlighting the method's reliability. Sensitivity studies provided LOD of Empagliflozin and Linagliptin 2.108 µg/ml and 1.517ug/ml And a limit of quantification (LOQ) of Empagliflozin as well as Linagliptin 0.528 μg/ml and 0.424 ug/ml repectively. Robustness testing, conducted by applying intentional, minor changes to experimental conditions such as solvent composition and detection wavelength, showed minimal influence on the results, confirming the method's

In conclusion, the developed UV-spectrophotometric method demonstrates excellent accuracy, precision, sensitivity, robustness, and cost-efficiency, making it highly suitable for routine quantitative analysis of Empagliflozin and Linagliptin in both volume as well as marketed dosage forms.

KEYWORDS: Empagliflozin, UV-Spectrophotometry, ICH Guidelines, Validation, Pharmaceutical Analysis.

INTRODUCTION:

40 41

42

43

44

45

46

47 48

49

51 52

53

54

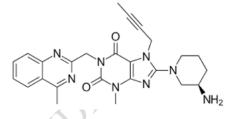
56

57

58 59 60

66

68


Empagliflozin is targeted inhibitor of SGLT2 (sodium-glucose cotransporter 2), frequently prescribed for managing Type 2 diabetes mellitus.¹⁷ It enhances glycemic control by increasing urinary glucose excretion, positioning it as an important agent in antidiabetic therapy. Accurate and reproducible quantification of Empagliflozin in both volume drug substances as well as finished medical formulations is crucial to secure product quality, therapeutic therapeutic performance and conformity to industry regulations. Among various techniques, UV-spectrophotometry remains a widely accepted method due to its simplicity, cost-effectiveness, and suitability for routine quality control. While advanced techniques such as HPLC and LC-MS offer high sensitivity, UV spectrophotometry is often preferred for preliminary method development, especially in settings with limited resources.^{2,3,4,5} Linagliptin is a reversible DPP-4 inhibitor that increases incretin concentrations like GLP-1 and GIP3.5, boosting insulin production as well as reducing glucagon release to improve glycemic control. Collectively, these actions lead to reduced hepatic glycogen breakdown and

improved insulin response to blood glucose levels.5

This study aims to devise and assess a UV-spectrophotometric method for estimating Empagliflozin as well as Linagliptin in bulk and tablet forms, as per ICH Q2(R1)^{13,15}protocols.

Structure of Empagliflozin

Structure of Linagliptin

MATERIALS AND METHODS:

Materials 67

Empagliflozin API,Linagliptin API,commercial tablet formulation (Brand Name: Ajaduo 10mg and 5mg Tablet, Manufacturer: macleods Pharamceutics Ltd, Mumbai, India), and Ethanol (analytical grade) were used ^{17,18}.

Technical Setup

A Shimadzu UV-1780 UV-Visible spectrophotometer, operated via UV Probe Software 2.35 and paired 1 cm quartz cuvettes was employed for the analysis^{2,3}.

Development of Standard Solution

Precisely 10 mg each of pure Empagliflozin and Linagliptin were individually transferred intospecimen 10 mL volumetric flasks containing distilled water, mixtures were sonicated for 5 minutes as well as then adjusted to massthe mark using solvent mixture of Ethanol:Distilled Water (30:70)^{23,4}. The resulting stock solutions had concentrations of 1 mg/mL (1000 μ g/mL) for each drug.

Determination of \(\lambda max \)

 Diluted solutions of Empagliflozin and Linagliptin were scanned from 200 to 400 nm. λmax was observed at 294 nm for Empagliflozin and 222.80 nm for Linagliptin. An overlay spectrum confirme distinct absorbance peaks for both drugs.

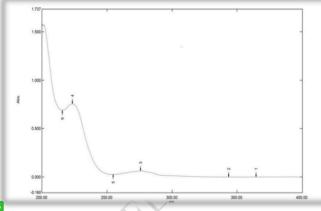


Fig 1: UV Spectrum of pure Empagliflozin

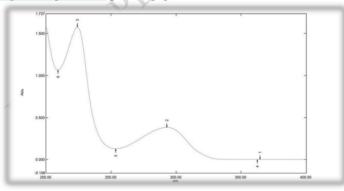
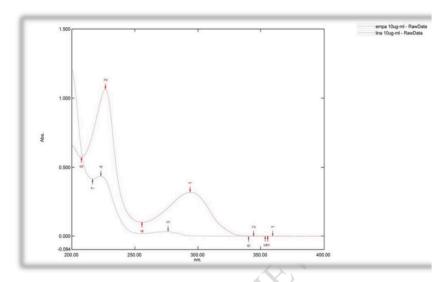



Fig 2: UV Spectrum of linagliptin

99

100

Fig 3: Overlay Spectrum of EMP And LIN

A series of dilutions (2–16 μ g/mL) were prepared for analysis, with absorbance measured at both 294 nm as well as 222.80 nm for Linagliptin and Empagliflozin respectively. calibration curve was plotted^{2,3,4,17}.(fig.4)
Table summarise optical characteristics of both drug.

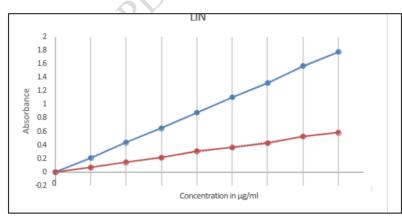

EMP 1.2 **EMP** 0.8 Absorbance 0.6 0.4 0.2 Concentration in µg/ml

Fig 4: Calibration curve of Empagliflozin

	Conc. (µg/ml)	ЕМР		
Sr. No.		222.80 nm	294 nm	
1	2μg/ml	0.125	0.060	
2	4μg/ml	0.265	0.095	
3	6μg/ml	0.418	0.140	
4	8µg/ml	0.548	0.175	
5	10 μg/ml	0.683	0.221	
6	12 µg/ml	0.823	0.259	
7	14 µ g/ml	0.959	0.296	
8	16 μg/ml	1.092	0.341	

Table 1:Standard calibration Table for Empagliflozin

.

Fig 5: Calibraton curve of linagliptin

116 Table 2: Standard calibration Table for Linagliptin

	Conc.(µg/ml)	LIN		
Sr. No.	, , , , , , , , , , , , , , , , , , ,	222.80nm	294 nm	
1	2 μg/ml	0.205	0.068	
2	4 μg/ml	0.440	0.146	
3	6 μg/ml	0.650	0214	
4	8 μg/ml	0.876	0311	
5	10 μg/ml	1.104	0.364	
6	12 μg/ml	1314	0.428	
7	14 μg/ml	1 567	0.527	
8	16 μg/ml	1.776	0.584	

117

118 Absorptivity Determination at Selected Wavelengths(1%, 1cm) =

119 Absorbance/ Concentration (g/mol)

120 Measured volumes of LIN and EMP stock solutions were transferred into separate $10\,\mathrm{mL}$

121 standard flasks. The distilled water was used for dilution of the solutions to obtain final

levels of $10\,\mu\text{g/mL}$ for LIN as well as both $10\,\mu\text{g/mL}$ and $100\,\mu\text{g/mL}$ for EMP.

123 Absorbance was recorded at 222.80 nm as well as 294 nm.

124 The corresponding absorptivity values for EMP and LIN were determined and recorded.

125

126

128 Table 3: Absorptivity values of Empagliflozin λ 1 and λ 2

Sr. No	Absorbance of EMP			
	222.80 nm	294 nm		
1.	0.551	0.0060		
2.	0.543	0.0050		
3.	0.483	0.0070		
MEAN	0.525	0.0060		
S.D.	0.037	0.001		
%RS.D.	0.0037	0.0001		

129 Table 4: Absorptivity values of Linagliptin λ1 and λ2

	Absorbance of LIN			
Sr.No	222.80 nm	294 nm		
1.	0.397	0.462		
2.	0.411	0.467		
3.	0.391	0.461		
MEAN	0.399	0.463		
S.D.	0.010	0.0032		
%RS.D.	0.0010	0.00032		

133 Table 5:Absorptivity values of Mixture $\lambda 1$ and $\lambda 2$

	Absorbance of	f Mixture at
Sr. No	222.80 nm	294 nm
1.	0.932	0.485
2.	0.912	0.455
3.	0.899	0.462
IEAN	0.914	0.467
S.D.	0.016	0.015
RSD.	0.0016	0.0015

134 135

136

137

Validation of Proposed method

RECOVERY STUDY:

138 The devised method was in accordance with ICH instructions ^{13,14}. To pre-analyzed solutions ontaining 10 μg/mL of EMP and 5 μg/mL of LIN, known amounts of standard drugs were added: 8, 10, and 12 μg/mL for EMP, and 4, 5, and 6 μg/mL for LIN. Total concentrations subjected to analysis to assess recovery.

142 %RECOVERY= A*100

143 (B+C)

144

A= Total drug estimation.

B= Amount of drug found on pre-analyzed bases.

147 C= Amount of pure drug adde

148 Table 6: Results of Recovery Studies of Empagliflozin

Table 7: Results of Recovery Studies of Linagliptin

150

149

Sr.No	Amount Added (µg/ml)	Absorbance At	Amount	%		
	EMP	222.80nm	Recovered	Recovery		
1	8	1.485	7.7	99,41		
2	10	1.589	9.6	99.36		
3	12	1.685	113	99.16		
	Mean					
	SD					
	% RSD					

153 Table 6: Results of Recovery Studies of Empagliflozin

Sr.No	AmountAdded(µg/ml) LIN	Absorbance At 268.60 nm	Amount Recovered	% Recovery	
1	4-	0.654	3.8	99.47	
2	5	0.699	4.8	99.08	
3	6	0.738	5.5	99.03	
		Mean		99.19	
	0.042				
	% RSD				

Table 7: Results of Recovery Studies of Linagliptin

155

154

156 A)Accuracy

Itdenotes extent of agreement among the measured and true value. It was assessed through recovery studies performed at multiple concentration levels to validate the dependability of the 159 method.

160

161

168

157

158

Table 8: Result of Accuracy results

Sr. No.	Amount Added (µg/ml)		% Re	% Recovery	
51.140.	EMP	LIN	EMP	LIN	
1	8	4	99.21	99.71	
2	10	5	99.89	99.69	
3	12	6	99.60	99.72	
		Mean	<mark>99</mark> .56	<mark>99</mark> .70	
		SD	0.2786	<mark>0</mark> .0124	
		% RSD	0.0027	0.0012	

B) Precision:

Replicability of results is indicated by the standard deviation (\pm SD) or %RSD of repeated 162 measurements. It was assessed using stock solutions in a 10:5 ratio containing EMP and LIN at 163 concentrations of 10 and 5 μ g/mL, respectively of LINIntraday reproducibility ^{13,14} was assessed by 164 analyzing triplicate dilutions across three time points, spaced two hours apart. To assess interday 166 precision, three sets of samples were analyzed at 24-hour and 48-hour intervals. The findings are 167 presented below

Table 9:Results of Precision Studies (Intra-day)

Session	Absorbance at		% Estimation	
Session	222.80	294	LIN	EMP
Morning	0.924	0.468	99.96	99.71
Afternoon	0.918	0.465	99.30	99.07

Evening	0.911	0.462	98.46	98.43
	MEAN		99.24	99.07
	S.D.			0.63
% RSD			0.075	0.064

Table 10: Results of Precision Studies (Inter-day)

	Absorbance at		% Estimation	
Session	222.80	294	EMP	LIN
Day 1	1.208	0.561	99.41	99.69
Day 2	1.202	0.556	99.17	98.66
Day3	1.195	0.551	98.79	97.67
MEAN			99.13	98.67
S.D.			0.31	1.01
	% RSD		0.03	0.010

C) Ruggedness

The method's ruggedness was tested by having two analysts independently analyze identical sample portions under consistent laboratory conditions^{2,3,13,14}.Outcomes are presented below.

Table 11: Results of Different analyst study

	Absorbance at		% Estimation	
Session	222.80nm	294 nm	EMP	LIN
ANALYST 1	1.209	0.561	99.55	99.66
ANALYST 2	1.203	0.558	99.08	99.11
1	MEAN		99.31	99.39
S.D.			0.33	0.38
	% RSD		0.0033	0.0038

D) Robustness

Session	Absorbance at		% Estimation		177
					178
	222.80nm	294 nm	EMP	LIN	179
CH3OH + H2O (1:9)	1.204	0.560	99.12	99.53	180
					181
0.1M NaOH	1.198	0.554	98.86	98.30	182
			00.00	00.00	183
MEAN			98.99	98.92	184
S.D.			0.18	0.87	185
					186
% RSD			0.0018	0.0088	187
					188

varying solvents, while operational parameters and instrumentation remained unchanged. Outcomes are presented in below.

Table 12: Results of Different solvent study

LOD andLOQ

201 202 203 2 he LOD was derived from the equation: $LOD = 3.3 \times (SD / Slope)$ where SD is the standard deviation of the Y-intercepts from the calibration curves, and Slope is the average slope of those curves.

Based on this, the LOD was determined to be:

2.108 µg/mL for Empagliflozin

1.517 µg/mL for Linagliptin

The LOQ was estimated using the equation: $LOQ = 10 \times (SD/Slope)$ utilizing the same calibration data.

208 209

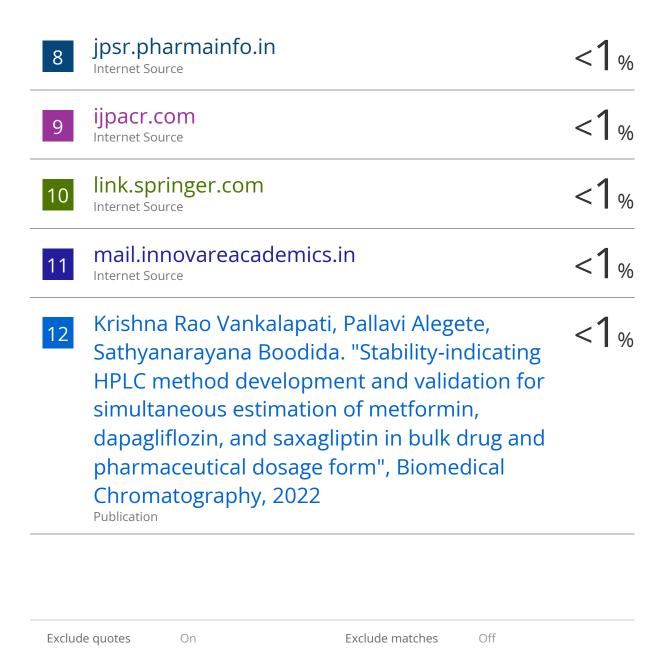
.LOQ for Empagliflozin $0.528 \mu\,\mathrm{g/ml}$ and LOQ for Linagliptin is $0.424 \mu\mathrm{g/ml}$

Table 13: LOD & LOQ of EMP and LIN

1			
Sr. No.	DRUG NAME	LOD (µg/ml)	LOQ (µg/ml)
1.	LIN	1.517	0.424
2.	EMP	2.108	0.528

Table 14: Validation Parameters of LIN and EMP

	y y	
Parameters	LIN	EMP
Working Wavelength(nm)	294nm	222.80nm
9		4
Linearity Range(µg/ml)	$2-16 \mu\mathrm{g/ml}$	$2-16 \mu \text{g/ml}$
Limit of Detection (µg/ml)	1.517μg/ml	2.108 µg/ml
Limit of Quantitation (µg/ml)	0,424 μg/ml	0.528 µg/ml
Y= mx+c	Y=0.054x-0.003	Y=0.202x-0.009
Slope ± S.D.	0.111	0.068
Intercept ± S.D.	0.011	0.0042
Regression Coefficient ±S.D.	R2=0.999	R2=0.999


241 242	RESULT:
243	The results confirmed the suitability of methods for estimating EMP and LIN ^{2,3,4,17,18,22} .
244	Linearity was established across the tested range with high regression coefficients. Accuracy
245	studies showed excellent recovery, precision studies confirmed reproducibility. The low LOD
246	and LOQ values indicate high method sensitivity. Ruggedness confirmed the method's
247	consistency under altered conditions.
248	The techique was linear over 2–16 μ g/ml with $R^2 = 0.997$. Intraday and interday precision
249	(%RSD) was within acceptable limits. Accur
250	of Empagliflozin and Linagliptin were 2.108 µg/ml and 1.517 µg/ml, respectively. LOQ of
251	Empagliflozin and Linagliptin 0.528 ug/ml and 0.424 ug/ml Robustness studies showed no
252	significant variation. The method is suitable for routine use.
253	
254 255	CONCLUSION:
256	The validated UV-spectrophotometric method enables accurate, precise, and sensitive joint
257	assessment of Empagliflozin and Linagliptin in both volume as well as tablet formulations.
258	Compliant with ICH Q2(R1) ^{13,14} instructions, the method demonstrated strong linearity,
259	reproducibility, and robustness under varied conditions. Its simplicity, cost-effectiveness, and
260	reliability make it highly suitable for routine quality control and pharmaceutical analysis.
261	10
262	CONFLICT OF INTEREST:
263	The authors have no conflicts of interest regarding this investigation.
264	
265 266	A CIVNOWI ED CMENT
267	ACKNOWLEDGMENT a Gratitude is extended to JSPM's Rajarshi Shahu College of Pharmacy and Research, Pune,
268	for their infrastructural and technical support during the course of this research.
269	for their infrastructural and technical support during the course of this research.
270	
271	
272	
273	REFERENCES:
274	
	. D_ Y
275	1. effery GH, Basset J, Mendham J, Denney RC. Vogel's Textbook of QuantitativAnalysis.5th ed. New
276	York: Longman Scientific and Technical, 1991:217-235.
	\wedge
277 278	2. Chatwal GR, Sham KA. Instrumental methods of chemical analysis. 5hEd.Himalaya Publication
278	2010:2.107-2.184.
279	3. Skoog DA, West DM. Principle of Instrumental Analysis. Stanford University. Saunders college
280	publication, London 1980:2-3.
201	4 Chatrial CD. A and CV. Instrumental Matheda of chamical Analysis 5 Medition Himsleys
281 282	 Chatwal GR, Anand SK. Instrumental Methods of chemical Analysis 5ⁿedition. Himalaya Publication House Mumbai 2002: 2.567-2.585.
202	i doneddon i rodoc ffumodi 2002. 2207-2200.
202	5 Dei C Wong V Amongste Velegity mofiles and show strain not veglishilityin 4 - USD Di1-ti
283 284	 Bai. G. Wang, Y. Armenante, Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at Different Impeller Agitation Speeds, International Journal of
285	Pharmaceutics 2011: 403 (1-2), Pages 1–14

286	6. United States Pharmacopeia 34/National Formulary 29: 2011.
287 288	$7. The\ United\ States\ Pharmacopoeia\ 32, NF27,\ United\ States\ Pharmacopoeia\ Convention\ Inc,\ Rockville,\ Annual\ Asian\ Edition,\ 2010:\ 263$
289 290	8Saeed Qureshi, Drug Dissolution Testing: Selecting a Dissolution MediumforSolid Oral Products, American Pharmaceutical Review, 1-5.
291 292	9. Chafetz L: Stability-indicating assay methods for drugs and their dosageforms Journal of Pharmaceutical Sciences 1971, 60(3): 335-345
293 294	10. ICH Q1A (R2): Stability Testing of New Drug Substances and Products. Step4version 6 Feb 2003, ICH: 01-17.
295 296	11. ICH Q1B: Stability testing, Photo stability testing of new drug substances and products. Step 4 version 6 Nov 1996, ICH: 01-08.
297 298	12. Sethi PD. HPLC:Quantitative analysis of drug in Pharmaceutical formulation. 3rdEd. CBS Publishers and Distributors; New Delhi, 1996: 1-17.
299 300	13. ICH, Q2A, Text on validation of analytical products, International conferenceonHarmonization, Geneva, October 1994: 1-5.
301 302	14. ICH, Q2B, Text on validation of analytical products, International conferenceonHarmonization, Geneva, November 1996: 1668.
303	15. Dr. Liji Thomas. Reviewed by Afsaneh Khetrapal. Analytical ChemistryTechniques: 1-6.
304	16. Prof. Kumar S. Spectroscopy of Organic Compounds, Organic Chemistry,2006:1-8.
305 306	17. Sharmila Donepudi, Validated Hplc-Uv Method For Simultaneous EstimationOf Linagliptin And Empagliflozin In Human Plasma, Ijap, Vol 10, Issue 3, 2018, 56-61.
307 308	18. Anjali Bakshi, Simultaneous Estimation of Empagliflozin And Linagliptin ByRp-Hplc Method, World Journal Of Pharmacy And Pharmaceutical Sciences, Volume 7, Issue 8, 1062-1071.
309	19. Ramzia I. El-Bagary, the Spectrophotometric Methods for the Determination of Linagliptin in
310	Binary Mixture with Metformin Hydrochloride and SimultaneousDetermination of Linagliptin and
311	Metformin Hydrochloride using High PerformanceLiquid Chromatography, International journal of
312	Biomedical science, vol. 9 no. 1 March2013, 41-47.
313	20. Jyothirmai N, Novel UV and Visible Spectrophotometric methods for theanalysis of Empagliflozin
314	a type 2 diabetic drug in bulk and pharmaceutical formulations journal de Afrikana, 2016, 3(1); 177-
315	187.
316 317	21. Pravin Cholke, Comparative Study Of Two Different Marketed Preparation(Tablets) Containing Empagliflozin & Linagliptin And Developing Novel Method For simultaneous estimation of

318 319	Empagliflozin & LinagliptinSpectrophotometer, World Journal Of Pharmacy And Pharmaceutical Sciences, Volume8, Issue 4, 1227-1235.
320 321 322	22. N. Padmaja, Development and validation of analytical method for Simultaneousestimation of Empagliflozin and Linagliptin in bulk drugs and combined dosage formsusing UV-visible spectroscopy, Der Pharmacia Lettre, 2015, 7 (12):306-312.
323 324	23. Bassam M Ayoub, Mean Centering Method for determination of Empagliflozinand Metformin, Marmara Pharmaceutical Journal 21/3:, 2017, 669-674.
325 326 327	24. Sushil D. Patil, Development and validation of UV spectrophotometric methodfor Simultaneous estimation of Empagliflozin and Metformin hydrochloride in bulkdrugs, Asian J. Pharm. Ana. 2017; Vol. 7: Issue 2, 2231-5675.
328 329 330	25. Potdar Ashwini, Development And Validation Of UV SpectrophotometricMethod For Simultaneous Estimation Of Empagliflozin And Metformin Hydrochloride InCombined Dosage Form, IJPSR, 2020; Vol. 11(5): 2173-2180.
331 332	26. R.K. Sangeetha, Analysis Of Linagliptin In Tablet Dosage Form By UvSpectroscopy Method, Its Derivatives And Difference Spectra, EJPMR, 2016,3(11), 536-540.
333 334	27. Amar Gangadhar Zalte, Validated UV- Spectroscopic estimation of LinagliptinConcentration in Bulk and Dosage form, Research J. Pharm. and Tech. 9(5): May 2016,490-492.
335 336	28. Sarif Niroush Konari, Stability Indicating UV Spectrophotometric Method ForLinagliptin and Metformin in Pharmaceutical Dosage Form, Pharm Methods, 2017; 8(2):121-126.
337	
338 339 340	29. Vimal J. Patel, Dual Wavelength spectrophotometric Method for the Simultaneous Determination of Linagliptine and Pioglitazone in Synthetic Mixture International Journal of Pharma And Chemical Research I Volume 3 Issue 3 Jul – Sep 2017, 462-466.

Development and validation of Analytical Method for Simulataneous Estimation of Empagliflozin and Linagliptin in Tablet Dosage Form.

ORIGINA	ALITY REPORT			
9 SIMILA	% RITY INDEX	8% INTERNET SOURCES	4% PUBLICATIONS	2% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	ijppr.hur Internet Source	nanjournals.co	om	4
2	ijprs.com Internet Source			1
3	academi Internet Source	c.oup.com		1
4	www.thic	eme-connect.c	om	1
5		ed to Imperial (ogy and Medici	College of Scien ne	1 ·
6	healthdo Internet Source	cbox.com		1
7	S. Hassa "Flourim drugs; er pharmad plasma",	n, Hanan A. Me etric study on mpagliflozin ar ceutical formul Spectrochimic	amed A. Hasan, erey, Israa M. N antidiabetic cor ad linagliptin in ation and huma ca Acta Part A:	our. mbined their an

Exclude bibliography

On