Abstract

Nosocomial infections are a public health problem for patients, population, and health budgets.

This work is the result of a retrospective study of 840 patients hospitalized in the intensive care unit of the military hospital dur 24 month from 01 January 2017 to 01 January 2019.

The purpose of this study is to evaluate the incidence of nosocomial infections, study its bacteriological profile and the therapeutic modalities.

The inclusion criteria were every patient hospitalized in the surgical intensive care unit for more than 48 hours and that has developed a nosocomial infection.

A total of nosocomial infected patients was found among 97 surveyed patients.

The overall prevalence of infected patients was 21, 60% In our study the pneumonia is the first nosocomial infection (67,01%), followed by urinary tract infections (30,92%), catheter infection (20,61%) parietal infection (15,46%), bacteremia (13,40%) And meningit(1,03%) The isolated germs are essentially the GNB (67.11%) with Acinetobacter in the first raw (25,54%)

E. coli (15,32) K. pnemonia(14, 59%) and P. aerogénosa (8, 02%)

GPC (30.63%) essentially StaphylococcusAureus=21.89%

Polymicrobism is present in 15.88% of nosocomial infections.

The particular bad prognosis of the intensive care unit patients imply a early diagnosis and good management of antibiotherapy and patient's environment.

Then, only prevention permits a significant reduce of morbidity infection and improve the prognosis.

Introduction

Nosocomial infections, also called healthcare-associated infections (HAI), constitute a major public health issue. They are contracted during or following hospitalization and were neither present nor incubating at the time of admission. Their occurrence is particularly worrying in intensive care units, where the severity of pathologies and the frequency of invasive procedures considerably increase the risk of infection.

The study is part of this context and aims to evaluate the frequency, bacteriological profile, antibiotic resistance, and impact of nosocomial infections within the intensive care unit of the Avicenna Military Hospital.

The objectives were to determine: (1) the frequency of nosocomial infections, (2) the germs most often isolated, (3) their sensitivity profile to antibiotics, and (4) the main preventive measures applicable in the Moroccan hospital context.

Materials and Methods

This is a retrospective study of 840 patients hospitalized in the intensive care unit of the

Avicenna military hospital in Marrakech over a period of two years, from January 1, 2017 to

48 January 1, 2019.

Among these patients, only those hospitalized for more than 48 hours were included (449

patients). Records were analyzed using SPSS 20.0 software to determine the frequency,

distribution and characteristics of infections.

The diagnostic criteria were based on clinical signs (fever, cough, dyspnea, etc.), biological

(elevation of white blood cells, CRP, procalcitonin), radiological and bacteriological (positive

culture depending on the infected site).

The main infections studied were: pneumonia, urinary infections, catheter-related infections, surgical site infections, bacteremia and meningitis.

5758

56

55

- -

59

60

Results

61 62

- Of the 449 patients included, 97 developed a nosocomial infection, i.e. a frequency of 21.6%. The
- prevalence was higher in men (16.03%) than in women (5.56%), and in patients aged over 40
- 65 years (15.36%).
- The most affected pathologies were of neurosurgical and polytraumatic origin. The average
- length of stay was 10.75 days for infected patients, compared to 5.25 days for non-infected
- patients. The average time to onset of infection was 7.1 days.
- 69 The most frequently associated invasive devices were the gastric tube (61.8%), the urinary
- 70 catheter (58.7%), and mechanical ventilation (56.7%).
- Nosocomial pneumonia represented the majority of cases (67.0%), followed by urinary
- 72 infections (30.9%), catheter infections (20.6%), parietal infections (15.4%), and bacteremia
- 73 (13.4%).
- 74 The predominant germs were Gram-negative bacilli (67.1%), dominated by Acinetobacter
- baumannii (25.5%), Escherichia coli (15.3%) and Klebsiella pneumoniae (14.6%). Gram-positive
- Cocci represented 30.6%, dominated by Staphylococcus aureus (21.9%).

78 79

77

Figure 1: The main germs isolated in nosocomial infections

80 81

82

83

Germes	Nombre	Pourcentage(%)
Acinetobacter baumanii	35	25.54
Ecscherichia coli	21	15.32
Klebsiella pneumoniae	20	14.59
Pseudomanas aeruginosa	11	8.02
Proteus mirabilis	5	3.64
Staphylocoque aure 15	30	21.89
Enterocoque	9	6.56
Streptocoque pneu 10niae	3	2.18
Candida albicans	3	2.18

Figure 2: Table of the main germs isolated in nosocomial infections

84

85

86

87 88 89 Concerning bacterial resistance: 90 - Acinetobacter baumannii was resistant to imipenem in 100% of cases, to ciprofloxacin in 97%, 91 and to amikacin in 83%. 92 - Staphylococcus aureus showed high resistance to penicillin (93%) but remained sensitive to 93 glycopeptides (vancomycin and teicoplanin). 94 - Escherichia coli was resistant to amoxicillin (81%) and the amoxicillin-clavulanic acid 95 combination (62%). 96 - Klebsiella pneumoniae was resistant in 75% of cases to 3rd generation cephalosporins. 97 These resistance profiles confirm the seriousness of the phenomenon of antibiotic resistance in 98 Moroccan hospital environments.

The mortality of infected patients was significantly higher than that of non-infected patients, highlighting the major clinical impact of nosocomial infections.

100 101

99

102

103

104

124

125

Discussion

105 106 The results confirm that nosocomial infections constitute a major problem in intensive care, 107 both in terms of their frequency and their consequences. 108 Ventilator-acquired pneumonia (VAP) is the most feared infection, due to the duration of 109 ventilation, prolonged intubation and intensive care stay. Urinary infection, often linked to 110 bladder catheterization, and catheter infections complete this typical picture. 111 The bacteriological profile observed at the Avicenna Military Hospital is similar to that 112 described in other Moroccan and international intensive care units: predominance of 113 multi-resistant Gram-negative bacilli, notably Acinetobacter baumannii, Pseudomonas 114 aeruginosa and Klebsiella pneumoniae. 115 The strong resistance to Imipenems and cephalosporins reflects the intensive and sometimes 116 inappropriate use of antibiotics. The retained sensitivity to colistin underlines its role of last 117 resort. 118 The study also highlights the role of invasive devices as major risk factors. Prolonged use of 119 probes and catheters promotes bacterial colonization and the formation of biofilms. Hygiene 120 measures and aseptic protocols therefore appear essential. 121 Finally, the average extension of stay of more than five days among infected patients illustrates 122 the economic and organizational impact of these infections on hospital structures. 123

126	
127 128	
129	Prevention
130 131 132 133	The additional cost of nosocomial infections mainly results from prolonged stay, increased consumption of antibiotics, and the need for additional care. Beyond the economic impact, they represent a major cause of morbidity and avoidable mortality.
134	Prevention is based on several axes:
135	- Rigorous compliance with hand hygiene rules (hydroalcoholic solution).
136	- Continuous epidemiological surveillance and systematic reporting of cases.
137	- Rational use of invasive devices (minimum duration, strict asepsis).
138	- Training of healthcare personnel in the prevention of HAIs.
139	- Reasoned prescription of antibiotics and adaptation to the antibiogram.
140	The author underlines the importance of the culture of healthcare safety within medical and
141 142 143 144	paramedical teams.
145	
146	Conclusion
147	
148	This study highlights the high prevalence of nosocomial infections in the intensive care unit of
149	the Avicenna military hospital in Marrakech. The most common germs are dominated by multi-
150	resistant Gram-negative bacilli, mainly Acinetobacter Baumannii, Escherichia coli and Klebsiella
151	pneumoniae.
152	Growing resistance to antibiotics poses a serious threat to the care of critical patients.

153	A strict prevention policy, better hospital hygiene and rational use of antibiotics are
154	essential to reduce this scourge.
155	
156 157 158	Compliance with ethical standards:
159	Disclosure of conflict of interest
160	All the authors declare that they have no conflict of interest.
161	Statement of informed consent
162	Informed consent was obtained from all individual participants included in the study
163 164 165	Bibliography:
166	1. Raisin.
167	a national program early warning investigation and surveillance ofhealthcare
168	associated infection in France.
169 170	s.l.: Descenlos JC.RAISIN working group.eurosurveil, 2009;. 14(46)pii:19408.
171	2. Kaoutar B, july C,l'Herite au F,Barbut F,Robert J,Denis M,et al.
172	Nosocomial infections and hospital mortality:a multicenter epidemiolo-
173	gy study. J Hosp infect. 2004 ;. 58:268–75.
174	gy stady. 5 1103p in rect. 200 1 ;1. 30.200 7 5.
175	3. Abesaid D, Read I,Umphrey J et al.
176	infusion therapy team and dressing changes of central venous ca-
177	theters. s.l.: infect control Hosp Epidemiol, 1999;. 20:101–
178	105.
179	
180	4. William, Schaffner.
181	Les infections nosocomiales.
182	s.l. : CECIL Traité de médecine interne, 1ère édition française. ch : 267. P 1548-
183	1555.
184	
185	5. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for
186	Nosocomial infections, 1988. s.l.: Am J Infect Control, 1988;. 16(3):128-140.

188	6. Guidelines for the management of adults with hospital-
189	acquired, ventilator-associated, and healthcare-associated pneumonia.
190	s.l.: Am J Respir Crit Care Med, 2005. 171:388-416.
191	
192	7. Cohen J, Brun-Buisson C, Torres A, Jorgensen J.
193	Diagnosis of infection in sepsis : an evidence-based
194	review. s.l.: Crit Care Med, 2004;. 32: S466-S494.
195	
196	8. Marcowicz P, Wolff M, Djedaini K, Cohen Y, Chastre J, Delclaux C, Merrer
197	J,Herman b, Veber B, Fontaine A, Dreyfuss D.
198	Multicenter prospective study of ventilator-associated pneumonia during acute
199	respiratory distress syndrome.Incidence, prognosis, and risk factors.
200	s.l.: ARDS Study Group. Am J Respir Crit Care Med, 2000. 161:1942-8.
201	
202	9. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH.
203	Clinical importance of delays in the initiation of appropriate antibiotic treatment
204	for ventilator-associated pneumonia. s.l.: Chest, 2002. 122:262-8.
205	
206	10. Fagon JY, Chastre J, Wolff M, Gervais C, Parer-Aubas S, Stephan F, Simi-
207	lowski T, Mercat A, Diehl JL, Sollet JP, Tenaillon A.
208	Invasive and noninvasive strategies for management of suspected ventilator-
209	associated pneumonia. Arandomized trial.
210	s.l. : Ann Intern Med, 2000. 132:621-30
211	
212	11. Torres A, el -Ebiary M, Padro L, Gonzalez J, de la Bellacasa JP, Ramirez J,
213	Xaubet A, Ferrer M, Rodriguez-Roisin R.
214	validation of different techniques for the diagnosis of ventilator-associated
215	pneumonia. Comparison with immediate post mortem pulmonary biopsy. s.l. :
216	Am J RespirCrit Care Med, 1994 ;. 149:324-31.
217	
218	12. RG, Wunderink.
219	Radiologic diagnosis of ventilator-associated
220	pneumonia. s.l. : Chest, 2000. 117:188 S-190 S-
221	136.
222	
	12 Fabragas N. Fivia C. Tarros A. El Ebiam, M. Bamainan I. da La Ballacasa I.B.
223 224	13. Fabregas N, Ewig S, Torres A, El Ebiary M, Ramirez J, de La Bellacasa JP,
44	Bauer T, Cabello H. Clinical diagnosis of ventilator associated pneumonia revi-

225	sited:comparative validation using immediate post mortem lung biopsies. S.I. :
226	Thorax, 1999;. 54:867-73.
227	
228	14. Timsit JF, Cheval C, Gachot B, Bruneel F, Wolff M, Carlet J, Regnier B.
229	Usefulness of a strategy base don bronchoscopy with direct examination of
230	bronchoalveolar lavage fluid in the initial antibiotic therapy of suspected venti-
231	lator - associated pneumonia
232	s.l. : Intensive Care Med, 2001;. 27:640-7.
233	
234	15. Wermert D, Marquette CH, Copin MC, Wallet F, Fraticelli A, Ramon P, Ton-
235	nel AB.
236	Influence of pulmonary bacteriology and histology on the yield of diagnostic
237	procedures in ventilator- acquired pneumonia.
238	s.l. : Am J Respir Crit Care Med, 1998;. 158:139–47.
239	16. Baker AM, Bowton DL, Haponik EF.
240	Decision making in nosocomial pneumonia. An analytic approach to the inter-
241	pretation of quantitative bronchoscopic cultures. s.l.: Chest, 1995;. 107: 85-
242	95.
243	
244	17. Souweine B, Veber B, Bedos JP, Gachot B, Dombret MC, Regnier B, Wolff M.
245	diagnoctic accuracy of protected specimen brush and bronchoalveolar lavage in
246	nosocomial pneumonia: impact of previous antimicrobial treatments. s.l. : Crit
247	Care Med, 1988. 26:236-44.
248	
249	18. Bouchon A, Facchetti F, Weigand MA, Colonna M.
250	TREM-1 amplifies inflammation and is a crucial mediator of septic shock.
251	s.l.: Nature, 2001;. 410:1103-7.
252	
253	19. Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE.
254	Soluble triggering receptor expressed on myeloid cells and the diagnosis of
255	pneumonia. s.l.: N Engl J Med, 2004;. 350:451-8.
256	pricamoma. 3m. : W Engry Mea, 2001,: 330: 131 0.
	20 Louis CE Cuário V Cambaa A Travillas II Avad CB Barrand M Cibart C
257	20. Luyt CE, Guérin V, Combes A, Trouillet JL, Ayed SB, Bernard M, Gibert C,
258	Chastre J. Procedeitenin Kinetics as a prognestic marker of ventilated associated provi
259	Procalcitonin Kinetics as a prognostic marker of ventilated associated pneu-
260	monia . s.l. : Am J Respir Crit Care Med, 2005;. 171:48–53.
261	21. Carrit B. Langua A. Maina B.
262	21. Gauzit R, Lepape A, Moine P.

264	consensus du 27 Novembre 2002.
265	s.l. : Annales Françaises d'Anesthésie et de Réanimation, 2004 ;. 23 : 3-5.
266	
267	22. Crowe MJ, Cooke EM.
268	Review of case definitions for nosocomial infection towards a consensus.
269	s.l.: Presentation by the Nosocomial infection Surveillance Unit (NISU) to the
270	hospital infection liaison group, subcommittee of the federation of infection
271	societies (FIS).J Hosp infect, 1998. 39: 3-11.
272	
273	23. Garner JS, JaRVIS WR, Emori TG, Horan TC, Hughes JM. CDC definitions for
274	nosocomial infections.
275	s.l. : Am J Infect Control, 1988. 16 : 128-40.
276	24. Définitions Standardisées des infections nosocomiales.
277	s.l. : C-CLIN Paris-Nord, 1999.
278	
279	25. Edmond MB, Wallance SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP.
280	Nosocomial bloodstream infections in US hospitals: A 3 year
281	analysis. s.l. : Clin Infect Dis, 1999. 29: 239-44.
282	

263

Infections urinaires nosocomiales en réanimation: A propos de la Conférence de