ISSN(O): 2320-5407 | ISSN(P): 3107-4928

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-54500

Title: Investigating the Enzymological Properties of Casease from various organisms: Kinetics, Inhibition, Substrate Specificity and Metal ion Dependent Activity.

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it	Originality		\checkmark		
	Techn. Quality		√		
	Clarity		√		
	Significance			V	

Reviewer Name: Dr. Manju M Date: 24-10-2025

Detailed Reviewer's Report

1. The main objective of this work

To investigate the effect of divalent metal ions (Zn²⁺ and Mn²⁺) on casease activity in Bacillus subtilis and Serratia marcescens. It aimed to determine species-specific differences in enzyme response to varying metal ion concentrations. The study sought to identify activation or inhibition patterns influencing casease function. Another goal was to evaluate substrate specificity among different protein substrates. Overall, the research aimed to elucidate the role of metal ions in regulating bacterial protease activity.

2. Distinct Species Responses to Metal Ions

Bacillus subtilis and Serratia marcescens exhibited markedly different enzymatic responses to Zn²⁺ and Mn²⁺, indicating that casease regulation is species-dependent and controlled by unique metal–enzyme interactions.

3. Biphasic Zn²⁺ Regulation in B. subtilis

ZnCl₂ exerted a concentration-dependent dual effect — initial inhibition (74.8% at 0.1 mM), activation at moderate levels (127.5% at 1.0 mM), and renewed inhibition at higher concentrations (73.5% at 10.0 mM). This pattern suggests a complex modulation mechanism.

4. Zn²⁺ as a Consistent Inhibitor in S. marcescens

Enzyme activity in S. marcescens decreased steadily with increasing Zn²⁺ concentration, from 84.1% to 51.4%, indicating a clear inhibitory effect possibly due to Zn²⁺ toxicity or interference with the enzyme's active site.

ISSN(O): 2320-5407 | ISSN(P): 3107-4928

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

5. Differential Metal Sensitivity Implies Structural Divergence

The contrasting Zn²⁺ response between the two species reflects structural variations in their caseases, especially in metal-binding domains influencing catalytic function.

6. Mn²⁺ Enhances B. subtilis Casease Activity

Moderate MnCl₂ concentrations (up to 2.0 mM) stimulated enzyme activity to 120.7%, suggesting that Mn²⁺ may act as a cofactor, improving enzyme conformation or substrate affinity.

7. Inhibitory Effects at Elevated Mn²⁺ Levels

Beyond optimal concentrations (2.0 mM for B. subtilis and 5.0 mM for S. marcescens), Mn²⁺ reduced activity, implying that excess ions destabilize the enzyme structure or disrupt catalytic sites.

8. Comparative Mn²⁺ Sensitivity

B. subtilis responded to lower Mn²⁺ levels (0.1–2.0 mM), whereas S. marcescens required higher concentrations for maximal activation, reflecting differences in enzyme–metal binding affinities.

9. Baseline Enzyme Activity Variation

Control absorbance values (1.1068 for B. subtilis vs. 1.4855 for S. marcescens) show higher inherent casease activity in S. marcescens, possibly due to greater enzyme expression or stability under basal conditions.

10. Casein as the Optimal Substrate

Both bacterial caseases showed peak activity toward casein (100%), confirming substrate specificity aligned with their natural role in proteolysis.

11. Secondary Substrate Affinity for Gelatin and Glycinin

High relative activities (~80–85%) toward gelatin and glycinin suggest comparable peptide bond accessibility and secondary structure resemblance to casein.

12. Reduced Efficiency Toward Plant Proteins

Zein, legumin, and gliadin yielded moderate to low activities, likely due to their compact or hydrophobic structures limiting enzymatic accessibility.

13. Species-Specific Substrate Adaptability

B. subtilis maintained balanced activity across all non-casein substrates, whereas S. marcescens exhibited a sharper decline suggesting narrower substrate versatility.

14. Metal Ions Influence Substrate Interaction

The observed metal ion effects may alter enzyme conformation, indirectly affecting substrate binding efficiency and hydrolysis rates.

15. Ecophysiological Implications

ISSN(O): 2320-5407 | ISSN(P): 3107-4928

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

The distinct metal and substrate responses suggest adaptive enzymatic mechanisms tailored to each species' ecological niche - soil-dwelling B. subtilis vs. facultatively pathogenic S. marcescens.

16. Overall Functional Insight

Casease activity in both species is finely modulated by metal ions and substrate type, underscoring the dynamic regulatory role of divalent cations in bacterial proteolytic systems.

17. Significance of the Work

This study highlights species-specific regulation of casease by Zn²⁺ and Mn²⁺ in Bacillus subtilis and Serratia marcescens. The distinct metal ion responses reveal how enzyme activity is finely tuned by environmental factors. Zn²⁺ showed both inhibitory and activating effects, while Mn²⁺ acted mainly as an activator at optimal levels. These findings enhance understanding of microbial enzyme regulation and adaptation to metal-rich environments. The work holds significance for industrial, biotechnological, and environmental applications of bacterial proteases.