# Quality analysis of high-voltage network in Niamey city

by Jana Publication & Research

**Submission date:** 21-Oct-2025 08:09AM (UTC+0300)

**Submission ID:** 2770460481 **File name:** IJAR-54421.pdf (1.55M)

Word count: 3616 Character count: 18144

### Qualityanalysis of high-voltage network in Niamey city

The high-voltage distribution network in the city of Niamey has a tree structure, withsome branches loopedtgether, but itisoperatedradially. The river area, whichincludes the regions of Dosso, Niamey, and Tillabery, ismainlysupplied by the 132 kV interconnection line from Berni Kebbi in Nigeria, coveringaround one-third of demand, with the remainderbeing met by local production. The high-voltage distribution network in the city of Niamey has 42 branches with a total length of 212,238 km, 94.3% of which are overhead and 5.7% underground. This network issued to supply HV/LV transformer stations to customers, numbering 288,924, 319,326, and 329,557 in 2022, 2023, and 2024, respectively, all power levelscombined. Analysis of the highvoltage network in the city of Niamey shows thatit fails 100% afteronly 240 hours of service, soitsavailabilitybeyondthatcannotbereliedupon. Nevertheless, the studyshowedthat the high-voltage/low-voltage transformer stations visited are not polluted by harmonicsbeyond the standard. Nevertheless, itis up to the distribution company to monitor harmonic rates in view of developments that introduce more static converters and other sources of pollution.

Keywords: HTA network, Niamey, Reliability, Harmonics

qualityrefers to the ability of the electricalgrid to provide a high-quality supplywithoutdisturbancesthatcould affect industrial and domesticequipment [32].

Rapid urbanization and population growth are placingconsiderable pressure on the distribution network in the city of Niamey. In thiscontext, thisstudywill not onlyidentify the sources of disturbances, but also propose appropriate solutions to improve the reliability and efficiency of the electricalgrid.

appropriate solutions to improve the closely and effectively of the described and currentmeasurements and the analysis of historical energy consumption data. This article examines the failure of Niamey's HV/LV network based on statistical operating data usingquality index calculations. In addition, the study of harmonics at certain distribution stations provides insight into their contribution to the deterioration of electrical power quality.

### 2. Methods and materials

### 2.1 Statistics on disruptions to the Niamey distribution network

The data wepresent are the results of readingstaken at the Niamey-III substation of all incidents on the highvoltage network in the city of Niamey thatled to a power outage lasting more than five minutes. The data included in this study therefore covers the period from January 1, 2022, to August 31, 2024, for incidents, and from January 1 to August 31, 2024, for quality index calculations. The following information ismainly included:

- The various HTA feeders and theirnames;
- Duration of power outages;
- Energy not distributed.

# 2.2. Type of incidents.

Disruptions detected on the HV network have a direct effect on power outages for customers and result in lost revenue and users. For eachopening of the feeders, the type of incident iscategorizedaccording to whether the power outageiscaused by:

- PD: Feeder Disruption;
- AL: Power limitation on Nigeria's 132 KV line;
- PP: Production disturbance;
- PR: Network disturbances;
- TR: Work or intervention.

### 2.3. Calculation of service quality indices

The need to calculatequality indices includes the exact numbers of customers affected by a power outage in the various feeders. Giventhat the digitization of the Niamey network isunderway for low-voltage customers, for calculationpurposes, wewillconsiderthat:

- Each subscriber station represents a single end customer;
- The number of customersisdetermined per station based on the installed power of the transformer in proportion to the total number of customers, except for subscriber or private stations;
- The total number of customers for the feeder is the algebraic sum of the first two conditions above;
- DP and MX stations have the samecustomerdensity per km2;

The number of customers per transformer power is determined by equation (1).

2 3 4

5 6 7

8

12

13

18 19 20

21

22

41

42 43

44

33 34

35

50

61  $NCT = ST \frac{(Ntc - NAB)}{\Sigma(SDP + SMX)} = ST.K (1)$ 62

The number of customers per departure is determined by equation (2).

 $N_{cd} = \Sigma (NCT + NAB)$ 

- Ntc: total end customers in Niamey:
- NCT:number of customers per type of transformer; SDP:installedcapacity at public distribution substations;
- SMX:installedcapacity at mixed substations;
- ST: transformer capacity;
- 72 73 74 75 76 77  $\Sigma NCT = \Sigma ST.K$ : represents the sum of DP and MX substation customers;
  - ΣNAB:represents the sum of subscriber or privatecustomers;
  - Ncd:number of customersaffected by an initial outage X

On a high-voltage distribution network, severalquality indices can be used to assess the performance and reliability of the electricity supply. We will focus on calculating these indices for the high-voltage feeders in the city of Niamey. To do this, wewillillustrate the calculationusing an example from the Hamdalaye feeder for eightmonths of service from January to August for the year 2024. The calculation coverssome of the main indices

### The SAIDI index

This is an indicatorused to assess the reliability and quality of the electricity supply. It measures the average duration of service interruptions affecting an end customerduring a givenperiod [2, 3, 4].

**SAIDI** = 
$$\frac{\sum (Ncd \times tc)}{Ntc}$$
 =  $\frac{\sum ((NCT + NAB) \times tc)}{Ntc}$ 

63 64

65

66 67 68

69

70 71

78 79

81 82 83

84 85

86

87 88 89

90

96

Calculation of the number of customersaffected by a power outage at the Hamdalayesubstation

$$\sum NCT = \sum ST.K \text{ avec } K = \frac{(Nct - NAB)}{\sum (SDP + SMX)} = \frac{(329557 - 798)}{(231085 + 24730)} = 1,285$$

$$\sum NCT = \sum ST.K = (3*50 + 5*100 + 43*160 + 2*250 + 6*400 + 8*630).$$

$$= 15470$$

- 92
- 93  $\sum$  (Ncd×tc):sum of customers affected by an outage × duration of the outage in minutes
- 94 Ntc= total number of customersaffected by the outage 95

The SAIFI index

97 This index assesses the frequency of service interruptions by measuring the averagenumber of interruptions per end customer in the same period of 2024.

SAIFI = 
$$\frac{S(Ncd)}{Ntc} = \frac{Nc*Ncd}{Ntc}$$
  
SAIFI =  $\frac{Nc*Ncd}{Ntc} = \frac{410 \times 19924}{329557} = 25$  (4)

 $\frac{\text{SAIFI}}{\text{Ntc}} = \frac{1}{329557} = 25$ A SAIFI of 25 meansthat, on average, each customer in the Hamdalaye area experienced 25 100 101 outagesbetweenJanuary and August 2024. 102

# Availability Rate

103 104 Availabilitymakesit possible to assess the reliability of protection systems and network equipment and to plan 105 preventive maintenance. It also helps guide training policy for those involved in the production and distribution

106 chain

MTBF  $D = \frac{MTBF + MTTR}{MTBF + MTTR}$ (5) 107 108  $MTBF = \frac{TBF}{NP} = \frac{Working \, time - Downtime}{number \, of \, breakdowns} = \frac{365 * 24 * 60 - 33375}{410} = 1201$  This meansthatbetweentwo power outagesduring the periodcovered by the Hamdalayedeparture, there are 1,201 minutes or 20 hours of normal operation. 109 110 MTTR =  $\frac{tc}{\text{Ntc}} = \frac{\text{Downtime}}{\text{total number of outages}} = \frac{33375}{410} = 81$ 111 This meansthat in the event of a fault, the averagerepair time until the Hamdalayedepartureresumesis 81 112 113 D = MTBF/(MTBF + MTTR) = 1201/(1201 + 81) = 0.94 soit 94%114 115 116 Application of initial failureprobabilityHamdalaye 117 System failure is a direct response to poor system quality. Failure has nowbecome a key parameter in 118 qualitymeasurement and decision support in the operation of an electrical network. The failure F(t) o 6 system at a given moment (t) can be defined as an estimate of the following probability: 119  $F(t) = P(T > \overline{t}) = 1 - e^{-\lambda t}$ 120 121 5 he failure can also be related to the reliability function R(t), which is defined as:  $R(t) = 4 - F(t) = e^{-\lambda t}$ (7) 122 F(t) is the probability of failure at time t; 123 124 R(t) is the probability of reliability at time t; 125 (P) representsprobability; (T) is a random variable representing the time until system failure. 126 127 128 **Default rate**: $\lambda = 1/MTBF$ . (8)  $\lambda = 1/MTBF = 1/20 = 0.05$ 129 • For a time t = 1 hour and  $\lambda = 0.05$ , the failure of the city departure is determined below: 130  $F(t) = 1 - e^{-0.05 \times 1} = 0.04877 \text{ soit } 5\%$ 131 For sevendays of operation of the Hamdalaye start, t=168h and  $\lambda=0.05$ , the failure of the 132 133 start isdeterminedbelow:  $F(t) = 1 - e^{-0.05 \times 168} = 0,99977 \text{ soit} \textbf{100}\%$ 134 135 a. Undistributedenergy Undistributedenergyrefers to the amount of energythat, althoughgenerated, is not actually delivered to consumers 137 for various reasons. It represents a significant challenge for NIGELEC in terms of economicloss and its brand 138 139 This can includeseveral aspects, amongothers: 140 Failures and service interruptions; 141 Capacity restrictions; 142 Power limitations, etc. 143 It isthereforeappropriate to quantify the losses due to energy not delivered to the Niamey distribution network. The average price set for a MWh is equal to Px = 97,250 CFA francs, as decided by NIGELEC at its board meeting 144 145 in December 2023. The amount of lost revenue isthereforecalculated as follows:  $M = E \times P_{x}$ 146 147 148 Px: averageprice per MWh; 149 E:energy not delivered in MWh; 150 M:amount of lost revenue. 151 Introduction to the CA 8220 network analyzer 153 The CA.8220 electrical network analyzeris a measuring instrument designed to evaluate the quality and 154 performance of electrical networks. It is an essential tool for electricalengineers and technicianswhowant to optimize the performance of electrical networks and ensure good power quality.

The CA-8220 is a single-phase AC+DC 600 V category III (IEC 61010-1) power analyzerwith a digital LCD display. By measuring the frequency of the main characteristics of a single-phase network (voltage, current, power, power, and disturbances of electrical distribution networks, it provides an instant snapshot of the main characteristics of a single-phase network (voltage, current, power, voltage/currentharmonics, etc.) and allowsyou to monitor rotating machines (temperature, current and start-up time, windingresistance, rotation speed). Compact and shock-resistant, itsergonomic and simple user interface makesitpleasant and intuitive to use [5].

162 It also has the following features and functions: 163 164

- Harmonicanalysis up to a certain order (generally up to the 50th);
  Ability to record data over an extendedperiod of time, allowing for subsequentanalysis.
  Ability to connect the device to a computer for data transfer and analysisusing dedicated software.
  Allowspotential problems in the network to be identified before they cause outages.
  Used to assessener gyconsumption and propose optimization solutions.



160

161

Figure 1 : Analyseur de réseau C.A 8220[5]

### 3. Results and analyses

### a. Analysis of disruptions on the Niamey distribution network

Figure 2 shows the histogram of disruptions by incident group affecting the Niamey HTA network during the years 2022, 2023, and from January 1 to August 31, 2024.

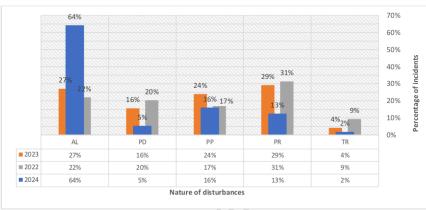



Figure 2:Histogram of disturbances

There is an asymmetrical distribution of incidents on the Niamey distribution network over the threeyearsconsidered. There is a major peak due to the absence of the 132 kV interconnection line in 2024, whichaccounts for 64% of disruptions, indicating that this category is the most significant in terms of undistributed energy. Nevertheless, there has been an improvement in network-related disruptions over the same period.

Overall, the limitation or absence of the 132 kV interconnection line is the most disruptive factor in the management of the electricity system in the river area and the Niamey distribution network in particular. It accounts for 38% of all disruptions over the threeyears, with a major impact on the delayed return on investment for manufacturers and small businesses, as well as social impacts.





197 198 199

200 201 202

The reliability of the system ranges from 94% to 100% at one hour of service for all departures from Niamey. It begins to decline exponentially beyond one hour of service until it reaches a point t = 168 h where it no longer responds. Therefore, after one week of service, the distribution network can no longer be guaranteed to function properly and is no longer reliable.

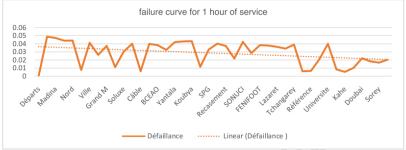



Figure 4: Failure and reliability of the Niamey network for one hour of service



Figure 5: Niamey failure and reliabilitycurve for 1 hour

**b.** Analysis of undistributedenergy

Table 1 shows the energy not delivered due to high-voltage outages in Niamey over the last threeyears, as well as the amountscorresponding to lost revenue due to power outages lasting more than five minutes.

Table 1: Energy not delivered due to high-voltage outages in Niamey

|    |             | E en MV | Vh   |      | Amount of lost revenue in CFA francs |           |           |  |  |  |
|----|-------------|---------|------|------|--------------------------------------|-----------|-----------|--|--|--|
| Ν° | Departs     | 2022    | 2023 | 2024 | 2022                                 | 2023      | 2024      |  |  |  |
| 1  | Hamdalaye   | 200     | 6043 | 2749 | 19450000                             | 587681750 | 267340250 |  |  |  |
| 2  | Madina      | 209     | 4689 | 3334 | 20325250                             | 456005250 | 324231500 |  |  |  |
| 3  | Zone Indust | 204     | 3281 | 2381 | 19839000                             | 319077250 | 231552250 |  |  |  |
| 4  | Nord        | 147     | 5360 | 129  | 14295750                             | 521260000 | 12545250  |  |  |  |
| 5  | Summa       | 9       | 1222 | 2987 | 875250                               | 118839500 | 290485750 |  |  |  |
| 6  | Ville       | 114     | 3164 | 1439 | 11086500                             | 307699000 | 139942750 |  |  |  |
| 7  | Gaweye      | 59      | 428  | 547  | 5737750                              | 41623000  | 53195750  |  |  |  |
| 8  | Grand March | 82      | 2281 | 1613 | 7974500                              | 221827250 | 156864250 |  |  |  |
| 9  | Poudriere   | 40      | 3116 | 349  | 3890000                              | 303031000 | 33940250  |  |  |  |

| 11 |              |      |        |       |           |             | 99195000   |
|----|--------------|------|--------|-------|-----------|-------------|------------|
|    | Aéroport     | 128  | 2822   | 2582  | 12448000  | 274439500   | 251099500  |
| 12 | Câble        | 11   | 1086   | 75    | 1069750   | 105613500   | 7293750    |
| 13 | Talladje     | 122  | 4926   | 3404  | 11864500  | 479053500   | 331039000  |
| 14 | Bceao        | 91   | 2949   | 1608  | 8849750   | 286790250   | 156378000  |
| 15 | Koira Kano   | 16   | 195    | 1022  | 1556000   | 18963750    | 99389500   |
| 16 | Yantala      | 75   | 4219   | 2094  | 7293750   | 410297750   | 203641500  |
| 17 | Goudel       | 110  | 5758   | 2733  | 10697500  | 559965500   | 265784250  |
| 18 | Koubya       | 130  | 4504   | 2622  | 12642500  | 438014000   | 254989500  |
| 19 | Ua           | 18   | 2626   | 177   | 1750500   | 255378500   | 17213250   |
| 20 | Spg          | 96   | 4238   | 1509  | 9336000   | 412145500   | 146750250  |
| 21 | Grand Stand  | 115  | 5014   | 2276  | 11183750  | 487611500   | 221341000  |
| 22 | Recasement   | 105  | 5265   | 2271  | 10211250  | 512021250   | 220854750  |
| 23 | Usa          | 12   | 165    | 208   | 1167000   | 16046250    | 20228000   |
| 24 | Sonuci       | 118  | 5261   | 2612  | 11475500  | 511632250   | 254017000  |
| 25 | Spen         | 55   | 1159   | 661   | 5348750   | 112712750   | 64282250   |
| 26 | Fenifoot     | 143  | 3362   | 2063  | 13906750  | 326954500   | 200626750  |
| 27 | Bobiel       | 192  | 4339   | 2890  | 18672000  | 421967750   | 281052500  |
| 28 | Lazaret      | 72   | 5702   | 2680  | 7002000   | 554519500   | 260630000  |
| 29 | Francophonie | 121  | 3635   | 2208  | 11767250  | 353503750   | 214728000  |
| 30 | Tchangarey   | 197  | 6135   | 3086  | 19158250  | 596628750   | 300113500  |
| 31 | Campus       | 3    | 16     | 6     | 291750    | 1556000     | 583500     |
| 32 | Référence    | 10   | 16     | 0     | 972500    | 1556000     | 0          |
| 33 | Olani        | 26   | 2500   | 299   | 2528500   | 243125000   | 29077750   |
| 34 | Universite   | 117  | 3793   | 3270  | 11378250  | 368869250   | 318007500  |
| 35 | Kirkissoye   | 11   | 2659   | 69    | 1069750   | 258587750   | 6710250    |
| 36 | Kahe         | 0    | 0,446  | 0,039 | 0         | 43373,5     | 3793       |
| 37 | Torodi       | 8    | 109    | 59    | 778000    | 10600250    | 5737750    |
| 38 | Doubai       | 99   | 3562   | 921   | 9627750   | 346404500   | 89567250   |
| 39 | Ko Bontafa   | 43   | 1770   | 398   | 4181750   | 172132500   | 38705500   |
| 40 | Sorey        | 43   | 363    | 224   | 4181750   | 35301750    | 21784000   |
| 41 | Asecna       | 52   | 80     | 453   | 5057000   | 7780000     | 44054250   |
| 42 | Fleuve       | 0    | 0      | 1258  | 0         | 0           | 122340500  |
|    |              | 3438 | 119533 | 62286 | 334345500 | 11624627624 | 6057317293 |

208 209 210

215

216

217 218

219 220

222

The total shortfall for 2024 is as follows:  $M = M2024 + M2024/2 = 6.057, 317, 293 + 3.028, 658, 647 = 9.085, 975, 940 \text{ CFA francs} \\ M2024/2 \text{ represents the projected revenue shortfall for the last four months of the year, as Table 1 onlytakesintoaccount data from January to August 2024. }$ 

### c. Analysis of harmonics on the Niamey HV/LV network

Of all the disturbances, harmonics are unique in thatthey do not have a direct local influence in the sameway as otherdisturbancessuch as transients, surges, micro-cuts, etc., whose direct or reciprocaleffectsbetweendevices are both visible and identifiable. Harmonics refer to a global phenomenon where each user contributes only a small fraction of the disturbances degrading the network, but where the cumulative effects are increasingly significant. In fact, as part of this study, we took measurements to analyze harmonics at two HV/LV substations in Niamey with distinct loadcharacteristics, as shownbelow:

- the HV/LV substation, 400 kVA secondary, at the National Hospital in Niamey;
- the 3 HV/LV substation, 1000 KVA, which supplies an administrative area of Niamey.

223 The data was measured using the CA.8220 multifunction electrical network analyzer and Power Pad software, 224 whichenabled us to analyze the data and visualize the waves and spectra of the harmonics.

Table 2:Data measured at stations 3 and Hospital

|               | Poste Hopital National de Niamey                                  |       |      |            |     |            |      |           |            |      |      |            |     |     |      |      |      |
|---------------|-------------------------------------------------------------------|-------|------|------------|-----|------------|------|-----------|------------|------|------|------------|-----|-----|------|------|------|
| 1             | Mesures de tension U(V) et courant I(A)  Mesures de puissances KW |       |      |            |     |            |      |           |            |      |      |            |     |     |      |      |      |
| P             | Position 1 Position 2                                             |       | 2    | Position 3 |     | Position 4 |      | 4         | Position 1 |      | 1    | Position 2 |     |     |      |      |      |
| Ueff          | leff                                                              | f     | Ueff | UDC        | Ucf | Ueff, T/2  | Ueff | Ueff, T/2 | Umax       | Umax | K    | Р          | Q   | S   | Ueff | leff | f    |
|               |                                                                   |       |      |            |     | max        |      | min       |            |      |      |            |     |     |      |      |      |
| 404           | 486                                                               | 50,44 | 405  | 0,4        | 1,4 | 415        | 406  | 0         | 580        | 580- | 1,03 | 320        | 105 | 337 | 0    | 0,94 | 0,94 |
| $\overline{}$ | Poste 3 de Niamey                                                 |       |      |            |     |            |      |           |            |      |      |            |     |     |      |      |      |

| 1    | Mesures de tension U(V) et couran I(A) |   |            |     |     |            |      |            | М    | esure      | s de | puissa | nces K | W |     |    |     |
|------|----------------------------------------|---|------------|-----|-----|------------|------|------------|------|------------|------|--------|--------|---|-----|----|-----|
| Р    | Position 1 Position 2                  |   | Position 3 |     | Po  | Position 4 |      | Position 1 |      | Position 2 |      | 1 2    |        |   |     |    |     |
| Ueff | leff                                   | f | Ueff       | UDC | Ucf | Ueff, T/2  | Ueff | Ueff, T/2  | Umax | Umax       | K    | Р      | Q      | S | PDC | PF | DPF |
|      |                                        |   |            |     |     | max        |      | min        |      |            |      |        |        |   |     |    |     |

420 579 50,4 420 0,5 1,42 423 420 0 600 600 1,08 379 76 393 0 0,97 0,98 Figures 6 and 8 shows the current analyses for the Hospital and Station 3 respectivelyduring one phase of theirload. It can be seen that the signal from Station 3 is more distorted than that from the Hospital. The spectra in Figures 7 and 9 highlight this distortion, where the respective THD values are 4.7% and 6.5%. For the Hospital substation, the dominant harmonics are of rank 3 and 5, while for substation 3, those of rank 3, 5, and 7

We willillustrate the calculations with the data revealed for substation 3 below:

### Distorting power D

234 
$$S = \sqrt{P^2 + Q^2 + D^2} \Rightarrow D = \sqrt{S^2 - P^2 - Q^2} (10)$$

234 
$$S = \sqrt{P^2 + Q^2 + D^2} \Rightarrow D = \sqrt{S^2 - P^2 - Q^2}$$
 (10)  
235  $D = \sqrt{393^2 - 379^2 - 76^2} = 70.93 \implies D = 70.93 \text{ KW}$ 

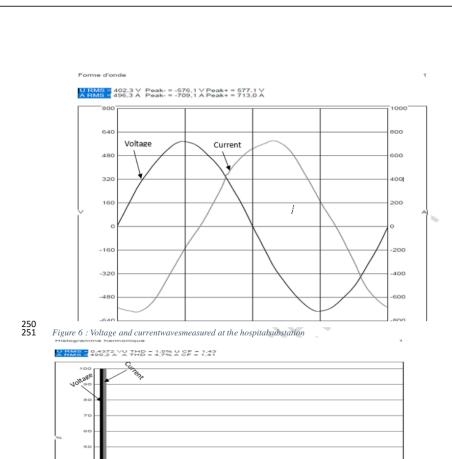
236 **Power factor PF**  
237 
$$FP = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2 + D^2}} = \frac{379}{393} = 0,96 (11)$$

238 
$$FP = \frac{P}{c} = K \cos \varphi_1 \Rightarrow \cos \varphi_1 = \frac{PF}{K} = \frac{0.96}{1.02} = 0.89 \Rightarrow \cos \varphi_1 = 0.89$$

$$\begin{split} \text{FP} &= \frac{P}{S} = \textit{K} \cos \phi_1 \Rightarrow \cos \phi_1 = \frac{PF}{K} = \frac{0.96}{1.08} = 0.89 \Rightarrow \cos \phi_1 = 0.89 \\ \text{K represents the distortion factor and } \phi_1 \text{ is the phase shift between the fundamental current and the voltage.} \end{split}$$

Effective value of the fundamental current:  $\mathcal{I}_1$ 

241 
$$I_{eff} = \sqrt{I_1^2 + I_3^2 + I_5^2 + I_7^2}$$
 (12)  
242  $\Rightarrow I_{eff}^2 = I_1^2 + I_3^2 + I_5^2 + I_7^2$ 


242 
$$\Rightarrow I_{eff}^2 = I_1^2 + I_3^2 + I_5^2 + I_7^2$$

243 
$$\Rightarrow 579^2 = I_1^2(1+0.05+0.04+0.03) \Rightarrow I_1 = \frac{3579}{5772} = 54$$

 $\Rightarrow 579^2 = I_1^2 (1 + 0.05 + 0.04 + 0.03) \Rightarrow I_1 = \frac{3579}{\sqrt{1.12}} = 547$  **Table 3:**Emission of harmonic currents in Niamey's high-voltage/low-voltage network 

| Harmones             | Rank                                                                                            | Frequency Hz           | % H  | Effective value |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------|------------------------|------|-----------------|--|--|--|--|--|--|
| Niamey Post Office 3 | $(THD = 6.5\%, \cos\phi =$                                                                      | 0,89  et D = 70,93  KW | )    |                 |  |  |  |  |  |  |
| H <sub>1</sub>       | 1                                                                                               | 50                     | 100% | 547 A           |  |  |  |  |  |  |
| H <sub>3</sub>       | 3                                                                                               | 150                    | 5%   | 27 A            |  |  |  |  |  |  |
| H <sub>5</sub>       | 5                                                                                               | 250                    | 4%   | 22 A            |  |  |  |  |  |  |
| $H_7$                | 7                                                                                               | 350                    | 3%   | 16 A            |  |  |  |  |  |  |
| Niamey Hospital seco | Niamey Hospital secondary station(THD = $4.7\% \cos \phi = 0.92 \text{ et D} = 12 \text{ KW}$ ) |                        |      |                 |  |  |  |  |  |  |
| H <sub>1</sub>       | 1                                                                                               | 50                     | 100% | 452 A           |  |  |  |  |  |  |
| $H_3$                | 3                                                                                               | 150                    | 2,5% | 11 A            |  |  |  |  |  |  |
| H <sub>5</sub>       | 5                                                                                               | 250                    | 4%   | 18 A            |  |  |  |  |  |  |
| H <sub>2</sub>       | 7                                                                                               | 350                    | 1%   | 5 A             |  |  |  |  |  |  |

- $1KV < U \leq 30KV$  with TDH =  $8\,\%$  ofranksbelow :
- Rank 3  $\Rightarrow$  H = 5%, Rank 5  $\Rightarrow$  H = 6% et Rank 7  $\Rightarrow$  H = 5%
  - It is clear that the voltage harmonics for the measured stations are wellbelow the standard limit.



 $Figure\ 7: Spectra\ of\ voltage/current harmonics from hospital load$ 

Forme d'onde

URMS = 420,1 V Peak- = -599,7 V Peak+ = 600,9 V

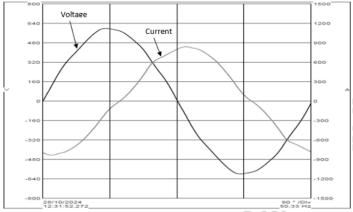



Figure 8 : Voltage and currentwaves measured at station 3

URMS 420,7 V UTHD = 1,7% UCF = 1,43 RMS 548,9 A ATHD = 6,5% ACF = 1,47

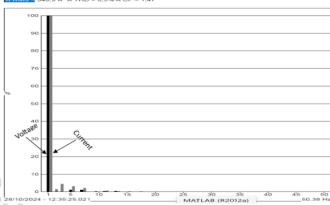



Figure 9 :Spectra of voltage/currentharmonics of the load at station 3

## 3. Conclusion

The analysis of electrical power quality on Niamey's high-voltage network is a subject of crucial importance in the currentcontext of rapideconomicdevelopment and urbanization. The results obtained through harmonic measurements and analysis of power quality indices have highlighted several major challenges facing the network. It appears that significant disturbances related to the absence of the 132 kV interconnection line, the intervention of the SRMERD, and system synchronization problems and other hazards impact not only the reliability of the grid but also user satisfaction. In addition, these disturbances can have adverse effects on electrical equipment, thereby increasing operating costs and reducing the service life of installations.

# References:



# Quality analysis of high-voltage network in Niamey city

| ORIGINALITY REPORT      |                                              |                 |                 |        |
|-------------------------|----------------------------------------------|-----------------|-----------------|--------|
| 3%<br>SIMILARITY INDEX  | 3% INTERNET SOURCES                          | 1% PUBLICATIONS | 0%<br>STUDENT P | PAPERS |
| PRIMARY SOURCES         |                                              |                 |                 |        |
| 1 WWW.po                | ovhost.com                                   |                 |                 | 1%     |
| 2 www.te                | st-equipment.co                              | m.au            |                 | 1%     |
| zenodo<br>Internet Sour |                                              |                 |                 | <1%    |
| 4 ia60100 Internet Sour | 6.us.archive.org                             |                 |                 | <1%    |
| 5 dokume                |                                              |                 |                 | <1%    |
|                         | 'Appendix B: Rel<br>, Practical Syste<br>009 | _               | ailability      | <1%    |
| Exclude quotes          | On                                           | Exclude matches | Off             |        |