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This study delineates a DC Micro-Grid (DCMG) system designed for
the rapid distribution of electricity for residential and agricultural water
utilization. The Solar Photovoltaic Panels (SPP) do not consistently
generate uniform energy output, and the Battery Energy Storage
Systems (BESS) should maintain an optimal charge level, avoiding
both excessive depletion and overcharging. Moreover, residences must
consistently maintain a power supply. We developed an Optimal
Energy Management Strategy (OEMS) for our system. encompassing
SPP, BESS, household loads, and a Pumping Water System (PWS) in
rural regions. The research region, Mandiana, is situated in eastern
Guinea, with approximate geographical coordinates of 10° 38' 0" North
and 9° 18' 0" West. The system is engineered to fulfill daily energy
requirements and was developed via MATLAB/Simulink. The
simulation findings indicate that the suggested approach can provide
water for irrigation, power for domestic use, and enable battery
charging and discharging. It is applicable to any system with a DC
load.
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Introduction:-

According to studies, Africa's population is anticipated to reach 2.4 billion by W‘ accounting for more
than half of global population growth over this time period [1]. Globally, the population is expected to
reach 9 billion by 2050 and 11 billion by 2100, implying that food production must increase by 70% to
fulfill demand [2, 3]. As a result, guaranteeing food security has become a top priority in agricultural
research. According to the International Labour Organization (ILO), farming provides a living for at least
half of the African population, with over 80% of farmers working on tiny plots of less than two hectares
[4]. When agriculture declines, the impacts might extend beyond individual families. A decrease in crop
production can disrupt markets and affect people across the country [4]. Agriculture is the primary sector
of activity for over 67% of the people in the Republic of Guinea (119 00' N and 10° 00" W), employing
52% of the labor force [5, 6]. By 2022, his contribution to the country's GDP had risen to 27 percent.
However, agricultural potential remains underutilized: food self-sufficiency is still uncertain, and Guinea
continues to import a variety of agricultural products, including rice [6, 7]. Due to significant challenges,
Guinean agriculture needs a true innovation that incorporates new concepts, methods, and technologies

tailored to small-scale exploitation [8]. In this regard, using photovoltaic solar energy in conjunction with

a water pumping system to provide a sustainable supply of water is an effective way to stimulate the
agricultural sector [9]. This initiative falls under the broader framework of the country's energy policy, as
outlined in the LettrePolitique de Développement du SecleurEnergéﬁque 2012 (LPDSE), which aims to

reduce reliance on fossil fuels, increase electricity exports by utilizing Guinea's hydroelectric potential,

promote renewable energy programs, and increase energy efficiency [10].

Furthermore, in the case of Mandiana in Guinée, the predominant agricultural activity is the maize
culture, which is vital to local food and the rural economy. This region has challenges such as climate
change, limited access to electricity, and geographic constraints that affect food security and economic
development. Mandiana is a very wet area that is part of the large basin of the Niger River. This location
is a plus because the Niger and its tributaries (the Sankarani, the Fié, and the Milo) water the prefecture
(figure 1). These rivers water huge, fertile plains that haven't been used yet. Using irrigation for farming
could improve these plains. Therefore, the fact that these valleys of fresh water exist is a wonderful
opportunity to restart indigenous agriculture with well-designed irrigation systems for food security and

crop diversity in Mandiana[ 11].
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Figure 1 :Location of the study area
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These benefits and inconveniences are what motivate us to keep working. In this context, we propose in
this study the installation of an autonomous solar photovoltaic microgrid with storage that might help
modernize irrigation, improve food security, and electrify rural areas. In fact, sustainable and productive
agriculture requires a system-wide concept optimization for optimal water and energy usage, enabling
more environmentally friendly and profitable production methods.

Numerous methodologies for energy dispatching have been established in the literature. A Distributed
System Operator (DSO) oversees energy management, as seen in [12]. The proposed method makes it
sible to manage energy in the coordinated microgrid. A stocha:
battery energy storage system is proposed [13]. The simulation results show that the suggested method
improves the dispatch policy and works better than the other techniques. A lot of different management
techniques are used and compared [14]. Because of this, the ANFIS is easier to read. To control the

: methodology for the dispatch of the

energy of a microgrid, an adaptive controller is used [15]. The authors assert that this technique
effectively mitigates the issues of both overutilization and underutilization of an energy storage device
(ESD). A new way to manage is created[16]. The goals of this strategy are to cut down on CO2
emissions, employ more renewable energy sources, and lower the melll cost of the microgrid. An
energy management model is used for a microgrid that has PV panels, a diesel generator, and a battery
bank [17]. The system's performance is shown to be after being simulated in MATLAB. Adefarati
et al. [18] decreased the energy and operational costs of the diesel generator and battery storage system
while maximizing the benefit/cost ratio. The methodology employed, as stated by the authors of [18], is
applicable to both residential and commercial structures. Clarke et al propose a two-layer economic
model that reduces operational expenses and CO2 emissions [19]. A multilayer supervisory system has
been devised [20]. This technique accounts for the power requirement of the load. A supervisory
is meant to optimize power output from the photovoltaic source, sngutu’d the battery against

stem

overcharging and deep discharging, and meet energy requirements. In [21], a novel los T SUpEervisory
prediction system is developed to enhance the practicality and accuracy of SOAP (State Of Available
Power) predictions for lithium-ion batteries in electric vehicles. A. Ndiaye et al. in [22] employed
Adaptive Neuro-Fuzzy control for battery charging and discharging. A distinct supervision technique has
been devised by M. Traore et al. in [23] utilizing an Arduino board to regulate the battery's charge and
discharge processes and ensure its protection.

This research formulates and executes an optimal energy management strategy for a Solar Photovoltaic
Pumping (SPVP) system with storage, utilizing MATLAB. This approach seeks to concurrently secure
the electricity supply for a residence and the irrigation system for a village in the Mandiana prefecture.
The innovation chiefly resides in the configuration of the examined direct current system and the specific
gation water pumping in Mandiana prefecture.

aims: rural household electrification and ir

Methodology

Modeling of the Studied System

The analyzed system (refer to figure 2) comprises a photovoltaic array, an energy storage battery system,
a residence with a cumulative electrical load of 260.8 W, and an electric motor. The latter is utilized to
irrigate one hectare of maize cultivation. Furthermore, two DC/DC converters are employed to enhance
the output power and to increase or decrease the voltage of the photovoltaic system and the battery.
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Figure 2: Studied system.

Modelling of PV panels
PV panels consist of PV cells that directly convert solar irradiance into electricity. Numerous

mathematical models exist for photovoltaic cells. The five-parameter model is the most utilized (figure 2).

1= Iy — Lexpo((Rs.+V)/ (k. T)) -11- (ReJ+V)(Ray) (n
With:
Li=Isc[ 14R /Ry [ +1o[expo((Rs Isc) (. V1) - 1] @

L=[Isc — Ry/Ry;lexpo(Veo) (1. V) (3)
where:

I'is the output current of PV cel]is the photo-current, I reverse saturation current of PN junction (A),
k 1s Boltzmann's c@ggtant, 15 is short-circuit current, Ve, is open circuit voltage, p is ideality factor, V,
is thermal voltage, Ry, is shunt resistance, Rg is series resistance.

w
The power generated by the PV is calculated by using the equation (4) [24] and depends on the cell
temperature and solar radiation.

Pry(t) = P src.G (v (1) isr) ¥107 @)

P.sre and oge the peak power and the efficiency of the PV modules under standard condfions (G=
1000 W/m?, air density 1.5, PV temperature = 25°C), apv(t) efficiency of the PV at ime t. The output
power gencrata}y the pv also depends on the static converter used [25]. In this work, we used the boost
converter. So, the output power of the PV is calculated as follows:

Pry oul(t) = Ppy(t) 0ge.con (5)
With oy, . is the boost converter efficiency.

-Modelling of battery
The battery is used to store energy to be used in case of energy shortage. In this paper, the lithium battery
is used. The equivalent circuit of a battery is on figure 2.
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The equations (6 & 7) give the charge and discharge voltages [26]:

Charging:

Viu=Eo — Rii - y[Q.i/(it — 0.1Q) ] — y[QiA(Q -it)] + B.expo(-B.it) (6)
Discharge:

Vii=Eo — Ri —y[Q(it + i )(Q -it)] + P.expo(-B.it) ()
where:

Eq is battery constant voltage (V), R is battery internal resistance, i is battery Clnr]l (A), i is negative
during the charge and positive during the discharge of the battery, y is polarisation constant (V =Ah), Q is
battery capacitance (Ah), i° is battery-filtered current (A), B is exponential zone amplitude (V), B is
exponential zone time-constant inverse (Ah).

The state of charge of the battery is given equation (8).

S0C(%)=100.(1 - Q/C,,) (8)
With: C,,,: battery capacity.

To protect the battery, the following contraintsare given to the SOC (see equation 9).
SOC,in< SOC(1) <SOC 0 (9)

Where:

SOC,.in and SOC,,,, are spectively the minimum and maximum values of the SOC.

-Modelling of DC motor pump

Two categories of motors exist: AC and DC. These are typically utilized in low-power systems due to
photovoltaic technology generating direct current. Moreover, for photovoltaic installations under 5 kW,
direct current motors are typically employed [27]. The power required by the motor (Piyiuiey) is
determined using equation (10). The equivalent circuit is depicted in Figure 3.

Prustor reg=Puy D req Rrmsor (10)
where:

Ui 18 efficeeny of pump,

Piivpire 18 hydraulic power required by pump (see equation 11) :

Piryp ey =(H.g.p.Q,)/36*10° (rn

H : head size (m), which is sum of static head (m) and friction losses (m), g: acceleration due to gravity
(9.81 m/s2), p : water density in kg/m3 Q,: volume of water required (m3/day).
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Figure 3: CC motor equivalent circuit

-Energy management Algorithm

This study employs an approach that initially involves the development of an algorithm (figure 4)
designed to consider energy distribution and function as a charge cmaller. This algorithm has four input
parameters: photovoltaic (PV) power, residential load, pump power, da the state of charge (SOC) of the
battery. The outputs are linked to switches S1, 82, S3, and S4 (refer to figure 2).

T2 50C oquation ) et e
¢ sl 5t e o SO
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TS s D g
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Figure 4: Flowchart of the system power management strategy.

Results and Discussions:-

‘We recompiled the residential loads of the house to assess the energy demand. The pumping system
necessitates a water supply of 3.39 m*/day, with a flow rate of 1.13 liters per hour and a total dynamic
head (H) of 27.5 meters. Consequently, equation (11) expresses the hydraulic power as follows:

P,;ynm=(27.5*9.8*l.13)/36*105
This value leads us to choose the Aquatec SWP-4000 pump whose characteristics are shown in table 1.
Table 1: Pump characteristics

Type of Voltage | Weight | Maximum head | Power Maximum | Maximum Efficiency

pump pressure (Ft) rating ampere dynamic
head
Permanent | 12-30 45kg 230 110w 37 A 70 m 90 %
magnet Vde
DC

The power demand of the pump is known as follows: P, 0= (850 .9) =94 W.




In certain scientific studies, simulation software is necessary prior to experimentation. So, in this work,
we used MATLAB/Simulink software to implement the system we studied (Figure 5). The simulation
uses a total of 400 W for the PV array, 260.8 W for the house's electrical loads, and 110 W for the pump
motor. The battery can hold 100Ah.

B of st

Figure 5: Studied system implemented under matlab/Simulink

Figures 6 to 12 show the results of the simulation. Fig6 shows how much radiation and heat the PV
system is getting. These changes in the weather affect the power output of the photovoltaic system.

The currents of the electrical loads and the motor pump are shown in Figure 7. The pump motor current
is zero when it is nmowemd.

Figure 8 shows the current and voltage of the battery. This figure confirms that the charge current is
negative while the discharge current is positive. The voltage varies little with compared to the current
during both stages.

Figure 9 shows how much power the PPS generator, the BSSE. and the house load all use. This figure has
five parts, which are explained below:

The parts A and C are the parts that charge the battery and give the house electricity from the PV. The PV
panels make more power than is needed.

Part E also talks about how the battery runs out of power and how the energy storage system, the battery,
sends power to the house. This part of the PV panels is no longer working. The battery runs out of power
faster than on B&D parts, as shown in Figure 10, which shows the battery's state of charge. The latter
shows how much charge is left in the battery and proves that the proposed system is charging and
discharging it.

The B&D parts are what the PV-battery system uses to send electricity to the house and discharge the
battery. Because the amount of energy that the PV can produce is less than the amount of energy that is
needed. This is why the battery is used to make up for the lack of energy.

Figure 11 shows how powerful the motor pump is and how much more power the PV power has than the
electrical loads in the house. The latter confirms that the pump is only working if the difference in power
is more than 75 W, which is the pump's rated power.

Figure 12 shows what the four switches are doing. The switch S1 stays closed until the panels have no
power (see Fig. 9). The motor that pumps water is powered by switch 54, which is only open when the
PV system stops working. The PV -battery combination can meet the energy needs of the house and the
motor, so S4 is closed for the rest of the time. The states of switches S2 and 53 show that it is not possible
to charge and discharge the battery at the same time. It can either be charged with S2 closed and S3 open
or discharged with §3 closed and S2 open.
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Table 4: }Bﬁrical values of the switch status

Switch | A C D E
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o=l —|w

1 0
0 0
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0 0

= =
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Conclusion:-

The purpose of this paper is to improve how a dc grid sends energy between a house's electrical charge, which is its
residefBEY load, and a motor pump for farming. A new algorithm for managing energy has been made and put into
action iIn MATLAB-Simulink. The results demonstrated that the proposed technique guarantees energy distribution
and irrigation. This means that all farmers can use the PV-Battery system and our proposed method to grow more
crops while using less muscle energy. This will help them live a life as people in cities do.
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