PHYSICOCHEMICAL TYPOLOGY OF WATERS FROM WEATHERED AQUIFERS IN THE MAN DEPARTMENT, WESTERN COTE D\'IVOIRE

by Jana Publication & Research

Submission date: 03-Nov-2025 08:53AM (UTC+0200)

Submission ID: 2770459044 **File name:** IJAR-54614.pdf (1.76M)

Word count: 6608 Character count: 37282

PHYSICOCHEMICAL TYPOLOGY OF WATERS FROM WEATHERED AQUIFERS IN THE MAN DEPARTMENT, WESTERN COTE D'IVOIRE

Key words:

Hydrogeochemistry, PCA, Well water, Basemen 24 jifers, Granitoid, Nitrate, Western Côte d'Ivoire

Abstract

hydrogeochemical study conducted in the Man Department (western Côte d'Ivoire) aims to characterise the physicochemicalquality of well water in relation to the local geological formations. The investigation was carried out on 56 wellsevenly distributed across the department. The physical parameters considered include temperature, pH, turbidity, redox potential, total dissolved solids (TDS), and electricalconductivity (EC). The chemical parameters include the major cations and anions. The hydraulic structures are mainlyunderlain by three lithologicalunits: anorthosites, norites, and charnockites, which correspond to heterogeneous biotite-bearinggranitoids and migmatites covering nearly 88% of the study area. These crystalline rocks, characterised by lowpermeability, host discontinuousaquiferswhose waters exhibit generally lowmineralisation (mean EC = 129.98 ± 123.56 μ S/cm) and slightlyacidic to 5 eutral pH values (5.11 ± 0.56). Multivariate statistical analysis (Principal Component Analysis, PCA) indicates that the chemical variability of the groundwater is mainlycontrolled by electricalconductivity, NO₃-, HCO₃-, Cl⁻ ions, and redox potential. Two main groups of waters were identified: oxidising, weaklymineralised waters, and more reducing waters enriched in oxidised anions. The high conductivities observed in the Logoualé area, alongwithmoderate nitrate levels (up to 40 mg/L), suggest a localisedanthropogenic influence, probablylinked to domestic and agricultural activities. The dominant hydrochemical facies is of the calcium-bicarbonate type, typical of tropical crystalline basementaquifers. Overall, the well waters of the Man Departmentcomplywith WHO drinking-water standards; however, certain areas, particularly in the north and within the municipality of Man, show signs of diffuse contamination. Regular monitoring of electricalconductivity and nitrate concentrations is recommended to prevent future degradation of the water resource.

Copy Right, IJAR, 2019,. All rights reserved.

Introduction

10

11

Water resources are increasingly under pressure worldwide due to the combined effects of growing dema (driven by rapid population growth and the expansion of irrigated areas) and the reduction of 33 ilable resources. Integrated Water Resources Management (IWRM) appears to be the only sustainable alternative to the global water crisis. This holistic approach to water management is based on the guiding principles of the Dublin–Rio Conference, which states that freshwater is a finite and vulnerable resource, essential to economic developm 12 and sustainable environmental well-being (McCammon, 1992). The widespread use of phytosanitary products since the end of the Second World War has led to a remarkable increase and stabilisation of appultural yields. However, this progress has not been without environmental consequences, particularly regarding water quality (Lopez et al., 2015; Réal et al., 2005) 36 addition to pesticide use in agriculture, mining activities whether artisanal 2 old panning) or industrial represent a significant source of land and water pollution. It is now well established that the influence of land use on 10 er quality is multifactorial. In a review of the literature, Baker (2005) highlighted the complexity of the relationships between land use and water quality.

1

The impact of land use on water quality is modulated by the physical and chemical characteristics of the landscape through complex processes that vary in space and time. Infiltration is the main driver of solute percolation into aquifers, while temperature and rainfall govern the processes controlling contaminant mobility. Moreover, the 16 17 influencing factors are anthropogenic, hydrological, geological, and edaphic in nature (Johnson et al., 1997). In industrialised countries, groundwater and surface water contamination by domestic effluents causes serious public 19 health issues. In addition, agriculture through the extensive use of fertilisers is a major aggravating factor. Several 20 studies worldwide (Girard, 1993; Groen et al., 1988; Mariotti, 1986) and those cited by Bolduc et al. (2006) 21 demonstrate a strong correlation between agricultural activity and elevated nitrate concentrations in 22 groundwater. Developing countries such as Côte d'Ivoire are not exempt from this situation. Water resources in these 23 regions are severely affected by industrial and agricultural effluents. Surface wags are increasingly eutrophic, and 24 groundwater exhibits nitrate enrichment as a result of anthropogenic activities. Nitrate pollution is a global issue, 25 particularly in regions of intensive agricultural production. Agricultural lands act as diffuse sources of nitrate 26 infiltration into the environment. Unlike point sources (such as domestic effluents), diffuse sources can only be 27 managed effectively through an integrated approach. Once nitrogen from any source enters the environment, it 28 undergoes a series of chemical transformations culminating in the production of nitrate. Unlike the ammonium ion 29 (N-NH₄*), the nitrate ion (N-NO₃*) is highly soluble in water and is not retained by organic matter (humus) or clay complexes. It is therefore highly mobile and easily k 37 ned by infiltrating water into the underlying aquifers. Existing 30 literature indicates that water sources with high nitrate levels can cause infant mortality due to 31 32 methaemoglobinaemia. The World Health Organization (WHO, 2017) recommends that water containing more than 33 10 mg/L of N-NO₃- should not be used for preparing infant food. Under high pH conditions, nitrates can also lead to the formation of nitrosamines, which lower stomach pH; many of these compounds are carcinogenic in animals and 35 potentially in humans. These chemical characteristics of nitrate its solubility and mobility make it a significant threat 36

37 Located in a highly agricultural region and within a mountainous crystalline basement setting, the Man Department in western Côte d'Ivoire faces multiple environmental challenges. Interest in groundwater stems from its use via 39 village wells to meet daily domestic needs. However, access to potable water in these areas is limited by the type of 40 aquifers present (fractured and weathered zones) and by increasing demand (Savané, 1997). A gradual deterioration 41 in water quality has been observed, resulting from intensive agricultural practices and uncontrolled urban expansion 42 (Faillat, 1990; Lévêque et al., 1983). In such a context, nitrate remains one of the principal pollutants. Several 43 hypotheses have been proposed regarding the origin of nitrates in Ivorian groundwater. According to Faillat (1990), in the Bandama watershed, this contamination partly results from extensive deforestation in favour of urban and 45 cultivated land. Deforestation releases nitrogen stored in root systems, which is then leached into aquifers. Ouattara 46 (2009) showed that several groundwate 19 pstraction structures in central Côte d'Ivoire are contaminated by nitrates, 47 with maximum concentrations of 37.5 mg/28 and 23 mg/L in weathered and fractured aquifers, respectively. Although these concentrations remain below the WHO guideline value for drinking water (50 mg/L), she low wells 49 may be at greater risk of future contamination, especially as anthropogenic pressures persist. Therefore, the present 50 study aims to assess the physicochemical status of groundwater from the weathered-zone aquifers in the Man 51 Department. Specifically, it seeks to (i) identify the lithologies tapped by the sampled wells, (ii) discriminate the physicochemical quality of well water according to depth and electrical conductivity, and (iii) provide a diagnostic 52 framework for prioritising the most affected water points requiring intervention.

54 Materials and methods

Study area

- Located approximately 600 km from Abidjan, Man is the administrative capital of the Tonkpi Region and the principal city of the Montagnes District, which also includes the Guémon and Cavally regions. The city is often referred to as the "City of 18 Mountains" because of the numerous mountain ranges that encircle it, positioning Man
- 59 within a natural basin. It lies between 7°20′ and 7°35′ N latitude and 7°25′ and 7°45′ W longitude (Figure 1).
- O Geographically, the region represents the eastern extension of the Guinean Mountain Chain, most of which lies

within Guinea, and it is located near the Liberian border. The area includes several villages that have been absorbed by the city's expansion, where traditional housing types coexist with modern urban dwellings (RGPH, 2014). Recent geochemical investigations by 22 ouamélan (1996), along with petrological, petrographic, and geochronological studies by Camil (1984), have contributed to a better understanding of the geological formations of the region. From a lithological perspective, two major geological units can be disting shed, located on either side of the Danané–Man fault (N70°), which divides the area into three main domains: the northern granulitic domain, the intermediate granulitic and migmatitic domain, and the southern biotite-bearing migmatitic domain. The latter two domains together form what is referred to as the anatectic complex.

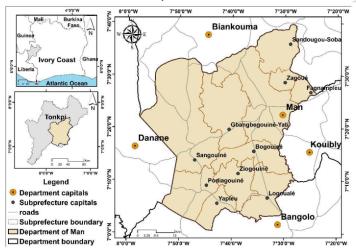


Figure 1. Location of the Man department

Sampling strategy

As part of this study, 56 wells tapping the season aquifers were sampled over a three-dayperiod, from 4 to 7 April 2022. Prior to fieldwork, various sampling sites (localities) were selected based on the administrative map of the Man Department. During the fieldcampaign, the following operations were carried out:

- Measurement of water level and wellheadheight using a piezometric probe and a measuring tape;
- Water collection fromeach well using a bailer, withsamplestransferred into polyethylenebottles;
- Description of the immediateenvironment of each well and recording of its geographical coordinates using 20 PS device.

Figure 2 shows the spatial distribution of the sample 21 pints, which is relatively homogeneous and covers the entire Man Department. After sampling, all water samples were stored in a cool box and transported to the 31 poratory of the University of Man for analysis. The physical parameters, sulphates, and nitrates were measured at the Central Laboratory of the University of Man (LC-UMan), while cations and other major anions were analysed at the Institut

National Polytechnique Houphouët-Boigny (INPHB). The analytical methods used for the determination of the 85 various parameters are summarised in Table 1.

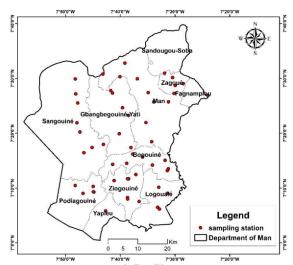


Figure 2. Spatial distribution map of the sampling points

Table 1. Analytical methods used for the determination of chemical parameters

Table 1. Analytical methods used for the determination of chemical parameters			
Chemical parameters	Analytical methods	Standards / References	
Nitrites (NO ₂ ⁻)	Molecular absorption spectrophotometry	NF EN 26777	
Nitrates (NO ₃ ⁻)	Molecular absorption spectrophotometry	NF EN 26777	
Sulphates (SO ₄ ²⁻)	Molecular absorption spectrophotometry	NF T 90-040	
Orthophosphates (PO ₄ ³⁻)	Molecular absorption spectrophotometry	NF 17 ISO 15681-2	
Calcium (Ca ²⁺)	Titrimetry	NF T 90-003	
Magnesium (Mg ²⁺)	Titrimetry	NF T 90-003	
Bicarbonate (HCO ₃)	Titrimetry	NF EN ISO 9963-2	
Chloride (Cl ⁻)	Titrimetry (silver nitrate method)	NF ISO 9	

Electrical conductivity classes of well water

89

92

95

Electrical conductivity classes of well water

Table 2 presents the electrical conductivity (EC) classes based on World Health Organization (WHO) standards. 91

According to this classification, waters with EC values below 200 µS/cm are considered low-mineralised, whereas

those with EC values above 600 μ S/cm are regarded as highly mineralised. This classification was used to group the 93 94

wells of the Man Department according to their total dissolved solids (TDS) content (WHO, 2017).

 $Table\ 2.\ Electrical\ conductivity\ classes\ of\ well\ water\ according\ to\ WHO\ standards\ (OMS, 2017)$

ElectricalConductivity (µS/cm)	Mineralisation class	Interpretation
< 200	Low mineralisation	Soft, weaklymineralised water
200 - 600	Moderatemineralisation	Moderatelymineralised water
> 600	High mineralisation	Hard, stronglymineralised water

Inverse Distance Weighting (IDW) interpolation method

Interpolation predicts the values of raster cellsfrom a limited number of sampled points. It allows the estimation of unknown values for any type of geospatial point data, such gelevation, rainfall, or chemical concentrations. One of the mostwidely used barycentric interpolation techniques is the Inverse Distance Weighting (25W) method, in which the influence of each sampling point decreases with increasing distance, controlled by a power parameter (d) (Pingale et al., 2014). Using this method, the predicted value at a point so is expressed as follows:

103
$$Z(s_0) = \sum_{i \in V(s_0)} \frac{1/|s_i - s_0|^d}{\sum_{i \in V(s_0)} (1/|s_i - s_0|^d)} Z(s_i)$$
, with $d > 0(1)$

Let $V(s_0)$ represent the set of observations located within a certain neighbourhood of s_0 . The weighting is a function of the inverse distance. The formula defining the weighting is given in Equation 2:

106
$$\lambda_i = \frac{d_{10}^{-p}}{\sum_{i=1}^{N} d_{10}^{-p}} (2)$$

The IDW method requires the selection of a power parameter and a search radius. The power parameter (p) controls the influence of measured values on the interpolated value according to their distance (d) from the prediction point (Erdogan, 2009). A relatively highpower parameter assigns greater weight to nearby points, resulting in a surface that captures more local detail (Yavuz &Erdogan, 2012). In this study, the IDW method was employed to generate the spatial distribution maps of electrical conductivity (EC) and nitrate concentrations in well waters.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) allows the summarization and visualization of information contained in a dataset composed of individuals or observations described by multiple inter-correlated quantitative variables. Each variable can beconsidered a separate dimension. When a dataset contains more than three variables, visualizing this multidimensionalspace becomes verychallenging. PCA is therefore used to extract the most important information from a multivariate data table and to express it as a set of new variables called principal components. These new variables correspond to linear combinations of the original variables. The number of principal components is lessthan or equal to the number of original variables. The information contained in a dataset corresponds to the total variation it exhibits. The goal of PCA is to identify directions (or principal components) along which the variation in the data is maximized. In otherwords, PCA reduces the dimensionality of a multivariate dataset to two or three principal components that can begraphically represented, with minimal loss of information (Abdi & Williams, 2010; Kassambara, 2017). PCA is a multidimensional statistical method that enables the synthesis of information to compare different systems. It is particularly suitable for: (i) explaining chemical similarities between different waters and/or between different points of mineralization measurement, and (ii) identifying the variables governing these mechanisms.

Results

Lithology of the investigatedwells and descriptive statistics of in-situ parameters

The water supply structures (wells) in the Man department are predominary located on three major geologicalunits: anorthosites, norites, and charnockites; heterogeneous biotite-bearinggranitoids; and migmatites on heterogeneous biotite-bearinggranitoids (Figure 3). Approximately 88% of the wells are situated within these formations, while the remaining 12% are distributed across othergeologicalunits. Anorthosites, norites, charnockites, and heterogeneous biotite-bearinggranitoids are the most widespread lithologies in the department, coveringroughly 80% of the territory. Being crystalline rocks, they exhibit medium to lowpermeability, hostingaquiferswhose water resources are modestcompared to porousaquifers (sands, gravels, sandstones, etc.). Overall, waters in contact with these rocks are weakly to moderatelymineralized and are potentiallyenriched in Ca²⁺, Mg²⁺, Fe²⁺, K⁺, Na⁺, and

HCO₃⁻, with a neutral to slightly basic pH. In contrast, waters in contact with migmatites over heterogeneous biotite-bearinggranitoids tend to beslightlyacidic to neutral.



Figure 3. Spatial distribution of the sampled points across the lithological units

The waters of the Man department have an average pH of 5.11 ± 0.56 , indicating that the well waters are slightlyacidic to neutral. Regarding the redox potential, values range from 114.40 mV to 308.30 mV, with a mean of 220.01 ± 45.93 mV. Dissolvedoxygen, electricalconductivity, TDS, and turbidity exhibit standard deviations that are high or close to the mean (Table 3), reflecting the presence of wellswith extreme or exceptional values of these parameters compared to the average. The waters have an average dissolvedoxygen content of 2.57 ± 5.44 mg/L, indicating that most are poorlyoxygenated. The average electricalconductivity of $129.98 \pm 123.56 \, \mu \text{S/cm}$ suggests that the wells in the Man department are weakly to moderatelymineralized. However, some wells exhibit conductivity values approaching those of highly mineralized waters. Based on lithology, the waters wouldbeexpected to be weakly to moderatelymineralized. Wells exhibiting these elevatedconductivity values warrant particular attention regarding potential contamination.

Table 3. Descriptive statistics of in-situ physicochemical parameters

Parameter	pН	Redox (mV)	DO (mg/L)	EC (µS/cm)	Depth (m)
Mean	5.11	220.01	2.57	129.98	6.92
Standard Deviation	0.56	45.93	5.44	123.56	2.44
Minimum	3.24	114.40	1.09	16	2.20
Maximum	6.55	308.30	42.43	806	12.45

Typology of wells according to depth

 The depths of the wells were classified into three arbitrary categories to assess the relationship between depth and the concentrations of chemical elements (Figure 4). The wells are generally low in chloride, orthophosphate, and, to a lesser extent, sulfate. The electrical conductivity (EC) of the wells ranges between 0 and 400 μ S/cm, while nitrate concentrations vary from 0 to 40 mg/L. Regardingchloride, orthophosphate, and sulfate concentrations, the scatter plots according to depth classes remain highly heterogeneous, indicating that the chemical characteristics of the water are generally similar regardless of well depth and EC. Differentiation is observed only for nitrate concentrations (0–20 mg/L and 20–40 mg/L) and EC values (0–200 μ S/cm and 200–400 μ S/cm). Wells with higher conductivity tend to have higher nitrate concentrations. Therefore, EC is used as a distinguishing parameter to differentiatewells based on their nitrate content.

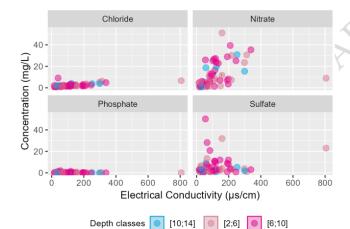
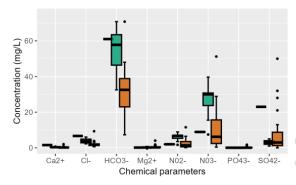


Figure 4. Concentrations of nitrate, chloride, orthophosphate, and sulfate in wells according to depth and electrical conductivity (EC)


Typology of wells based on electricalconductivity

Distribution of Ma 34 Ion Concentrations

Figure 5 illustrates the distribution of the main ion concentrations in wells from the Man department. Overall, the most representative anions are bicarbonate (HCO_3^-) and nitrate (NO_3^-) .

- For wellswithlowelectricalconductivity, HCO₃⁻ concentrations range from 22 to 38 mg/L, with a median NO₃⁻ concentration of 5 mg/L.
- For wellswithmoderateconductivity, HCO₃⁻ ranges between 48 and 62 mg/L, and the median NO₃⁻ concentration is 30 mg/L.

Other ions exhibit nearly identical distributions regardless of the conductivity class, indicating that their concentrations do not vary significantly withelectrical conductivity. The dominant hydrochemical facies in the region is therefore calcium-bicarbonate, irrespective of whethermineralisation is low or moderate. The secondary facies is characterised by magnesium as the dominant cation and nitrate as the dominant anion.

EC classes 🖨 High 📋 Moderate 📋 Weak

Figure 5. Distribution of major ion concentrations according to electricalconductivity classes

Principal component analysis

Distribution of inertia

This dataset comprises 56 individuals (or wells) and 16 variables, with one qualitative variable used illustratively. The inertia of the factorial axes indicates whether the variables are structured and also suggests an appropriate number of principal components to consider. The first two axes of the analysis account for 40.96% of the total inertia of the dataset, meaning that 40.96% of the overall variability of the cloud of individuals (or variables) is represented in this plane (Figure 6). This is a relatively moderate percentage, indicating that the first plane captures only part of the total variability contained within the active dataset. This value exceeds the reference value of 27.2%, implying that the variability explained by this plane is significant. Consequently, it may be necessary to consider higher dimensions, such as the third axis or beyond, in the analysis.

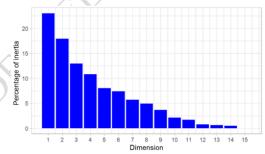


Figure 6. Decomposition of total inertia

An assessment of the relevant number of axes to be interpreted suggests restricting the analysis to the description of the first four axes. These components exhibit an inertia rate higher than the 0.95 quantile of random distributions (64.73% compared to 47.36%). This observation indicates that only these axes carry meaningful information. Consequently, the interpretation of the analysis will be limited to these axes alone. For improved readability of the plots resulting from the PCA, the names of the localities where the wells were investigated have been replaced with

Locality Code Latitude Longitude Locality Code Latitude Longitude 7.10256 -7.5472 Saguipleu P1 7.26972 -7.6284 Logoualé 1 P29 Podiogouiné 1 P2 7.15439 -7.7466 Logoualé 2 P30 7.1505 -7.5223 Podiogouiné 2 Р3 7.15517 -7.7483 Koulinié P31 7.16875 -7.5493 Gouépleu P4 7.17411 -7.8034 Saopleu P32 7.21944 -7.5233 Douleu P5 7.15028 -7.7797 Glolé 1 P33 7.22508 -7.5203 Kpankepleu P6 7.09706 -7.7109 Glolé 2 P34 7.25078 -7.5301 Yapleu P7 7.17122 -7.7488 Glêgouiné P35 7.23642 -7.5686 Gotongouiné-B. P8 7.27392 -7.7771 P36 7.30753 -7.5709 Lepkepleu Sangouiné P9 7.36494 -7.7983 P37 7.38733 -7.6417 Botongouiné Gotongouiné P10 7.49828 -7.8031 Tiaképleu P38 7.41058 -7.6595 Ligbalé P11 7.45289 -7.8018 Lamapleu P39 7.45536 -7.6900 7.42525 Drangouiné P12 -7.7957 Biakalé P40 7.46286 -7.6952 Damakoupleu P13 7.33678 -7.7891 Biakalé P41 7.51297 -7.7193 P14 7.28986 -7.7522 Gbêlé P42 7.50514 Gotongouiné 2 -7.6673 P15 7.29914 -7.7175 Kiélé P43 7.54647 -7.6523 Zoba Gouagounompleu P16 7.33156 -7.6695 Mélapleu P44 7.49869 -7.6144 Gbangbégouiné P17 7.28969 -7.6339 P45 7.45683 -7.5816 Gueupleu Mlonguiné P18 7.261 -7.5987 Yébégouin P46 7.42839 -7.5643 7.42869 7.24169 -7.6468 P47 -7.5200 Bogouiné P19 Blauckauss -7.6895 Gouékangouiné P20 7.23858 Godegouin P48 7.45436 -7.5030Gouégolé P21 7.20758 -7.6189 Goualepleu P49 7.50272 -7.5072 Trinlé-Diaplé P22 7.19472 -7.6411 Déoulé P50 7.51592 -7.5318 Zogouiné P23 7.18917 -7.6851 Gbatta P51 7.47833 -7.4993 Gouégouiné P24 7.19481 -7.6444 Zagoué P52 7.48414 -7.4750 Zogouiné P25 7.13764 -7.6444 Singouin P53 7.44767 -7.3997 Goulé 1 P26 7.13319 -7.6442 P54 7.44767 -7.3997 Gboné Goulé 2 P27 7.12558 -7.6091Fagnampleu P55 7.36558 -7.5883 Gbloalé P28 7.10794 -7.5528 Zélé P56 7.36558 -7.5883

• Description of the plane 1:2

198

199

200 201

202 203

204

205

206

207

208

209

210

211

212

213

214

The critical probability of the Wilks test (p-value = 5.34×10^{-10}) identifies the variable whosecategories best discriminateamongindividuals on the plane (i.e. the one that best explains the distances between them). Only one qualitative variable can account for the separation of individuals: the *ElectricalConductivity (EC) Classes*. Individuals are therefore coloured according to their membership in the modalities of the EC Classes variable gigure 7), Dimension 1 separatesindividuals such as P47, P35, P54, P18, P25, P50, P29, P46, P37, and P31 (located on the right-hand side of the plot, characterised by strongly positive coordinates on the axis) fromindividuals such as P30, P28, P10, P2, P56, P33, and P6 (on the left-hand side, characterised by stronglynegative coordinates). The group including individuals P35, P25, P31, and P22 (with positive coordinates) is associated withhigh values of PO_0^{3-} , Turbidity, SO_4^{3-} , and DissolvedOxygen (frommost to least extreme). The group including P47, P54, P18, P50, P29, P46, P37, and P9 (also with positive coordinates) is characterised by high values of ElectricalConductivity (EC), HCO_3^- , NO_2^- , NO_3^- , and Cl^- (frommost to least extreme), and by lowRedox potential values. Conversely, the group including P30, P28, P10, P2, P56, P33, and P6 (withnegative coordinates) shows high Redox potential values and low values for NO_2^- , NO_3^- , Cl^- , HCO_3^- , EC, and EC (frommost to least extreme).

Dimension 2 contrasts individuals such as P35, P25, P31, and P22 with individuals like P47, P54, P18, P50, P29, P46, P37, and P9 (located at the bottom of the plot, characterised by stronglynegative coordinates on the axis). The group comprising P35, P25, P31, and P22 exhibits high values of PO_s^{1-} , Turbidity, SO_s^{2-} , and DissolvedOxygen. The group comprising P47, P54, P18, P50, P29, P46, P37, and P9 is associated with high EC, HCO_s^{-} , NO_s^{-} , NO_s^{-} , and Cl^{-} values, and low $Redox\ potential\ values$.

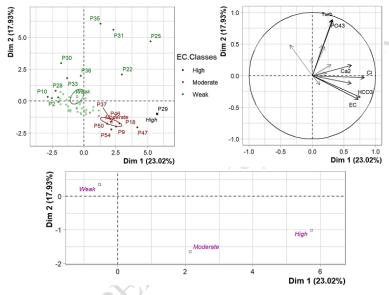


Figure 7. Plot of individuals, variables, and categories on the 1:2 plane

• Description of the plan 3:4

Dimension 3 separatesindividuals such as P24, P22, P16, P43, P44, and P46 (located on the right-hand side of the plot, characterised by strongly positive coordinates on the axis) from individuals such as P40, P38, P19, P8, P23, and P25 (Figure 8). The group including P24, P22, P16, P43, P44, and P46 is associated with high values of NO_2^- and NO_3^- (from most to least extreme). In contrast, the group including P40, P38, P19, P8, P23, and P25 shows high values of PA and PA a

Dimension 4 contrasts individuals such as P40, P38, P19, P8, P23, and P25 with individuals such as P9, P37, P10, and P36. The group comprising P40, P38, P19, P8, P23, and P25 is characterised by high pH and depth values and low mineralisation, with low concentrations of NO_2 and NO_3 . Conversely, the group including P9, P37, P10, and P36 exhibits high DissolvedOxygen (DO) and EC values, and Doy H, DissolvedOxygen (DO) and Doy H, Doy H,

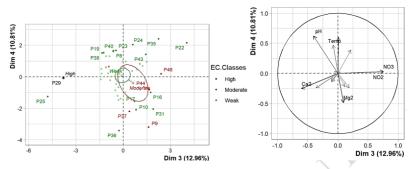


Figure 8. Plot of individuals and variables on the 3:4 plane

Spatial distribution of electricalconductivity and nitrate concentrations

233

234

235 236

237

238

239

240 241

242 243

244

245

246

Across the entire Man Department, electrical conductivity values are generallylow, with an average of 129.98 μ S/cm, indicating that the well waters are weaklymineralised (Figure 9). The Logoualé area shows the highest conductivity values, ranging from 280 to 804 μ S/cm. The southern part of the department is weaklymineralised, withelectrical conductivity values ranging between 16 and 103 μ S/cm. In the northern zone, conductivity also remains low. The municipality of Man and the localities of Sandougou-Soba (in the north-east) and Sangouiné (in the north-west) display intermediate conductivity values, between 192 and 279 μ S/cm (Figure 9).

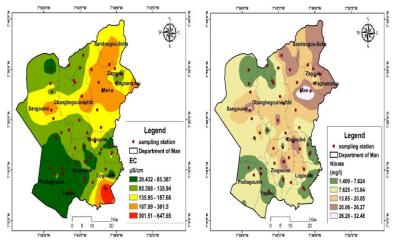


Figure 9. Spatial distribution of electrical conductivity and nitrate concentrations in the Man Department

Overall, in almost all wells across the Man Department, nitrate concentrations are below 15 mg/L. The Podiagouiné and Yapleulocalities show the lowest nitrate concentrations (0.9–5 mg/L). The municipality of Man and the Bogouinélocalitypresentslightly higher concentrations, ranging between 10 and 26 mg/L in certaines areas. These

results indicate that the sampledwells do not show nitrate contamination relative to the WHO standards. However,
 wells located in the northern part of the department deserveparticular attention.

249 Discussion

263

264

265

266

267 268

269

270 271

272 273

274

275

276

277

278

279

280 281

282 283

284

285

286

287

289 290

292

250 The distribution of hydraulic structures in the Man Department is strongly influenced by the geological substratum, 251 which is composed predominantly (≈ 88%) of anorthosites, norites, charnockites, biotite-bearing granitoids, and 252 migmatites. These crystalline formations, beinglow in porosity and permeability, allowonlylimited water infiltration. 253 Consequently, the associated aquifers are discontinuous, of lowproductivity, and possess limited storage capacity, 254 which explains the low average mineralisation observed (EC ≈ 130 μS/cm). The chemical composition of the 255 groundwater is consistent with this geologicalcontext. The dominance of a calcium-bicarbonate facies indicates that 256 mineralisationmainlyresultsfrom the weathering of silicate minerals (feldspars, biotite, amphiboles), 257 ratherthanfromevaporiticprocesses or saline intrusions. Waters in contact with these rocks typically exhibit 258 slightlyacidic to neutral pH values ($\approx 5.11 \pm 0.56$), linked to the limited dissolution of carbonates and the acidic 259 nature of the host rocks (Appelo&Postma, 2004; Faillat&Blavoux, 1989; Freeze & Cherry, 1979). Comparable 260 studies conducted in crystalline basement areas of Côte d'Ivoire have reported similar patterns of 261 lowm 23 alisation with localised peaks related to diffuse pollution and the vulnerability of shallowaquifers (Kouassi, 262 2007; Lasm et al., 2011; Rashrash et al., 2015).

The relativelylow average electrical conductivity (EC) values confirm the absence of high concentrations of dissolvedsalts. However, the high standard deviationssuggest local variability influenced by factors such as pointsource contamination, variation in groundwaterdepth, and fracture heterogeneity within the substratum. The high EC values observed in Logoualé (280-804 µS/cm) mayresultfromprolonged water circulation in open fracture zones, which promotesionic exchange, or from local domestic or agricultural pollution. A particularlystrongrelationship between EC and nitrate concentrations is observed: wellswith higher EC values also show higher NO3 concentrations (up to 40 mg/L). This correlation likely reflects anthropogenic inputs (domestic wastewater, latrines, fertilisers), compounded by the shallowdepth of wells and the absence of sanitary protection around wellheads. The EC-NO3- correlations are consistent with global observations in groundwaterfromurbanised or intensivelyfarmed areas (Dassargues, 2020; WHO, 2017). Nevertheless, the measured concentrations remainbelow the WHO limit (50 mg/L), indicating moderate contamination. The spatial distribution of EC and nitrate shows lowmineralisation across most of the department, withlocalised increases in the Man municipality and Logoualé. These areas also correspond to zones of intense human activity, supporting the hypothesis of anthropogenic influence on groundwaterchemistry. In contrast, the southern (16-103 µS/cm) and northern sectors, characterised by lowmineralisation, indicate younger waters withlimited interaction with host rocks. The low nitrate concentrations in Podiagouiné and Yapleu (0.9-5 mg/L) further confirm the lowanthropogenic impact in these zones.

The Principal Component Analysis (PCA) results show that the first two axes explain 40.96% of the total variance, revealing a moderate but meaningful data structure. The main discriminating variables are electrical conductivity, nitrate, bicarbonate, chloride, and redox potential. This structure highlights two main groundwater groups: oxidising, weaklymineralised waters (lowNo₇-, No₂-, Cl⁻, high redox values), representing recent and uncontaminated recharge waters and more mineralised, reducing waters, rich in oxidised anions, indicative of anthropogenic influence or longer residence times within the porous or fractured medium. This duality is consistent with the presence of populations exposed to varying anthropogenic pressures and different groundwater flow regimes within fractured networks (Appelo&Postma, 2004). The third and fourth PCA axes, which explain an additional proportion of variance, distinguish shallow, mineralised waters from deeper, more basic, and weaklymineralised waters, suggesting a hydrogeochemical stratification with depth, althoughless pronounced than the stratification associated with EC. Althoughmostwells in the Man Department meterinking-water quality standards, the elevated nitrate and EC values observed in some localities warrant enhanced monitoring. These parameters, being indicators of diffuse pollution, can evolverapidly under increasing demographic and agricultural pressures. The low dissolved oxygen content (DO ≈ 2.6 ± 5.4 mg/L) observed in several samples suggests stagnant conditions or

- 293 moderateorganic pollution, as reported in otherIvorian studies (N'Guettia et al., 2019; Ouattara et al., 2016;
- 294 Sodomon et al., 2024). This underlines the need for targetedsanitationmeasures, such as well sealing and the
- 295 protection of water points fromnearby contamination sources.

Conclusion

296

- 297 This study aimed to characterise the hydrogeochemical typology of well waters in the Man Department. The results
- 298 indicate that the groundwater is slightly to moderatelymineralised, with an acidic pH averaging around 5.11. The
- 299 dominant hydrochemical facies (HCO₃-Ca²⁺ and HCO₃-Mg²⁺) are typical of tropical crystalline aquifers, and the
- 300 prepared spatial variability results from the combined effects of lithology, well depth, and land use. Regarding the 301
- Principal Component Analysis (PCA), four relevant axes were retained to construct the model. Among the four
- 302 factorial classifications performed, two (axes 1:2 and 3:4) validated the model. In otherwords, these axes encompass 303
- the chemical parameters influencing electrical conductivity classes, namely nitrate (NO₃⁻) and bicarbonate (HCO₃⁻). 304 While bicarbonate concentrations have a naturalorigin, linked to the lithological composition of the host rocks, the
- 305 higher nitrate levels likely have an anthropogenic source. Some localities show elevated nitrate concentrations,
- 306 althoughstillbelow the drinking-water limit. This is notably the case in Bogouiné and Man, where concentrations
- 307
- reach around 20 mg/L. It is therefore recommended to raisecommunityawareness about
- 308 activities conducted near wells, in order to reduce contamination risks. Overall, the findings confirm that the crystalline
- 309 basementgeologyplays a fundamentalrole in controllinggroundwaterquality, but that anthropogenic factors are
- 310 becoming increasingly significant in certaines areas. A periodic monitoring programme focusing on nitrate,
- 311 electrical conductivity, and redox potential, combined withaquifervulnerability mapping, is necessary to anticipate
- 312 future changes in groundwaterquality within this environmental and socio-economiccontext.

313

- 314 Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459.
- 315 https://doi.org/10.1002/wics.101
- 316 Appelo, C. A. J., & Postma, D. (2004). Geochemistry, Groundwater and Pollution (C. A. J. Appelo & D. Postma,
- Eds; 0 edn). CRC Press. https://doi.org/10.1201/9781439833544 317
- 318 Baker, A. (2005). Land Use and Water Quality. In M. G. Anderson & J. J. McDonnell (Eds), Encyclopedia of
- Hydrological Sciences (1st edn). Wiley. https://doi.org/10.1002/0470848944.hsa195 319
- 320 Bolduc, S., Larocque, M., & Prichonnet, G. (2006). Vulnérabilité de l'eau souterraine à la contamination par les
- 321 nitrates sur le bassin versant de la rivière Noire (Montérégie, Québec). Revue Des Sciences de l'eau, 19(2), 87-99.
- 322 https://doi.org/10.7202/013043ar
- 323 Camil, J. (1984). Pétrographie, chronologie des ensembles granulitiques archéens et formations associées de la
- 324 région de Man (Côte d'Ivoire) [Thèse de Doctorat]. Université d'Abidjan.
- 325 Dassargues, A. (2020). Introduction à la qualité des eaux souterraines et à l'hydrochimie: In Hydrogéologie
- appliquée (pp. 179-209). Dunod. https://doi.org/10.3917/dunod.dassa.2020.01.0179 326
- 327 Erdogan, S. (2009). A comparision of interpolation methods for producing digital elevation models at the field scale.
- 328 Earth Surface Processes and Landforms, 34(3), 366-376. https://doi.org/10.1002/esp.1731
- 329 Faillat, J. P., & Blavoux, B. (1989). Caractères hydrochimiques des nappes des roches endogènes fissurées en zone
- 330 tropicale humide: L'exemple de la Côte d'Ivoire. Journal of African Earth Sciences (and the Middle East), 9(1), 31-
- 40. https://doi.org/10.1016/0899-5362(89)90005-5 331
- 332 Faillat, J.-P. (1990). Origine des nitrates dans les nappes de fissures de la zone tropicale humide: Exemple de la Côte
- 333 d'Ivoire. Journal of Hydrology, 113(1-4), 231-264. https://doi.org/10.1016/0022-1694(90)90177-Y

- 334 Freeze, R. A., & Cherry, J. A. (1979). Groundwater prentice-hall. Englewood Cliffs, NJ, 176, 161-177.
- 335 Girard, P. (1993). Techniques isotopiques (15N 18O) appliquées à l'étude des nappes des altérites et du socle
- 336 fracture de l'ouest africain: Étude de cas l'ouest du Niger. Université du Québec à Chicoutimi.
- 337 https://doi.org/10.1522/1486981
- 338 Groen, J., Schuchmann, J. B., & Geirnaert, W. (1988). The occurrence of high nitrate concentration in groundwater
- 339 in villages in Northwestern Burkina Faso. Journal of African Earth Sciences (and the Middle East), 7(7-8), 999-
- 340 1009. https://doi.org/10.1016/0899-5362(88)90013-9
- 341 Johnson, L., Richards, C., Host, G., & Arthur, J. (1997). Landscape influences on water chemistry in Midwestern
- 342 stream ecosystems. Freshwater Biology, 37(1), 193–208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x
- 343 Kassambara, A. (2017). Principal Component Methods in R: Practical Guidex. Statistical Tools for High-
- 344 Throughput Data Analysis. https://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-
- 345 guide/112-pca-principal-component-analysis-essentials/
- 346 Kouamélan, A. N. (1996). Géochronologie et géochimie des formations archéennes et protérozoïques de la dorsale
- 347 de Man en Côte d'Ivoire, implication pour la transition archéen-protérozoïque [Thèse de Doctorat,]. Université
- 348 Géosciences Rennes 1.
- 349 Kouassi, K. L. (2007). Transport solide et modélisation de la sédimentation dans les lacs des barrages
- 350 hydroélectriques de côte d'ivoire: Cas du lac de Taabo [Thèse De Doctorat]. Université d'Abobo-Adjamé.
- Lasm, T., De Lasme, O., Oga, M.-S., Youanta, M., Baka, D., Kouame, F., & Yao, T. (2011). Caractérisation
- 352 hydrochimique des aquifères fissurés de la région de San-Pedro (Sud-Ouest de la Côte d'Ivoire). International
- 353 Journal of Biological and Chemical Sciences, 5(2). https://doi.org/10.4314/ijbcs.v5i2.72129
- Lévèque, C., Dejoux, C., & Iltis, A. (1983). Limnologie du fleuve Bandama, Côte d'Ivoire. Hydrobiologia, 100(1),
- 355 113–141. https://doi.org/10.1007/BF00027426
- 356 Lopez, B., Ollivier, P., Togola, A., Baran, N., & Ghestem, J.-P. (2015). Screening of French groundwater for
- 357 regulated and emerging contaminants. Science of The Total Environment, 518-519, 562-573.
- 358 https://doi.org/10.1016/j.scitotenv.2015.01.110
- 359 Mariotti, A. (1986). La dénitrification dans les eaux souterraines, principes et me´thodes de son identification: Une
- 360 revue. Journal of Hydrology, 88(1-2), 1-23. https://doi.org/10.1016/0022-1694(86)90194-0
- 361 McCammon, A. L. T. (1992). United Nations Conference on Environment and Development, held in Rio de Janeiro,
- 362 Brazil, during 3-14 June 1992, and the '92 Global Forum, Rio de Janeiro, Brazil, 1-14 June 1992. Environmental
- 363 Conservation, 19(4), 372–373. https://doi.org/10.1017/S0376892900031647
- N'Guettia, G. K., Mangoua, O. M. J., DOUAGUI, A. G., ABOUA, K. N., & Droh, L. D. (2019). Evolution spatio-
- 365 temporelle des teneurs en nitrates dans les eaux souterraines du bassin versant de la Baya (Est Côte d'Ivoire).
- 366 International Journal of Innovation and Applied Studies, 27(1), 88–97.
- 367 OMS (Organisation Mondiale de la Santé). (2017). Directives sur la qualité de l'eau de boisson (Organisation
- 368 Mondiale de la Santé).
- 369 Ouattara, I. (2009). Processus hydrogéochimique en milieu soudano-tropical de socle cristallin en Côte d'Ivoire:
- 370 Bassin versant du Bandama [Mémoire de DEAUniversité d'Abobo-Adjamé]. Université d'Abobo-Adjamé.

- 371 Ouattara, I., Kamagaté, B., Dao, A., Noufé, D., & Savané, I. (2016). Processus de minéralisation des eaux 372 souterraines et transfert de flux en milieu de socle fissuré: Cas du bassin versant transfrontalier de la Comoé (Côte $d'Ivoire, Burkina\ Faso, Ghana, Mali).\ International\ Journal\ of\ Innovation\ and\ Applied\ Studies\ ,\ 17(1),57-69.$ 373 374 Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme 375 rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric 376 Research, 138, 73-90. https://doi.org/10.1016/j.atmosres.2013.10.024 Rashrash, S. M., Ghawar, B. M. B., & Hweesh, A. M. (2015). Evaluating Groundwater Pollution Using 377 378 Hydrochemical Data: Case Study (Al Wahat Area East of Libya). Journal of Water Resource and Protection, 379 07(04), 369-377. https://doi.org/10.4236/jwarp.2015.74029 380 Réal, B., Curtis, J. F., Hoan, E. B., Kouakou, M., Mé, M., Traoré, Y., Kouamé, F., Goula, B. T. A., & Koffi, Y. F. 381 (2005). Résultats de 10 campagnes d'expérimentation: Les transferts de produits phytosanitaires vers les eaux
- varient selon les types de sol. Pespect. Agric., 316, 20–24.
 Savané, I. (1997). Contribution à l'étude géologique et hydrogéologique des aquifères discontinus du socle cristallin
- Savane, I. (1997). Contribution a l'etitale geologique et nyarogeologique des aquijeres aiscontinus au socie cristatin d'Odienné (Nord-Ouest de la Côte d'Ivoire). Apport de la Télédétection et d'un système d'information hydrogéologique à référence spatiale [Thèse d'Etat]. Université Nationale de Côte d'Ivoire.
 Sodomon, A. K., Akpataku, K. V., Tampo, L., Alfa-Sika Mande, S.-L., Benavente, J., Rosales, W. M., & Faye, S.
- (2024). Évaluation de L'évolution hydrogéochimique des eaux souterraines de L'aquifère du socle de la partie supérieure du bassin transfrontalier du fleuve mono, togo. SSRN. https://doi.org/10.2139/ssrn.4961616
 Yavuz, H., & Erdoğan, S. (2012). Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey. Water Resources Management, 26(3), 609–621. https://doi.org/10.1007/s11269-011-9935-6

391 392 393

395

Yavuz, H., & Erdoğan, S. (2012). Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey. Water Resources Management, 26(3), 609–621. https://doi.org/10.1007/s11269-011-9935-6

PHYSICOCHEMICAL TYPOLOGY OF WATERS FROM WEATHERED AQUIFERS IN THE MAN DEPARTMENT, WESTERN COTE D\'IVOIRE

	LITY REPORT	
SIMILA	0% 8% 7% 4% RITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT	PAPERS
PRIMAR	Y SOURCES	
1	Submitted to Universiti Malaysia Terengganu UMT Student Paper	2%
2	link.springer.com Internet Source	1%
3	Submitted to University of Newcastle upon Tyne Student Paper	<1%
4	www.journalijar.com Internet Source	<1%
5	sciencepg.com Internet Source	<1%
6	Philippe Cullet, Alix Gowlland-Gualtieri, Roopa Madhav, Usha Ramanathan. "Water Law for the Twenty-First Century - National and International Aspects of Water Law Reform in India", Routledge, 2019	<1%
7	www.scirp.org Internet Source	<1%
8	www.manchester.ac.uk Internet Source	<1%
9	www.ukm.my Internet Source	<1%
10	Submitted to University of Exeter Student Paper	<1%

11	www.issr-journals.org Internet Source	<1%
12	D.A. Langford, A. Retik. "The Organization and Management of Construction - Shaping Theory and Practice", Routledge, 2002 Publication	<1%
13	Tanoh Jean-Jacques Koua, Jaehak Jeong, Tadesse Abitew Alemayehu, Yeganantham Dhanesh, Raghavan Srinivasan. "Spatial Distribution of Nutrient Loads Based on Mineral Fertilizers Applied to Crops: Case Study of the Lobo Basin in Côte d'Ivoire (West Africa)", Applied Sciences, 2023 Publication	<1%
14	Razack, M "Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane Region, Western Ivory Coast)", Journal of Hydrology, 20060630 Publication	<1%
15	Ball, J.W "Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California", Applied Geochemistry, 200407 Publication	<1%
16	22ab050c-5894-4c98-adbe- bfbd30e1afd6.filesusr.com Internet Source	<1%
17	Ahmed El Bakouri, Khadija Haboubi, Fouad Dimane, Mohamed Tayebi, Driss Belghyti. "Effects of saline land on shallow aquifers quality in North Morocco", Euro- Mediterranean Journal for Environmental Integration, 2024 Publication	<1%

18	Hui Tong, Ruizhong Gao, Chang Yue, Longmei Xie, Limin Duan, Yi Zhu, Guoqiang Wang. "Hydrochemical evolution and nitrate sources, migration, and transformation in surface water and groundwater of a typical tributary of the Yellow River", Journal of Environmental Management, 2025 Publication	<1%
19	moam.info Internet Source	<1%
20	publishup.uni-potsdam.de Internet Source	<1%
21	tel.archives-ouvertes.fr	<1%
22	www.ipublishing.co.in Internet Source	<1%
23	academicjournals.org Internet Source	<1%
24	archive.aessweb.com Internet Source	<1%
25	assets.researchsquare.com Internet Source	<1%
26	dergipark.org.tr Internet Source	<1%
27	docta.ucm.es Internet Source	<1%
28	es.ircwash.org Internet Source	<1%
29	eujournal.org Internet Source	<1%
30	hal.archives-ouvertes.fr Internet Source	<1%

M J Mangoua, D L Gone, K A Kouassi, K G N rsquo guettia, G A Douagui, I Savane, J Biemi. "Hydrogeochemical assessment of groundwater quality in the Baya watershed (Eastern of Cte dlvoire)", African Journal of Agricultural Research, 2015

<1%

Publication

Smriti Agarwal, Manoj Chandra Garg. "The Handbook of Al for Clean Water - Innovations in Treatment and Monitoring", CRC Press, 2025

<1%

Publication

A. Fernández-Ayuso, C. Kohfahl, H. Aguilera, M. Rodríguez-Rodríguez, F. Ruiz-Bermudo, C. Serrano-Hidalgo, C. Romero-Álvarez. "Control of trace metal distribution and variability in an interdunal wetland", Science of The Total Environment, 2022

<1%

Publication

Assoue Kouakou Sylvestre Kouadio, Assa
Maxime Abbe, Gountoh Aristide Douagui,
Oscar Zahibo Onetie et al. "Comparative
Study of a Lithological Description by
Geoelectrical and Hydrogeological Drilling in a
Basement Environment: Site of the Jean
Lorougnon Guédé University in Daloa (CentreWest of the Ivory Coast)", Open Journal of
Modern Hydrology, 2025
Publication

<1%

Kent Anson Locke. "Impacts of land use/land cover on water quality: a contemporary review for researchers and policymakers",
Water Quality Research Journal, 2024

<1%

37

Segun Michael Ade Adelana. "Nitrate Health Effects", Wiley, 2004

<1%

Publication

Exclude quotes

On

Exclude matches

Off

Exclude bibliography On