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inevitably led to the emergence of new cybersecurity threats. Protection
against these attacks is critical for individuals, businesses, organisations
and countries as a whole. Effective threat detection depends on
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identifying both known and unknown risks and vulnerabilities as early
as possible through a combination of wvisibility, analytics, and
neural - network, optimisation, contextual awareness. Traditional risk assessment methods, in
deep learning. particular deterministic approaches to threat analysis, often fail to take
into account the high level of uncertainty and variability i)pel’alliug
conditions. This article proposes an intelligent hybrid system for
detecting cybersecurity threats based on a deep neo-fuzzy neural
network with a combined optimisation algorithm for detecting and
preventing relevant attacks.
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Introduction:-

Analysis of the security situation in the field of information and communication technologies, which is carried out
on an ongoing basis by well-known global companies, shows that the global landscape of cyber threats is constantly
changing [1,2,3]. For example, the annual report of the European Union Agency for Cybersecurity (ENISA) Threat
Landscape 2024 identifies ransomware as one of the main threats, while phishing is noted as the most common
initial vector for such attacks. Other significant threats include attacks on availability [4]. In addition, experts note
that a wider range of attack vectors are currently emerging, such as zero-day exploits, disinformation and deep
fakes, implemented using artificial intelligence (Al) tools. This has led to the emergence of even more malicious and
widespread attacks that have a more destructive impact — advanced persistent threats (APTSs) [5].

The huge amounts of data circulating in the digital environment today, on the one hand, and the danger of their
leakage, on the other, make cybersecurity a high priority for individuals, industries, economic sectors, and the
government of any country. According to analytical reports, cybercrime has become one of the world's largest
shadow economies, with the total damage from cybercrime estimated at $10 trillion. More detailed information is

presented in Table 1.

Table | Key indicators of global cyber threats (2020-2025) [6]

Indicator 2020 | 2021 | 2022 | 2023 2024|2025 (forecast)
Total -delmelge from cybercrime (trillion 60 69 8.1 92 95 ~105
dollars)
Number of data breaches (globally,
thousands) 39 4.1 42 52 60 65
Number of DDoS attacks (millions) 98 112 13,1 154 ~17.0 ~18.5
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In light of the above, it is clear that ensuring the security of information systems is essential, as the consequences of
inadequate protection are manifold — theft, destruction or dissemination of confidential information (trade secrets),
discrediting of personal data, substitution of information, blocking of access, restriction of functionality or complete
shutdown of a computer network [7].

Traditional melhc)dsdelecling cyber threats are based on the use of statistical analysis of the security status at
nodes using devices such as firewalls, intrusion detection and prevention systems, and antivirus software. However,
such methods are insuffiggnt for APTs, which highlights the need to use more advanced techniques based on Al
tools such as intelligent data analysis, machine learning, neural networks, fuzzy logic, genetic algorithms, support
vector machines, decision trees, and others.

The above-mentioned advanced methods allow for more accurate and higher-quality results, so a detailed analysis of
their applicability in cybersecurity systems is a relevant area of scientific research, which determined the choice of
topic for this article.

Literature review:

Today, there is a wide range of works in the scientific and expert community related to the detection of intrusions
and attacks on information systems. Some of them concern the general cla

ification of packets into normal or
attacking categories, while others describe the features of detecting specific categories of attacks, such as
RemotetoLocalUser and UsertoRoot attacks. This issue has been addressed in publications by Abdullah Al
Mamun[8], Najah Kalifah Almazmomi [9], Kumari and Lee [10], Jigiang Zhai et al. [11].

The possibility of using deep learning algorithms to check the entire information network infrastructure for viruses
and illegally downloaded software is discussed by Igbal H. Sarker [12], Ahmed Hawanaer al. [13], E. A. Ichetovkin
[14], Chaitanya Gupta et al. [15], Jiagi Ruan, Gaoqgi Liang [16].

A hybrid K-means approach using singular value principal component, which relies on methods such as improved
information gain of K-means clustering for attribute extraction, singular value and principal component for feature
reduction, is being developed by Asma Ahmed A. Mohammed [17], Jafar Majidpour and Hiwa Hasanzadeh [18],
Qasem Abu Al-Haija and Ayat Droos [19], Tanzila Saba and Amjad Khan [20].

However, despite the wide range of publications, some problematic issues require clarification and further analysis.
For example, methods for improving the self-learning ability of neural networks when analysing topological features
need to be refined, which will ensure a high degree of generalisation and stable performance indicators. In addition,
reinforcement learning applications for assessing cybersecurity threats require further development.

Thus, the purpose of this article is to examine the features of using deep learning with an optimisation algorithm to
detect cybersecurity threats.

Research Methodology:

The research methodology is based on the application of system analysis, mathematical modelling and algorithmic

optimisation hods, neural network and fuzzy modelling, as well as experimental verification of the hybrid

architecture of a deep fuzzy neural network.

Results and discussion:

Deep learning is based on a multi-level representation of input data and can autonomously determine features
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using a specific representation-based learning process. The ability of deep neural systems to analyse vast amounts of
data and identify hidden patterns makes it an integral component of modern cybersecurity systems [21, 22, 23].

So, the task of detecting cybersecurity threats is as follows.

Let D = {(x;,y)}'_; — be a sample of N examples, where x; is the input vector, and y; — is the output (in
the case of classification — a vector of class probabilities, in the case of regression — a scalar variable). Let us
denote the network parameters by w, and the posterior distribution can be written as  p(w|D). According to Bayes'
formula:

pDIw)p(w)

p(w|D) = 2D)

where p(w) — is the prior distribution of parameters, p(D|w) — is the likelihood of the data, and p(D) — is the
normalising constant, which is calculated by integrating over all possible values w.

Since accurate calculation p(D) is quite a complex task, we suggest using a variational approximation: for
this purpose, a family of distributions p(w|8), parameterised by 6, introduced, and the Kulback-Leibler divergence
between p(w|@) u p(w|D):

0* = arg min KL{q(w|8)||p(w|D))

The proposed cyber lh[m]elecli()n system is based on a hybrid model that uses deep learning mechanisms and an
optimisation algorithm. Figure 1 shows the architecture of the threat detection system, implemented as a multi-stage
data processing pipeline. This process includes sequential stages of feature space reduction, extraction of
informative features, and their subsequent classification.
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Fig. 1 Block diagram of cybersecurity threat detection based on deep learning with an optimisation algorithm
(compiled by the author)

As shown in Figure 1, three databases are proposed for managing malicious and pirated software files in cloud
storage. Raw network traffic data is stored in database 1, while historical data on malicious software is stored in
database 2. The third database also accumulates the latest signatures of newly detected malicious attacks. The
combined information storage module receives raw data from each database. The raw data undergoes preliminary
processing, and important details are recorded in a log. The pre-processed data is then sent to the detection module,
which analyses it for malware and other threats. This module is trained on signatures from databases 2 and 3. The
proposed system alerts the administrator to take appropriate action if any malicious behaviour is detected on the
network.

2
The proposed architecture is basean a deep neo-fuzzy neural network. It has a traditional multi-layer feedforward

architecture, generally including s layers of information processing [24]. The input (zero) layer receives x(k) € R™ a
vector of input signals:

x(k) = (1 (k), x20k), ..., xn (k)

5
where k=1, 2, ..., N — is the observation number in the training sample or the index of the current discrete time. The
output signal of the network is a vector:

T
$k) = (91€K), o k), ... I (K)) € R™
2
Furthermore, to simplify the notation, we will also use the form:

.............................. OnllneDataAnalysmLayer 7
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x(k) = 0 (k) = (o' (k). .0 (k). ... l‘”(k))

T
360 = b1 = (o), ... o k), ., 0 (k) )
Thus, the input signal of the p-th layer (p=1, 2..., 5) is a vector:
.
o110 = (o @), ... 0P, . 0 W) € R

and the output is a vector:
.
oIk = (o}?‘” ®. ..o, .., o,,'if(k)) € R
At the same time, the neo-fuzzy neural network contains Ele n, neurons. The node of this architecture is
a neo-fuzzy neuron with n,_; mputs and one output o"pJ
2
Eachip - th (ip = 1,2, ...,np) neo-fuzzy neuron of thep-th (p = 1.2, ..., 5) layer of the neo-fuzzy neural

[ cach of which includeshmembership fuucliuus#ilfjip_l! (I=

twork containsn, mon-linear synapses NSili"J
1,2,..., h)and the same number of synaptic weight cc)efﬁciemswllfljv_l( , which are tuned during the learning process.
Thus, this erhnecae hac)::,_lnpnp 1 nonlinear synapses andh):;_l N,y membership

iuncnnns,u!h:lp N (oh’ lJ) and the same number of tuned synaptic weight u)eihuentswbj e

The output signal of each nonlinear synapse NS}::JP_I can be recorded as:

ol-1)
f: pip- lr l,, 1 ZW.W 1!-“.,:, alog )

and the output signal of the neo-fuzzy neuron:

npet q
IP 1J olp—1
Z f,,:p 1! LV Z Zwupzp 1!-“:,:, alog )

ipoq=l fpo1=11=1

As a membership function for nonlinear signals NSEI‘PIJ , We suggest using the traditional triangular
pip—

function, which satisfies the requirements of Ruspini's unit partition:

—lh: 11 !fjl" o iffol" Yelc clP!

cll:{pfli_ ci,:pfli—l' ip-1 (T i,i,,li)
,u!fﬁr (a!!:jl”) =9 el 1T Oilp__lu 1

cll-';]p—l];' LffOlp JE [c'r'v i !J:L 1"“‘1)

ipip-10+1 ~ Cipip_1l
0, otherwise

Next, it is necessary to select a model optimisation algorithm that can improve the functionality of the deep neural
network, thereby increasing the accuracy of detecting complex threats.
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‘Within the scope of the task at hand, we propose using a combined Earti swarm and genetic algorithm. The
particle swarm algorithm ensures high accuracy and quick acquisition of an acceptable solution [25]. At the same
time, the genetic algorithm is better suited for solving discrete problems and has more sophisticated mechanisms for
combating local minima (through mutations and successful crossovers) [26]. The combined algorithm allows us ]
combine the advantages of both algorithms and thus achieve a quick and accurate solution to the task at hand. It is
based on the idea of sequentially performing one iteration ufe search by each of the basic algorithms (particle
swarm and genetic algorithm), comparing the results found, and adding the best of the solutions found to each
algorithm.
1

Step 1. Both algorithms are run simultaneously in parallel mode to synthesise the structure of the same

neural network.

Step 2. One iteration of each algorithm is performed.

Step 3. Anr each iteration, the results found by both methods are compared and the best solnon is
selected. LelY.Lg[)] — the best solution found by the particle swarm algorithm at the i-th iteration, and W;gj — the best

solution found by the genel'nalgorir_hm. It I(Ys:g,) < I(]f‘l/;.i)), that is, the solution obtained using the particle swarm
algorithm provides a lower value of the quality function [, then we proceed to step 4a. Otherwise, we proceed to step

4b.

Step 4a. The worst solution of the genetic algorithm Mé(,;)_wwst is replaced by the solution Yi_,(;g Ift’g,(,;zwm.st =

¥ and the transition to step 5 is performed.

A

Step 4b. The worst solution the particle swarm algorithm Yp(')

SE_Wm,stis replaced by the solution

%(‘:J, Yp(:g worst MG(,;) and the transition to step 5 is performed.

Step 5. If both algorithms continue to run (ie., the termination criterion is not met for either of them),
eeed to step 2. The described approach is repeated until one of the algorithms terminates. The best solution found
by both methods at the moment of termination is accepted as the final solution.

The results of modelling using particle swarm, genetic and combined algorithms are shown in Fig. 2.
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Fig. 2 Results of modelling the optimal structure of a neural network using various algorithms

As shown in Fig. 2, the combined algorithm allows for the lowest error and requires the fewest iterations to
find the optimal neural network structure.

Conclusion:

Thus, summarising the results of the study, the following conclusions can be drawn:

Cybersecurity in the modern digital age is a critical area focused on protecting systems, networks, and information

from malicious attacks. Organisations, businesses, governments, and countries are at great risk from cybercrime,

which Bbecomiug increasingly widespread, serious, complex, and diverse. The article describes an intelligent
hybrid system for detecting cybersecurity threats based on a deep neo-fuzzy neural network with a combined
optimisation algorithm for detecting and preventing such attacks.
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