ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No: IJAR-54564 Date: 31-10-2025

Title: PHYSICAL AND THERMOMECHANICAL CHARACTERISATION OF MONT-ROLLAND LATERITE AND WOOD CHIPS MIXTURES STABILISED WITH PORTLAND CEMENT.

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is	Originality	$ \checkmark $			
Accept after minor revision	Techn. Quality		8		
Accept after major revision	Clarity	<	-		
Do not accept (Reasons below)	Significance	<			

Reviewer Name: Mr Bilal Mir

Reviewer's Comment for Publication.

This manuscript presents a detailed experimental study on the **physical**, **mechanical**, **and thermal properties** of composites made from Mont-Rolland laterite, wood chips, and Portland cement. The research aims to identify sustainable and affordable construction materials suited to **Senegal's climatic and socioeconomic context**, addressing both environmental and housing challenges.

Strengths

- The paper addresses a highly relevant and practical problem—developing low-cost, energy-efficient building materials using local resources.
- The methodological design is sound and adheres to recognized standards (NF French norms), ensuring the credibility of results.
- The **comprehensive testing program**—including granulometry, Atterberg limits, water absorption, compressive strength, and thermal conductivity—provides a complete understanding of material performance.

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

- The findings are well-supported by experimental data, showing clear trends (e.g., optimal mechanical performance at 2% cement and improved thermal resistance).
- The discussion is coherent, connecting laboratory results to real-world construction applications, particularly for non-load-bearing wall systems.
- The study aligns with **sustainability goals**, promoting the use of renewable and locally available materials.

Weaknesses / Suggestions for Minor Revision

- 1. **Figures and Tables:** Several figures lack axis labels, units, or captions in English (e.g., Figures 1–5). Ensure all visuals are clear and consistently formatted.
- 2. **Reference Formatting:** Standardize citation style (some use [number], others include extra spaces or punctuation errors).
- 3. Language and Grammar: Minor grammatical errors and French-English inconsistencies should be edited for clarity and smooth reading.
- 4. **Methodological Clarifications**: Specify the **curing conditions** (time and temperature) for composite samples before testing to improve reproducibility.
- 5. **Discussion Depth**: Expand slightly on the **microstructural explanation** for the observed decrease in strength beyond 2% cement—perhaps due to pore formation or uneven distribution.
- 6. **Abstract Precision:** Include numerical results directly in the abstract for better scientific clarity (e.g., specific thermal resistance or compressive strength values).

ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Overall Evaluation

The paper demonstrates **strong scientific merit** and offers a valuable contribution to sustainable construction material research in tropical regions. It successfully integrates experimental rigor with environmental relevance. With minor editorial improvements, the manuscript is well-suited for publication.