HYBRID MODEL FOR DETECTING CYBERSECURITY THREATS BASED ON DEEP LEARNING WITH AN OPTIMISATION ALGORITHM

by Jana Publication & Research

Submission date: 01-Nov-2025 07:50AM (UTC+0200)

Submission ID: 2769516363 **File name:** IJAR-54585.pdf (862.37K)

Word count: 3690 Character count: 18422

HYBRIDMODELFOR DETECTING CYBERSECURITY THREATS BASED ON DEEP LEARNING WITH AN OPTIMISATION ALGORITHM

Manuscript History
Received: xxxxxxxxxxxxxx
Final Accepted: xxxxxxxxxxx
Published: xxxxxxxxxxxxx

Kev words:-

cyberattack, threat, detection, neural network, optimisation, deep learning.

Abstract

Digital transformation and the Fourth Industrial Revolution have inevitably led to the emergence of new cybersecurity threats. Protection against these attacks is critical for individuals, businesses, organisations and countries as a whole. Effective threat detection depends on identifying both known and unknown risks and vulnerabilities as early as possible through a combination of visibility, analytics, and contextual awareness. Traditional risk assessment methods, in particular deterministic approaches to threat analysis, often fail to take into account the high level of uncertainty and variability if operating conditions. This article proposes an intelligent hybrid system for detecting cybersecurity threats based on a deep neo-fuzzy neural network with a combined optimisation algorithm for detecting and preventing relevant attacks.

Introduction:-

2

4

6

8

9

10

11

12 13

14

15

16

Analysis of the security situation in the field of information and communication technologies, which is carried out on an ongoing basis by well-known global companies, shows that the global landscape of cyber threats is constantly changing [1,2,3]. For example, the annual report of the European Union Agency for Cybersecurity (ENISA) Threat Landscape 2024 identifies ransomware as one of the main threats, while phishing is noted as the most common initial vector for such attacks. Other significant threats include attacks on availability [4]. In addition, experts note that a wider range of attack vectors are currently emerging, such as zero-day exploits, disinformation and deep fakes, implemented using artificial intelligence (AI) tools. This has led to the emergence of even more malicious and widespread attacks that have a more destructive impact — advanced persistent threats (APTs) [5].

The huge amounts of data circulating in the digital environment today, on the one hand, and the danger of their leakage, on the other, make cybersecurity a high priority for individuals, industries, economic sectors, and the government of any country. According to analytical reports, cybercrime has become one of the world's largest shadow economics, with the total damage from cybercrime estimated at \$10 trillion. More detailed information is presented in Table 1.

Table 1 Key indicators of global cyber threats (2020-2025) [6]

Indicator	2020	2021	2022	2023	2024	2025 (forecast)
Total damage from cybercrime (trillion dollars)	6,0	6,9	8,1	9.2	~9,5	~10,5
Number of data breaches (globally, thousands)	3,9	4,1	4,2	5,2	~6.0	~6,5
Number of DDoS attacks (millions)	9,8	11,2	13,1	15,4	~17.0	~18,5

1

	Average cost of a data breach (millions of dollars)	3,86	4,24	4,35	4,45	~4,50	~4,60
--	---	------	------	------	------	-------	-------

In light of the above, it is clear that ensuring the security of information systems is essential, as the consequences of 18 19

- inadequate protection are manifold theft, destruction or dissemination of confidential information (trade secrets),
- 20 discrediting of personal data, substitution of information, blocking of access, restriction of functionality or complete
- 21 shutdown of a computer network [7].
- Traditional methods 14 detecting cyber threats are based on the use of statistical analysis of the security status at 22
- nodes using devices such as firewalls, intrusion detection and prevention systems, and antivirus software. However, 23
- 24 such methods are insuffigire for APTs, which highlights the need to use more advanced techniques based on AI
- 25 tools such as intelligent data analysis, machine learning, neural networks, fuzzy logic, genetic algorithms, support
- 26 vector machines, decision trees, and others.
- 27 The above-mentioned advanced methods allow for more accurate and higher-quality results, so a detailed analysis of
- 28 their applicability in cybersecurity systems is a relevant area of scientific research, which determined the choice of
- 29

17

30

Literature review:

- 31 Today, there is a wide range of works in the scientific and expert community related to the detection of intrusions
- 32 and attacks on information systems. Some of them concern the general classification of packets into normal or
- 33 attacking categories, while others describe the features of detecting specific categories of attacks, such as
- RemotetoLocalUser and UsertoRoot attacks. This issue has been addressed in publications by Abdullah Al
- 35 Mamun[8], Najah Kalifah Almazmomi [9], Kumari and Lee [10], Jiqiang Zhai et al. [11].
- The possibility of using deep learning algorithms to check the entire information network infrastructure for viruses
- and illegally downloaded software is discussed by Iqbal H. Sarker [12], Ahmed Hawanaet al. [13], E. A. Ichetovkin 37
- 38 [14], Chaitanya Gupta et al. [15], Jiaqi Ruan, Gaoqi Liang [16].
- 39 A hybrid K-means approach using singular value principal component, which relies on methods such as improved
- 40 information gain of K-means clustering for attribute extraction, singular value and principal component for feature
- reduction, is being developed by Asma Ahmed A. Mohammed [17], Jafar Majidpour and Hiwa Hasanzadeh [18], 41
- 42 Qasem Abu Al-Haija and Ayat Droos [19], Tanzila Saba and Amjad Khan [20].
- 43 However, despite the wide range of publications, some problematic issues require clarification and further analysis.
- 44 For example, methods for improving the self-learning ability of neural networks when analysing topological features
- 45 need to be refined, which will ensure a high degree of generalisation and stable performance indicators. In addition,
- reinforcement learning applications for assessing cybersecurity threats require further development. 46
- 47 Thus, the purpose of this article is to examine the features of using deep learning with an optimisation algorithm to
- detect cybersecurity threats. 48

49 Research Methodology:

- 50 The research methodology is based on the application of system analysis, mathematical modelling and algorithmic
- 51 optimisation no hods, neural network and fuzzy modelling, as well as experimental verification of the hybrid
- 52 architecture of a deep fuzzy neural network.

Results and discussion: 53

Deep learning is based on a multi-level representation of input data and can autonomously determine features

using a specific representation-based learning process. The ability of deep neural systems to analyse vast amounts of data and identify hidden patterns makes it an integral component of modern cybersecurity systems [21, 22, 23].

57 So, the task of detecting cybersecurity threats is as follows.

55 56

58

59 60

61

64

65

Let $D = \{(x_i, y_i)\}_{i=1}^N$ — be a sample of N examples, where x_i is the input vector, and y_i — is the output (in the case of classification — a vector of class probabilities, in the case of regression — a scalar variable). Let us denote the network parameters by w, and the posterior distribution can be written as p(w|D). According to Bayes' formula:

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$

62 where p(w) — is the prior distribution of parameters, p(D|w) — is the likelihood of the data, and p(D) — is the 63 normalising constant, which is calculated by integrating over all possible values w.

Since accurate calculation p(D) is quite a complex task, we suggest using a variational approximation: for this purpose, a family of distributions $p(w|\theta)$, parameterised by θ , introduced, and the Kulback-Leibler divergence between $p(w|\theta)$ u p(w|D):

$$\theta^* = arg \min_{a} KL(q(w|\theta)||p(w|D))$$

The proposed cyber thread election system is based on a hybrid model that uses deep learning mechanisms and an optimisation algorithm. Figure 1 shows the architecture of the threat detection system, implemented as a multi-stage data processing pipeline. This process includes sequential stages of feature space reduction, extraction of informative features, and their subsequent classification.

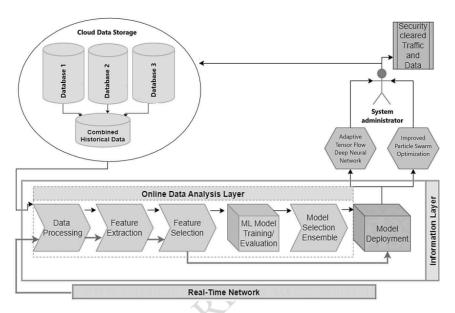


Fig. 1 Block diagram of cybersecurity threat detection based on deep learning with an optimisation algorithm (compiled by the author)

As shown in Figure 1, three databases are proposed for managing malicious and pirated software files in cloud storage. Raw network traffic data is stored in database 1, while historical data on malicious software is stored in database 2. The third database also accumulates the latest signatures of newly detected malicious attacks. The combined information storage module receives raw data from each database. The raw data undergoes preliminary processing, and important details are recorded in a log. The pre-processed data is then sent to the detection module, which analyses it for malware and other threats. This module is trained on signatures from databases 2 and 3. The proposed system alerts the administrator to take appropriate action if any malicious behaviour is detected on the network.

The proposed architecture is base(2) in a deep neo-fuzzy neural network. It has a traditional multi-layer feedforward architecture, generally including s layers of information processing [24]. The input (zero) layer receives $x(k) \in \mathbb{R}^n$ a vector of input signals:

$$x(k) = (x_1(k), x_2(k), \dots, x_n(k))$$

where k=1, 2, ..., N is the observation number in the training sample or the index of the current discrete time. The output signal of the network is a vector:

$$\hat{y}(k) = \left(\hat{y}_1(k), \hat{y}_2(k), \dots, \hat{y}_m(k)\right)^T \in R^m$$

Furthermore, to simplify the notation, we will also use the form:

$$x(k) \equiv o^{[0]}(k) = \left(o_1^{[0]}(k), \dots, o_{i_0}^{[0]}(k), \dots, o_{n_0}^{[0]}(k)\right)^T$$

$$\hat{y}(k) \equiv o^{[s]}(k) = \left(o_1^{[s]}(k), ..., o_{i_s}^{[s]}(k), ..., o_{n_s}^{[s]}(k)\right)^T$$

Thus, the input signal of the p-th layer (p=1, 2..., s) is a vector:

$$o^{[p-1]}(k) \equiv \left(o_1^{[p-1]}(k), \dots, o_{i_{p-1}}^{[p-1]}(k), \dots, o_{n_{p-1}}^{[p-1]}(k)\right)^T \in \mathbb{R}^{n_{p-1}}$$

89 and the output is a vector:

90

91

92 93

94

95

96

97

100

101

102

$$o^{[p]}(k) = \left(o_1^{[p-1]}(k), \dots, o_{i_p}^{[p]}(k), \dots, o_{n_p}^{[p]}(k)\right)^T \in R^{n_p}$$

At the same time, the neo-fuzzy neural network contains $\sum_{p=1}^{s} n_p$ neurons. The node of this architecture is a neo-fuzzy neuron with n_{p-1} inputs and one output $o_{t_p}^{[p]}$.

Each l_p - th $(l_p=1,2,...,n_p)$ neo-fuzzy neuron of the p-th (p=1,2,...,s) layer of the neo-fuzzy neural vertwork contains $n_{p,l}$ non-linear synapses $NS_{l_p l_{p-1}}^{[p]}$, each of which includes l_m membership functions $\mu_{l_p l_{p-1}}^{[p]}$ (l=1,2,...,h) and the same number of synaptic weight coefficients $w_{l_p l_{p-1}}^{[p]}$, which are tuned during the learning process. Thus, this architec $\sum_{p=1}^{\infty} n_p n_{p-1}$ nonlinear synapses and $\sum_{p=1}^{\infty} n_p n_{p-1}$ membership functions $\mu_{l_p l_{p-1}}^{[p]}$ ($0_{l_p-1}^{[p-1]}$) and the same number of tuned synaptic weight coefficients $w_{l_p l_{p-1}}^{[p]}$.

The output signal of each nonlinear synapse $NS_{i_p i_{p-1}}^{[p]}$ can be recorded as:

$$f_{i_p i_{p-1} l}^{[p]} \left(o_{i_{p-1}}^{\fbox{3-1}}\right) = \sum_{l=1}^h w_{i_p i_{p-1} l}^{[p]} \; \mu_{i_p i_{p-1} l}^{[p]} \; (o_{i_{p-1}}^{[p-1]})$$

and the output signal of the neo-fuzzy neuron:

$$o_{i_p}^{[p]} = \sum_{i_{p-1}=1}^{n_{p-1}} \bar{f}_{i_p i_{p-1} \ell}^{[p]} \left(o_{i_{p-1}}^{[p-1]} \right) = \sum_{i_{p-1}=1}^{\frac{8}{p-1}} \sum_{l=1}^{\tilde{h}} w_{i_p i_{p-1} \ell}^{[p]} \, \mu_{i_p i_{p-1} \ell}^{[p]} \left(o_{i_{p-1}}^{[p-1]} \right)$$

As a membership function for nonlinear signals $NS_{l_p l_{p-1}}^{[p]}$ we suggest using the traditional triangular function, which satisfies the requirements of Ruspini's unit partition:

$$\mu_{i_{p}i_{p-1}l}^{[p]}\underbrace{\frac{3}{c_{i_{p-1}}^{[p-1]}}}_{[c_{i_{p}i_{p-1}l+1}^{[p]}-c_{i_{p}i_{p-1}l-1}^{[p]}}, \quad iff \ o_{i_{p-1}}^{[p-1]} \in [c_{i_{p}i_{p-1}l-1}^{[p]}, c_{i_{p}i_{p-1}l}^{[p]}]) = \begin{cases} c_{i_{p}i_{p-1}l+1}^{[p]} - c_{i_{p}i_{p-1}l-1}^{[p]}, & iff \ o_{i_{p-1}}^{[p-1]} \in [c_{i_{p}i_{p-1}l}^{[p]}, c_{i_{p}i_{p-1}l+1}^{[p]}) \\ c_{i_{p}i_{p-1}l+1}^{[p]} - c_{i_{p}i_{p-1}}^{[p]}, & iff \ o_{i_{p-1}}^{[p-1]} \in [c_{i_{p}i_{p-1}l}^{[p]}, c_{i_{p}i_{p-1}l+1}^{[p]}) \end{cases}$$

Next, it is necessary to select a model optimisation algorithm that can improve the functionality of the deep neural network, thereby increasing the accuracy of detecting complex threats.

Within the scope of the task at hand, we propose using a combined partical swarm and genetic algorithm. The particle swarm algorithm ensures high accuracy and quick acquisition of an acceptable solution [25]. At the same time, the genetic algorithm is better suited for solving discrete problems and has more sophisticated mechanisms for combating local minima (through mutations and successful crossovers) [26]. The combined algorithm allows us combine the advantages of both algorithms and thus achieve a quick and accurate solution to the task at hand. It is based on the idea of sequentially performing one iteration of the basic algorithms (particle swarm and genetic algorithm), comparing the results found, and adding the best of the solutions found to each Step 1. Both algorithms are run simultaneously in parallel mode to synthesise the structure of the same Step 2. One iteration of each algorithm is performed. Step 3. After each iteration, the results found by both methods are compared and the best solution is selected. Let $Y_{pso}^{(l)}$ - the best solution found by the particle swarm algorithm at the *i*-th iteration, and $W_{ga}^{(l)}$ - the best solution found by the genetical algorithm. If $I(Y_{pso}^{(i)}) < I(W_{ga}^{(i)})$, that is, the solution obtained using the particle swarm algorithm provides a lower value of the quality function I, then we proceed to step 4a. Otherwise, we proceed to step 4b. Step 4a. The worst solution of the genetic algorithm $W_{ga_worst}^{(i)}$ is replaced by the solution $Y_{pso}^{(i)}W_{ga_worst}^{(i)} :=$ $Y_{pso}^{(i)}$ and the transition to step 5 is performed. Step 4b. The worst solution of the particle swarm algorithm $Y_{pso_worst}^{(i)}$ is replaced by the solution $W_{ga}^{(i)}$, $Y_{pso_worst}^{(i)}$ and the transition to step 5 is performed.

103 104

105

106 107

108

109 110 111

112 113

114

115

117 118

119

120

123 124

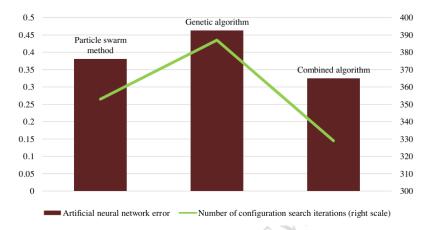
125

126

121 122

Step 5. If both algorithms continue to run (i.e., the termination criterion is not met for either of them), noceed to step 2. The described approach is repeated until one of the algorithms terminates. The best solution found by both methods at the moment of termination is accepted as the final solution.

The results of modelling using particle swarm, genetic and combined algorithms are shown in Fig. 2.



127 128

Fig. 2 Results of modelling the optimal structure of a neural network using various algorithms

129 130

131

133

134

135

136

137 138

139 140

141

As shown in Fig. 2, the combined algorithm allows for the lowest error and requires the fewest iterations to find the optimal neural network structure.

Conclusion:

132 Thus, summarising the results of the study, the following conclusions can be drawn:

Cybersecurity in the modern digital age is a critical area focused on protecting systems, networks, and information from malicious attacks. Organisations, businesses, governments, and countries are at great risk from cybercrime, which becoming increasingly widespread, serious, complex, and diverse. The article describes an intelligent hybrid system for detecting cybersecurity threats based on a deep neo-fuzzy neural network with a combined optimisation algorithm for detecting and preventing such attacks.

References:

- Danil Vilkhovsky (2024). AI capabilities in cybersecurity: detection, prevention and response to SQL injections, XSS, and CSRF attacks, Mathematical Structures and Modeling, Num 4 (72), pp. 111–124. DOI:10.24147/2222-8772.2024.4.111-124
- Aulia Khanza, Firdaus Dwi Yulian, Novita Khairunnisa and Natasya Aprila Yusuf (2024). Evaluating the
 Effectiveness of Machine Learning in Cyber ThreatDetection. Journal of Computer Science and Technology
 Application 1(2):172-179. DOI:10.33050/ysdncf05
- Mitchell Timken, Onat Gungor, Tajana Rosing and Baris Aksanli (2023). Analysis of Machine Learning
 Algorithms for Cyber Attack Detection in SCADA Power Systems, Conference: International Conference on
 Smart Communications and Networking (SmartNets), At: Istanbul, Turkey.
 DOI:10.1109/SmartNets58706.2023.10216147
 - 9 4. Swapnil Chawande (2024). The role of Artificial Intelligence in cybersecurity, World Journal of Advanced

- 150 Engineering Technology and Sciences 11(2):683-696DOI:10.30574/wjaets.2024.11.2.0014
- 151 5. Yixian Liu and Yupeng Dai (2024). Deep Learning in Cybersecurity: A Hybrid BERT-LSTM Network for
- 152 SQL Injection Attack Detection, IET Information Security. Volume 20, Issue 17. P. 25-29.
- 153 DOI:10.1049/2024/5565950
- 154 6. Rasim Alguliyev and Ramiz Shikhaliyev (2024). Computer Networks Cybersecurity Monitoring Based on Deep
- 155 Learning Model, Security and Privacy. 8(1), P. 114-116. DOI: 10.1002/spy2.459
- 156 7. Dmitrii Bykov (2025). THE ROLE OF MACHINE LEARNING METHODS IN IDENTIFYING CYBER
- 157 THREATS BASED ON TEXT DATA, Universum Technical
- 158 sciences 4(133)**DOI**:<u>10.32743/UniTech.2025.133.4.19826</u>
- 159 8. A. Al Mamun, H. Al-Sahaf, I. Welch, and S. Camtepe, "Advanced Persistent ThreatDetection: A
- ParticleSwarmOptimizationApproach," in 2022 32nd International Telecommunication Networks and
- 161 Applications Conference (ITNAC) (IEEE, 2022), 1–8.
- 162 9. Najah Kalifah Almazmomi (2025). Advanced Persistent Threat Detection Using Optimized and Hybrid Deep
- Learning Approach, Security and Privacy. Vol. 8, Issue 2, P. 76-82.DOI: 10.1002/spy2.70011
- 164 10. I. Kumari and M. Lee (2023). "A Prospective Approach to Detect Advanced Persistent Threats: Utilizing
- 165 Hybrid Optimization Technique," Heliyon 9, no. 11 (2023):
- 166 e21377, https://doi.org/10.1016/j.heliyon.2023.e21377.
- 167 11. Jiqiang Zhai, Zhe Li, Hong Miao, Zekun Li, Xinyi Zhou, Hailu Yang (2025). Automatic Generation of
- 168 Cybersecurity Teaching Cases Using Large Language Models, Computer Applications in Engineering
- 169 Education, Volume 33, Issue 5, P. 203-211.DOI:10.1002/cae.70081
- 170 12. Iqbal H. Sarker (2023). Multi-aspects AI-based modeling and adversarial learning for cybersecurity intelligence
- and robustness: A comprehensive overview, Security and Privacy, 6 (2). DOI: 10.1002/spy2.295
- 172 13. Ahmed Hawana, Emad Hassan, Walid El-Shafai and Sami A. El-Dolil (2025). Enhancing Malware Detection
- 173 With Deep Learning Convolutional Neural Networks: Investigating the Impact of Image Size Variations,
- 174 Security and Privacy, 8 (2), P. 91-99. DOI:10.1002/spy2.70000
- 175 14. E. A. Ichetovkin (2025). Investigating the resistance of intrusion detectionsystems with machine learning
- 176 components to adversarialattacks, Vestnik of Astrakhan State TechnicalUniversity. Series: Management,
- 177 Computer Sciences and Informatics, Number 2, Pages 76–87
- DOI: https://doi.org/10.24143/2072-9502-2025-2-76-87
- Chaitanya Gupta, Ishita Johri, Kathiravan Srinivasan and Yuh-Chung Hu (2022). A SystematicReview on
 Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks,
 Sensors, 22(5):2017. DOI:10.3390/s22052017
- 182 16. Jiaqi Ruan and Gaoqi Liang (2023). Deep learning for cybersecurity in smart grids: Review and perspectives,
- 183 Energy Conversion and Economics, 4(4), P. 59-64. DOI:10.1049/enc2.12091
- 184 17. Asma Ahmed A. Mohammed (2025). Improving Intrusion DetectionSystems by Using Deep Learning Methods
- on Time Series Data, Engineering, Technology and Applied Science Research 15(1):19267-19272
- 186 DOI:<u>10.48084/etasr.9417</u>
- 187 18. Jafar Majidpour and Hiwa Hasanzadeh (2020). Application of deep learning to enhance the accuracy of
- 188 intrusion detection in modern computer networks. Bulletin of Electrical Engineering and Informatics

189		(BEEI),9(3)DOI: https://doi.org/10.11591/eei.v9i3.1724
190	19.	Qasem Abu Al-Haija and Ayat Droos (2024). A comprehensive survey on deep learning-based intrusion
191		detection systems in Internet of Things (IoT), Expert Systems, 42 (2), P. 71-77. DOI: 10.1111/exsy.13726
192	20.	Tanzila Saba, Amjad Rehman Khan, Tariq Sadad and Seng-phil Hong (2022). Securing the IoT System of
193		Smart City against Cyber Threats Using Deep Learning, Discrete Dynamics in Nature and Society, (1):1-
194		9DOI: <u>10.1155/2022/1241122</u>
195	21.	Shilpa Ankalaki, A Aparna Rajesh, M Pallavi, Geetabai S Hukkeri, Tony Jan and Ganesh Naik (2025). Cyber
196		Attack Prediction: From Traditional Machine Learning to Generative Artificial Intelligence, IEEE
197		Access PP(99):1-1. DOI:10.1109/ACCESS.2025.3547433
198	22.	Hilalah Alturkistani and Suriayati Chuprat (2024). Artificial Intelligence and Large Language Models in
199		Advancing Cyber Threat Intelligence: A Systematic Literature Review. Research Square (Research Square).
200		DOI: <u>10.21203/rs.3.rs-5423193/v1</u>
201	23.	Sharmin Aktar, Abdullah Yasin Nur (2023). Towards DDoS attack detection using deep learning approach,
202		Computers & Security, Vol 129, 103251. https://doi.org/10.1016/j.cose.2023.103251
203	24.	Kumar Reddy Mallidi and Rajeswara Rao Ramisetty (2025). Optimizing Intrusion Detection for IoT: A
204		Systematic Review of Machine Learning and Deep Learning Approaches With Feature Selection and Data
205		Balancing, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 15(2),P. 223-234
206		DOI: <u>10.1002/widm.70008</u>
207	25.	Jeferson Arango-López, Gustavo Isaza, Fabian Ramirez, Nestor Duque, Jose Montes (2024). Cloud-based deep
208		learning architecture for DDoS cyber attack prediction, Expert Systems, 42(1), P. 41-45
209		DOI: <u>10.1111/exsy.13552</u>
210	26.	Pavel A. Vasilevskiy and Elena V. Bulgakova (2025). Exploring the Use of Machine Learning to
211		IdentifyThreats in Powershell Scripts, Conference: 2025 Systems of SignalsGenerating and Processing in the
212		Field of on Board Communications. DOI:10.1109/IEEECONF64229.2025.10948055
213		
214		R. C.
215		

Corresponding Author: oboulhas@yahoo.fr
1. Address:-Ecole Nationale Supérieure Polytechnique, Université Marien NGOUABI, Republic of Congo

HYBRID MODEL FOR DETECTING CYBERSECURITY THREATS BASED ON DEEP LEARNING WITH AN OPTIMISATION ALGORITHM

ORIGINA	ALITY REPORT			
2 SIMILA	0% ARITY INDEX	6% INTERNET SOURCES	16% PUBLICATIONS	1% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	Chumad Based o	chenko. "Artific on Hybrid Neur	ctor Sineglazov, cial Intelligence ral Networks", S Media LLC, 202	Systems / % pringer
2	"Deep N Accelera Internat	leo-Fuzzy Neu ated Learning",	Tymofii Antone ral Network and , 2020 IEEE Thir nce on Data Stro DSMP), 2020	d its
3	livros01	.livrosgratis.co	m.br	2%
4	www.pa	aaet.edu.kw		1 %
5	"Chapte GMDH-l Analysis	er 2 Deep Neur Neuro-fuzzy Ne	Yuriy P. Zayche al Networks an etworks in Big D ence and Busin	d Hybrid Data
6	Ceur-ws Internet Sour			1 %
	woolifac	ciencesweek.c	l.	4

Kim, W.C.. "Analysis and reduced-order design <1% 8 of quadratic criterion-based iterative learning control using singular value decomposition", Computers and Chemical Engineering, 20000901 Publication Renshaw, E.. "Metropolis-Hastings from a <1% 9 stochastic population dynamics perspective", Computational Statistics and Data Analysis, 20040510 Publication <1% core.ac.uk 10 Internet Source link.springer.com 11 Internet Source www.preprints.org <1% 12 Internet Source ia801300.us.archive.org 13 Internet Source www.mdpi.com Internet Source A. Kaplan, R. Tichatschke. "Auxiliary Problem 15 Principle and Proximal Point Methods", Journal of Global Optimization, 2000 Publication