Abtract

The high-voltage distribution network in the city of Niamey has a tree structure, withsome branches loopedtogether, but itisoperatedradially. The river area, whichincludes the regions of Dosso, Niamey, and Tillabery, ismainlysupplied by the 132 kV interconnection line from Berni Kebbi in Nigeria, coveringaround one-third of demand, with the remainderbeing met by local production. The high-voltage distribution network in the city of Niamey has 42 branches with a total length of 212,238 km, 94.3% of which are overhead and 5.7% underground. This network issued to supply HV/LV transformer stations to customers, numbering 288,924, 319,326, and 329,557 in 2022, 2023, and 2024, respectively, all power levelscombined. Analysis of the high-voltage network in the city of Niamey shows thatit fails 100% afteronly 240 hours of service, soitsavailabilitybeyondthatcannotbereliedupon. Nevertheless, the studyshowedthat the high-voltage/low-voltage transformer stations visited are not polluted by harmonicsbeyond the standard. Nevertheless, itis up to the distribution company to monitor harmonic rates in view of developmentsthatintroduce more staticconverters and other sources of pollution.

Keywords: HTA network, Niamey, Reliability, Harmonics

1. Introduction

Power qualityrefers to the ability of the electrical grid to provide a high-quality power supply without disturbances that could affect industrial and domestic equipment [1, 2].

Rapid urbanization and population growth are placingconsiderable pressure on the distribution network in the city of Niamey. In this context, this study will not only identify the sources of disturbances, but also propose appropriate solutions to improve the reliability and efficiency of the electrical grid.

The assessment of power quality on Niamey's HV/LV gridinvolves voltage and currentmeasurements and the analysis of historicalenergyconsumption data. This article examines the failure of Niamey's HV/LV network based on statistical operating data using quality index calculations. In addition, the study of harmonics at certain distribution stations provides insight into their contribution to the deterioration of electrical power quality.

2. Methods and materials

2.1.Statistics on disruptions to the Niamey distribution networkThe data wepresent are the results of readingstaken at the Niamey-III substation of all incidents on the high-voltage network in the city of Niamey thatled to a power outage lasting more than five minutes. The data included in this studythereforecovers the period from January 1, 2022, to August 31, 2024, for incidents, and from January 1 to August 31, 2024, for quality index calculations. The following information is mainly included:

- The various HTA feeders and theirnames;
- Duration of power outages;
- Energy not distributed.

2.2. Type of incidents.

Disruptions detected on the HV network have a direct effect on power outages for customers and result in lost revenue and users. For eachopening of the feeders, the type of incident iscategorized according to whether the power outage is caused by:

- PD: Feeder Disruption;
- AL: Power limitation on Nigeria's 132 KV line;
- PP: Production disturbance;
- PR: Network disturbances:
- TR: Work or intervention.

2.3. Calculation of service quality indices

The need to calculatequality indices includes the exact numbers of customersaffected by a power outage in the various feeders. Giventhat the digitization of the Niamey network isunderway for low-voltage customers, for calculation purposes, we will consider that:

- Each subscriber station represents a single end customer;
- The number of customersisdetermined per station based on the installed power of the transformer in proportion to the total number of customers, except for subscriber or private stations;
- The total number of customers for the feeder is the algebraicsum of the first two conditions above;
- DP and MX stations have the samecustomerdensity per km²;

The number of customers per transformer power is determined by equation (1).

61
62
$$NCT = ST \frac{(Ntc - NAB)}{\Sigma(SDP + SMX)} = ST.K (1)$$

65

66

67 68

69

70

71

72

73

74

75

76 77

78

79

80

81

82 83

84

85

86

87 88

89 90

95 96

102

103

The number of customers per departure is determined by equation (2).

 $N_{cd} = \Sigma(NCT + NAB)$ (2)

- Ntc: total end customers in Niamey;
- NCT:number of customers per type of transformer;
- SDP:installedcapacity at public distribution substations;
- SMX:installedcapacity at mixed substations;
- ST: transformer capacity;
- $\Sigma NCT = \Sigma ST.K$: represents the sum of DP and MX substation customers;
- ΣNAB :represents the sum of subscriber or privatecustomers;
- *Ncd:number of customersaffected by an initial outage X*

On a high-voltage distribution network, severalquality indices can be used to assess the performance and reliability of the electricity supply. We will focus on calculating these indices for the high-voltage feeders in the city of Niamey. To do this, wewillillustrate the calculationusing an example from the Hamdalaye feeder for eightmonths of service from January to August for the year 2024. The calculation coverssome of the main indices below:

The SAIDI index

This is an indicatorused to assess the reliability and quality of the electricity supply. It measures the average duration of service interruptions affecting an end customerduring a givenperiod [2, 3, 4].

SAIDI =
$$\frac{\sum (Ncd \times tc)}{Ntc}$$
 = $\frac{\sum ((NCT + NAB) \times tc)}{Ntc}$

Calculation of the number of customersaffected by a power outage at the Hamdalayesubstation

$$\sum NCT = \sum ST. K \text{ avec } K = \frac{(Nct - NAB)}{\sum (SDP + SMX)} = \frac{(329557 - 798)}{(231085 + 24730)} = 1,285$$

$$\sum NCT = \sum ST. K = (3 * 50 + 5 * 100 + 43 * 160 + 2 * 250 + 6 * 400 + 8 * 630).$$

$$= 15470$$

- 91
- $\sum (ST.K + NAB) = \sum Ncd = 15470 * 1,285 + 44 = 19924, \text{ Soient 19924 clients}$ $\mathbf{SAIDI} = \frac{\sum (Ncd \times tc)}{\text{Ntc}} = \frac{19924 * 33375}{329557} = 2018, \text{Corresponding to an average of 34 hours}$ $\sum (\text{Ncd} \times tc) : \text{sum of customers affected by an outage} \times \text{duration of the outage in minutes}$ 92
- 93
- 94 Ntc= total number of customersaffected by the outage

The SAIFI index

97 This index assesses the frequency of service interruptions by measuring the averagenumber of interruptions per 98 end customer in the sameperiod of 2024.

99 **SAIFI** =
$$\frac{\sum (Ncd)}{Ntc} = \frac{Nc*Ncd}{Ntc}$$
 (4)
SAIFI = $\frac{Nc*Ncd}{Ntc} = \frac{410 \times 19924}{329557} = 25$
00 A SAIFI of 25 meansthat, on average, each customer in the Hamdalaye area experienced 25

100 101 outagesbetweenJanuary and August 2024.

Availability Rate

104 Availabilitymakesit possible to assess the reliability of protection systems and network equipment and to plan 105 preventive maintenance. It also helps guide training policy for those involved in the production and distribution 106 chain.

$$107 D = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}} (5)$$

$$MTBF = \frac{TBF}{NP} = \frac{Working time - Downtime}{number of breakdowns} = \frac{365 * 24 * 60 - 33375}{410} = 1201$$

This meansthatbetweentwo power outagesduring the periodcovered by the Hamdalayedeparture, there are 1,201 minutes or 20 hours of normal operation.

MTTR =
$$\frac{tc}{Ntc}$$
 = $\frac{Downtime}{total number of outages}$ = $\frac{33375}{410}$ = 81

111 112

- This meansthat in the event of a fault, the averagerepair time until the Hamdalayedepartureresumesis 81 minutes
- 114 D = MTBF/(MTBF + MTTR) = 1201/(1201 + 81) = 0.94 soit 94%

115 116

113

- Application of initial failureprobabilityHamdalaye
- System failure is a direct response to poor system quality. Failure has nowbecome a key parameter in qualitymeasurement and decision support in the operation of an electrical network.
- The failure F(t) of a system at a given moment (t) can be defined as an estimate of the following probability:

120
$$F(t) = P(T > t) = 1 - e^{-\lambda t}$$
 (6)

The failure can also be related to the reliability function R(t), which is defined as:

$$R(t) = 1 - F(t) = e^{-\lambda t}$$
 (7)

- \bullet F(t) is the probability of failure at time t;
 - ightharpoonup R(t) is the probability of reliability at time t;
 - (P) represents probability;
- (T) is a random variable representing the time until system failure.

126 127 128

122

123 124

125

Default rate:
$$\lambda = 1/MTBF$$
. (8)

 $\lambda = 1/MTBF = 1/20 = 0.05$

129 130

For a time t=1 hour and $\lambda=0.05$, the failure of the city departure is determined below: $F(t)=1-e^{-0.05\times 1}=0.04877 \text{ soit } 5 \%$

131 132 133

For sevendays of operation of the Hamdalaye start, t = 168h and $\lambda = 0.05$, the failure of the start is determined below: $F(t) = 1 - e^{-0.05 \times 168} = 0.99977 \text{ soit } \mathbf{100\%}$

134 135

136

137

138

139 140

141

142

143

144

145

a. Undistributedenergy

Undistributedenergyrefers to the amount of energythat, althoughgenerated, is not actually delivered to consumers for various reasons. It represents a significant challenge for NIGELEC in terms of economicloss and its brand image.

This can includeseveral aspects, amongothers:

- Failures and service interruptions;
- Capacity restrictions;
- Power limitations, etc.

It is thereforeappropriate to quantify the losses due to energy not delivered to the Niamey distribution network. The average price set for a MWh is equal to Px = 97,250 CFA francs, as decided by NIGELEC at its board meeting in December 2023. The amount of lost revenue is thereforecalculated as follows:

$$M = E \times P_r \tag{9}$$

- P_x: averageprice per MWh;
- E:energy not delivered in MWh;
- M:amount of lost revenue.

154

155

a. Introduction to the CA 8220 network analyzer

The CA.8220 electrical network analyzeris a measuring instrument designed to evaluate the quality and performance of electrical networks. It is an essential tool for electricalengineers and technicians who want to optimize the performance of electrical networks and ensure good power quality.

The CA-8220 is a single-phase AC+DC 600 V category III (IEC 61010-1) power analyzerwith a digital LCD display. By measuring the effective values, power, and disturbances of electrical distribution networks, itprovides an instant snapshot of the main characteristics of a single-phase network (voltage, current, power, voltage/currentharmonics, etc.) and allowsyou to monitor rotating machines (temperature, current and start-up time, windingresistance, rotation speed). Compact and shock-resistant, itsergonomic and simple user interface makesitpleasant and intuitive to use [5].

It also has the following features and functions:

- Harmonicanalysis up to a certain order (generally up to the 50th);
- Ability to record data over an extended period of time, allowing for subsequentanalysis.
- Ability to connect the device to a computer for data transfer and analysisusing dedicated software.
- Allowspotentialproblems in the network to beidentified beforethey cause outages.
- Used to assessenergyconsumption and propose optimization solutions.

Figure 1 : Analyseur de réseau C.A 8220[5]

3. Results and analyses

a. Analysis of disruptions on the Niamey distribution network

Figure 2 shows the histogram of disruptions by incident group affecting the Niamey HTA network during the years 2022, 2023, and from January 1 to August 31, 2024.

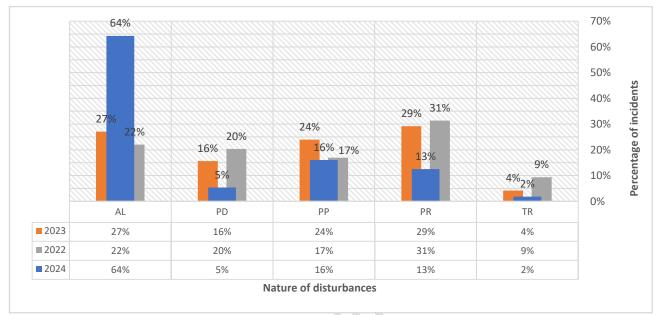
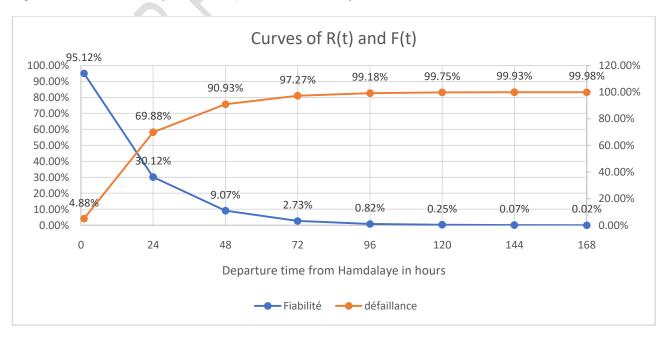



Figure 2:Histogram of disturbances

There is an asymmetrical distribution of incidents on the Niamey distribution network over the threeyearsconsidered. There is a major peak due to the absence of the 132 kV interconnection line in 2024, whichaccounts for 64% of disruptions, indicating that this category is the most significant in terms of undistributed energy. Nevertheless, there has been an improvement in network-related disruptions over the same period.

Overall, the limitation or absence of the 132 kV interconnection line is the most disruptive factor in the management of the electricity system in the river area and the Niamey distribution network in particular. It accounts for 38% of all disruptions over the threeyears, with a major impact on the delayed return on investment for manufacturers and small businesses, as well as social impacts.

The reliability of the system ranges from 94% to 100% at one hour of service for all departures from Niamey. It begins to decline exponentially beyond one hour of service until it reaches a point t = 168 h where it no longer responds. Therefore, after one week of service, the distribution network can no longer be guaranteed to function properly and is no longer reliable.

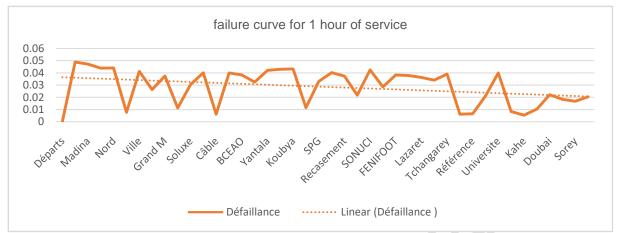


Figure 4: Failure and reliability of the Niamey network for one hour of service

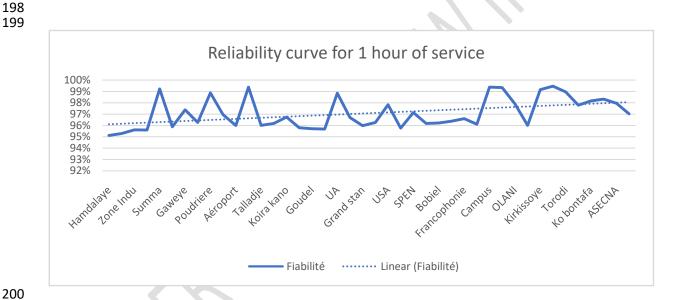


Figure 5: Niamey failure and reliability curve for 1 hour

b. Analysis of undistributedenergy

Table 1 shows the energy not delivered due to high-voltage outages in Niamey over the last threeyears, as well as the amountscorresponding to lost revenue due to power outages lasting more than five minutes.

Table 1: Energy not delivered due to high-voltage outages in Niamey

		E en MV	Vh		Amount of lost revenue in CFA francs					
N°	Departs	2022	2023	2024	2022	2023	2024			
1	Hamdalaye	200	6043	2749	19450000	587681750	267340250			
2	Madina	209	4689	3334	20325250	456005250	324231500			
3	Zone Indust	204	3281	2381	19839000	319077250	231552250			
4	Nord	147	5360	129	14295750	521260000	12545250			
5	Summa	9	1222	2987	875250	118839500	290485750			
6	Ville	114	3164	1439	11086500	307699000	139942750			
7	Gaweye	59	428	547	5737750	41623000	53195750			
8	Grand March	82	2281	1613	7974500	221827250	156864250			
9	Poudriere	40	3116	349	3890000	303031000	33940250			

10	Soluxe	35	1721	1020	3403750	167367250	99195000	
11	Aéroport	128	2822	2582	12448000	274439500	251099500	
12	Câble	11	1086	75	1069750	105613500	7293750	
13	Talladje	122	4926	3404	11864500	479053500	331039000	
14	Bceao	91	2949	1608	8849750	286790250	156378000	
15	Koira Kano	16	195	1022	1556000	18963750	99389500	
16	Yantala	75	4219	2094	7293750	410297750	203641500	
17	Goudel	110	5758	2733	10697500	559965500	265784250	
18	Koubya	130	4504	2622	12642500	438014000	254989500	
19	Ua	18	2626	177	1750500	255378500	17213250	
20	Spg	96	4238	1509	9336000	412145500	146750250	
21	Grand Stand	115	5014	2276	11183750	487611500	221341000	
22	Recasement	105	5265	2271	10211250	512021250	220854750	
23	Usa	12	165	208	1167000	16046250	20228000	
24	Sonuci	118	5261	2612	11475500	511632250	254017000	
25	Spen	55	1159	661	5348750	112712750	64282250	
26	Fenifoot	143	3362	2063	13906750	326954500	200626750	
27	Bobiel	192	4339	2890	18672000	421967750	281052500	
28	Lazaret	72	5702	2680	7002000	554519500	260630000	
29	Francophonie	121	3635	2208	11767250	353503750	214728000	
30	Tchangarey	197	6135	3086	19158250	596628750	300113500	
31	Campus	3	16	6	291750	1556000	583500	
32	Référence	10	16	0	972500	1556000	0	
33	Olani	26	2500	299	2528500	243125000	29077750	
34	Universite	117	3793	3270	11378250	368869250	318007500	
35	Kirkissoye	11	2659	69	1069750	258587750	6710250	
36	Kahe	0	0,446	0,039	0	43373,5	3793	
37	Torodi	8	109	59	778000	10600250	5737750	
38	Doubai	99	3562	921	9627750	346404500	89567250	
39	Ko Bontafa	43	1770	398	4181750	172132500	38705500	
40	Sorey	43	363	224	4181750	35301750	21784000	
41	Asecna	52	80	453	5057000	7780000	44054250	
42	Fleuve	0	0	1258	0	0	122340500	
		3438	119533	62286	334345500	11624627624	6057317293	

The total shortfall for 2024 is as follows:

M = M2024 + M2024/2 = 6,057,317,293 + 3,028,658,647 = 9,085,975,940 CFA francs

M2024/2 represents the projected revenue shortfall for the last four months of the year, as Table 1 onlytakesintoaccount data from January to August 2024.

c. Analysis of harmonics on the Niamey HV/LV network

Of all the disturbances, harmonics are unique in thatthey do not have a direct local influence in the sameway as other disturbances such as transients, surges, micro-cuts, etc., whose direct or reciprocal effects between devices are both visible and identifiable. Harmonics refer to a global phenomenon where each user contributes only a small fraction of the disturbances degrading the network, but where the cumulative effects are increasingly significant. In fact, as part of this study, we took measurements to analyze harmonics at two HV/LV substations in Niamey with distinct load characteristics, as shown below:

- the HV/LV substation, 400 kVA secondary, at the National Hospital in Niamey;
- the 3 HV/LV substation, 1000 KVA, which supplies an administrative area of Niamey.

The data wasmeasuredusing the CA.8220 multifunctionelectrical network analyzer and Power Pad software, whichenabled us to analyze the data and visualize the waves and spectra of the harmonics.

Table 2:Data measured at stations 3 and Hospital

Poste Hopital National de Niamey																	
Mesures de tension U(V) et courant I(A) Mesures de puissances KW																	
Р	ositior	า 1	Position 2			Position 3		Position 4		Position 1			Position 2				
Ueff	leff	f	Ueff	UDC	Ucf	Ueff, T/2	Ueff	Ueff, T/2	Umax	Umax	K	Р	Q	S	Ueff	leff	f
						max		min									
404	486	50,44	405	0,4	1,4	415	406	0	580	580-	1,03	320	105	337	0	0,94	0,94
Poste 3 de Niamey																	
	Mesures de tension U(V) et couran I(A) Mesures de puissances KW																
Position 1 Position 2 P				Po	sitior	n 3	Po	osition 4	1	Position 1 Position 2				2			
Ueff	leff	f	Ueff	UDC	Ucf	Ueff, T/2	Ueff	Ueff, T/2	Umax	Umax	K	Р	Q	S	PDC	PF	DPF
						max		min									
420	579	50,4	420	0,5	1,42	423	420	0	600	600-	1,08	379	76	393	0	0,97	0,98

Figures 6 and 8 shows the current analyses for the Hospital and Station 3 respectivelyduring one phase of theirload. It can be seenthat the signal from Station 3 is more distorted than that from the Hospital. The spectra in Figures 7 and 9 highlight this distortion, where the respective THD values are 4.7% and 6.5%. For the Hospital substation, the dominant harmonics are of rank 3 and 5, while for substation 3, those of rank 3, 5, and 7 dominate.

Wewillillustrate the calculations with the data revealed for substation 3 below:

233 Distorting power D

226 227

228

229

230 231

232

245 246

247

248

249

234
$$S = \sqrt{P^2 + Q^2 + D^2} \Rightarrow D = \sqrt{S^2 - P^2 - Q^2} (10)$$

235 $D = \sqrt{393^2 - 379^2 - 76^2} = 70.93 \implies D = 70.93 \text{ KW}$

235
$$D = \sqrt{393^2 - 379^2 - 76^2} = 70.93 \implies D = 70.93 \text{ KW}$$

236

236 **Power factor PF**
237
$$FP = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2 + D^2}} = \frac{379}{393} = 0,96 (11)$$

238
$$FP = \frac{P}{S} = K\cos\phi_1 \Rightarrow \cos\phi_1 = \frac{PF}{K} = \frac{0.96}{1.08} = 0.89 \Rightarrow \cos\phi_1 = 0.89$$

K represents the distortion factor and $\phi 1$ is the phase shift between the fundamental current and the voltage. 239

240 Effective value of the fundamental current: I_1

241
$$I_{eff} = \sqrt{I_1^2 + I_2^2 + I_5^2 + I_7^2}$$
 (12)

242
$$\Rightarrow I_{eff}^2 = I_1^2 + I_3^2 + I_5^2 + I_7^2$$

241
$$I_{eff} = \sqrt{I_1^2 + I_3^2 + I_5^2 + I_7^2}$$
 (12)
242 $\Rightarrow I_{eff}^2 = I_1^2 + I_3^2 + I_5^2 + I_7^2$
243 $\Rightarrow 579^2 = I_1^2 (1 + 0.05 + 0.04 + 0.03) \Rightarrow I_1 = \frac{3579}{\sqrt{1.12}} = 547$

Table 3: Emission of harmonic currents in Niamey's high-voltage/low-voltage network 244

Harmones Rank		Frequency Hz	% H	Effective value						
Niamey Post Office $3(THD = 6.5 \%, \cos\phi = 0.89 \text{ et D} = 70.93 \text{ KW})$										
H_1	1	50	100%	547 A						
H_3	3	150	5%	27 A						
H_5	5	250	4%	22 A						
H_7	7	350	3%	16 A						
Niamey Hospital seco	Niamey Hospital secondary station(THD = $4.7\% \cos \phi = 0.92$ et D = 12 KW)									
H_1	1	50	100%	452 A						
H_3	3	150	2,5%	11 A						
H_5	5	250	4%	18 A						
H_7	7	350	1%	5 A						

 $1KV < U \le 30KV$ with TDH = 8% of ranksbelow:

Rank $3 \Rightarrow H = 5\%$, Rank $5 \Rightarrow H = 6\%$ et Rank $7 \Rightarrow H = 5\%$

It is clear that the voltage harmonics for the measured stations are wellbelow the standard limit.

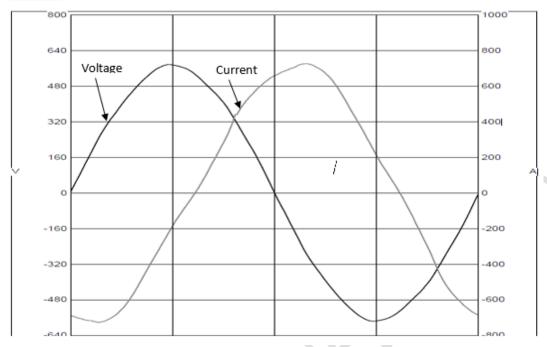
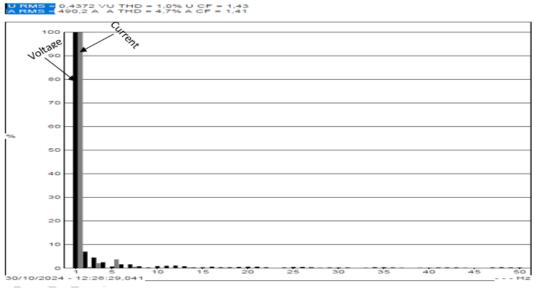



Figure 6: Voltage and currentwavesmeasured at the hospitalsubstation

252 253

Figure~7: Spectra~of~voltage/current harmonics from hospital load

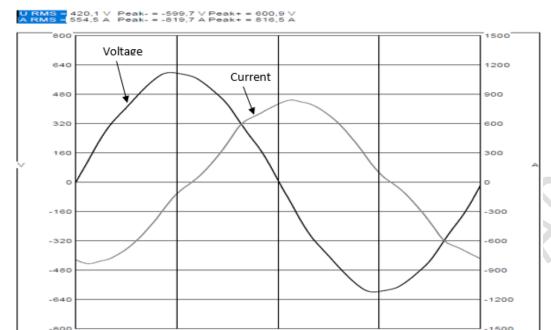


Figure 8: Voltage and currentwavesmeasured at station 3
Histogramme harmonique

28/10/2024 12:31:52,272

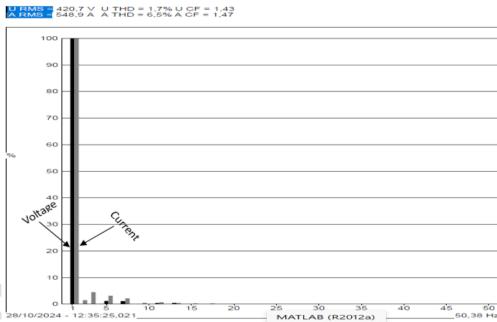


Figure 9: Spectra of voltage/currentharmonics of the load at station 3

3. Conclusion

The analysis of electrical power quality on Niamey's high-voltage network is a subject of crucial importance in the currentcontext of rapideconomicdevelopment and urbanization. The resultsobtainedthroughharmonicmeasurements and analysis of power quality indices have highlightedseveral major challenges facing the network. It appearsthatsignificant disturbances related to the absence of the 132 kV interconnection line, the intervention of the SRMERD, and system synchronization problems and other hazards impact not only the reliability of the grid but also user satisfaction. In addition, these disturbances can have adverse effects on electrical equipment, thereby increasing operating costs and reducing the service life of installations.

References:

- 270 [1] M. M. A. Al-Maghalseh, "Evaluating the Reliabilityworth Indices of Electrical Medium Voltage Network :
- 271 Case Study", Science Direct, Procedia Comput. Sci., vol. 130, pp. 744–752, 2018, 10.1016/j.procs.2018.04.129.
- 272 [2] AttoumaneKosso Moustapha and al. « Study of HTA distribution network reliabilityin Niameycity »,DOI:
- 273 10.21474/IJAR01/13889, pp. 169-177,2021
- 274 [3] Malik Megdiche, « Sûreté de fonctionnement des réseaux de distribution en présence de production
- décentralisée », Thèse de doctorat deInstitut national polytechnique de Grenoble, 2004.
- 276 [4] Techniques de l'ingénieur, "Sûreté de Fonctionnement des Systèmes Industriels Complexes", S8 250."
- A. Villemeur, ""Sûreté de Fonctionnement des Systèmes Industriels", EYROLLES, Paris.," 1988.
- [5]. Notice -de -fonctionnement -CA-8220. www.chauvin-arnoux.com, 07/09/2025