Time-Dependent Fit Adaptation of Two Aligner Materials: A Scanning

Electron Microscopy Study

_	•	T	4	. 4
2	^	nc	tra	СT
.)	$\overline{}$	11.7		L .L.

1

2

- 4 **Background:** The goal of the study is to analyze and differentiate the changes in adaptation
- 5 of aligner at attachment along with time of two different aligner materials after intra-oral
- 6 usage: Polyethylene terephthalate-Glycol andCo-polyester.
- 7 Materials and methods: A total of 20 aligner appliances (N=20) were studied, comprising OF
- 8 10 Polyethylene Terephthalate Glycol (PET-G) aligners and 10 Co-polyester aligners. These
- 9 aligners were evaluated at two time points: just before use (T₀) and after 15 days (T₁₅) of
- 10 intraoral usage. Each aligner was used for a 15-day period and then adapted to its
- 11 corresponding 3D-printed resin model. The aligners were sectioned bucco-lingually at the
- ellipsoid attachment area, and five samples per material per time point (n = 5) were analyzed.
- Scanning Electron Microscopy (SEM) was employed to measure gap width changes at five
- 14 distinct levels within the attachment region. The mean values of gap width changes were
- statistically analyzed to compare the fit between PET-G and Co-polyester aligners.
- **Results:** Statistically significant differences (P < 0.005) in fit of aligner were observed at
- given time points: co-polyester exhibited the smallest gap at T0, while PET-G showed the
- largest. Likewise, at various attachment levels, significant differences were found at T15 with
- 19 the smallest gaps occurring at all the levels except at incisal and gingival end of ellipsoid
- 20 attachment.
- 21 **Conclusion:** Co-polyester showed superior properties in the initial and final fit of the aligner
- 22 than that of PET-G. More dimensional changes were observed in PET-Gwhen compared to
- 23 Co-polyester due to which non uniform change in gap width is seen after intra-oral usage.

25 Keywords:

24

27

28

26 Attachment, adaptational fit, co-polyester, gap width, polyethylene terephthalate-glycol.

INTRODUCTION

- 29 Clear aligner therapy (CAT) is increasingly recognized as a key treatment option in
- orthodontics, particularly for adult patients¹. These aligners are crafted from thermoplastic
- 31 materials, such as polyurethane, polyurethane terephthalate-glucol, polyethelene terephthalate
- 32 copolyester etcand involves a series of personalized, removable set of aligners designed to

software. Recent advancements in attachment designs, materials, and auxiliary devices have greatly improved the biomechanics and reliability of treatment outcomes^{2,3,4}. Research shows that clear aligners can effectively manage various orthodontic issues, including crowding⁵, proclination⁶, distalization⁷, open bite and deep bite⁸. However, more complex cases involving deep bites, rotations, and torque adjustments require careful planning and effective anchorage for successfultreatment. Thematerial composition of clear aligners is a critical factor in assessing their effectiveness for predictable outcomes. Clear aligners are primarily made from materials, which may exhibit aging changes within the oral environment. Furthermore, achieving the desired tooth movement depends significantly on the aligner's fit on both the anchorage unit and the teeth involved in the treatment. 9,10,11 In orthodontics, thermoplastic appliances have a longstanding legacy, and aligner therapy has more recently gained traction as a compelling option across a variety of clinical scenarios. Contemporary studies underscore that aligners offer not only superior aesthetics but also reliable effectiveness in aligning and straightening dental arches, often matching the outcomes achieved by fixed orthodontic devices. Innovations in aligner materials, force delivery systems, and the sequence of tooth correction have substantially improved in treating complex malocclusionsenhancing predictability and precision.¹² Clear aligners require consistent full-time wear to facilitate effective tooth movement. Initially, a minimum of 22 hours per day for two weeks was recommended, but this duration often led to patient fatigue and compliance issues, resulting in suboptimal outcomes. As a result, strategies to improve compliance and make treatment more manageable have become a focus in orthodontics. 3,13,14 This study concentrates on analyzingthe fit of aligners on teeth and to investigate any differences in fit between two distinct aligner materials. By assessing these factors, we hope to contribute valuable insights into the effectiveness and clinical application of different aligner technologies in orthodontic practice.

gradually shift the teeth based on a precise treatment plan created using advanced 3D imaging

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

\mathbf{AII}	M ()F'	THE	ST	ΠD	${f Y}$
		<i>,</i>		.,.	\mathbf{U}	

- This study aims to investigate how two different aligner materials affect the adaptation of
- 68 aligner fit over time at the attachment site, comparing measurements before and after
- 69 intraoral use.

70 MATERIALS AND METHODS.

- 71 Materials
- 72 PET-G- 1mm thickness
- 73 Co-polyester- 1 mm thickness
- 74 Both these materials have been compared in this study.
- 75 <u>Armamentarium</u>
- 76 1. Panda intraoral scannerFreqty Technology
- 77 2. Phrozen 4K 3D printer
- 78 3. Chennai Metco BAINCUT LSS cutting machine
- 79 4. Biostar thermoforming machine
- 5. Scanning electron microscopy setup with JSM IT 300 SOFTWARE

81

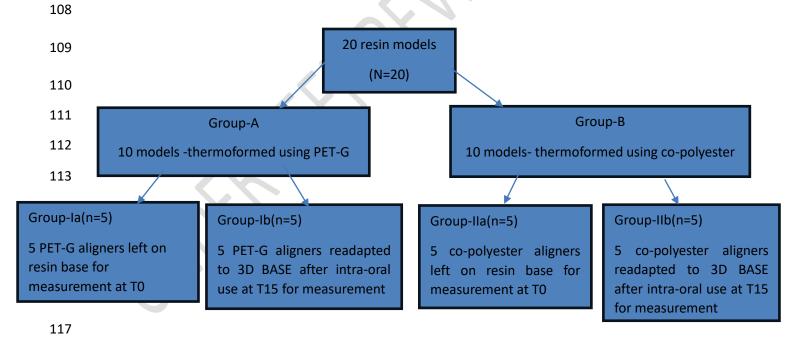
82

Study Design

- 83 This ex vivo experimental study aimed to evaluate the adaptational fit of two aligner
- 84 materials—Polyethylene Terephthalate Glycol (PETG) and Copolyester—before and after
- 85 intraoral usage. The null hypothesis proposed that there would be no statistically significant
- difference in aligner–attachment fit between the two materials or over time.

87

88


Sample Distribution

- 90 A total of 20 aligner appliances were evaluated, comprising 10 PETG and 10 Copolyester
- 91 samples. Each material was studied at two time points: before intraoral use (T₀) and
- 92 immediately after 15 days of wear (T_{15}) . Thus, each group consisted of five aligners (n = 5)
- 93 per condition; total N = 20).

Sample Preparation and Clinical Procedure

STL files were generated from intraoral scans of a patient with Class I malocclusion requiring minimal tooth movement, such as cases of mild spacing obtained using the Panda Scanner (Freqty Technology). Accompanying records included digital photographs, orthopantomograms, and lateral cephalometric radiographs. Virtual setups were designed under the supervision of an experienced clear aligner specialist to ensure uniformity across both materials.

A total of 20 resin models were 3D-printed from the STL files using a Phrozen printer (Fig. 1) and thoroughly cleaned prior to use. Ten models were allocated into 2 groups(group-A and group-B). Group-A is thermoformed with PET-G material and group-B thermoformed with co-polyester aligner sheets. Group-A is again sub-divided into group-Iaand group-Ib likewise group-B is subdivided into group-IIa and group-IIb. Where Ia and IIa are used for analysing gap width at To time point and Ib and IIb are used for analysing gap width at To time point.

Initial aligners were designed without active force application to minimize shape distortion and were fitted onto the corresponding resin models (Fig. 2). Each model was mounted on an

aluminum stub and sectioned labio-lingually through the central incisor region containing an ellipsoid attachment using a low-speed cutting machine (BAINCUT LSS, Chennai Metco) under continuous water irrigation to prevent thermal distortion (Fig. 3).

Scanning Electron Microscopy (SEM)

Sectioned samples were oriented perpendicular to the long axis of the central incisors. To minimize electrostatic charging and enhance image clarity, each specimen was sputter-coated with a 10 nm layer of 99% pure gold using a Cressington 208HR High-Resolution Sputter Coater (Watford, UK) (Fig. 4). Imaging was performed using a JSM IT 300 high-performance SEM (JEOL, Japan) (fig. 5) equipped with an energy-dispersive X-ray (EDX) analyzer, operated at 15 kV accelerating voltage and 10 mm working distance, with a resolution of 3.0 nm. Representative micrographs were obtained at 500 µm magnification (Fig. 6).

Measurement Protocol

Micrometric measurements were taken using the JSM IT 300 SEM software on buccolingually sectioned micrographs. Adaptational changes in aligner fit, specifically the microscopic gap between the aligner and the ellipsoid attachment, were monitored at various attachment levels and time intervals (To and T15). A total of fifty measurements at the micrometer level were collected and subjected to analysis, providing a comprehensive assessment of the distances at each specified level.

As shown in figure 7., Level 1 represents Incisal end of the attachment, level 2 as Incisal1/4th of the attachment, level 3 as Labial middle of the attachment, level 4 as Gingival 1/4th of the attachment, level 5 as Gingival end of the attachment.

Statistical Analysis

For statistical analysis, the data enteredinto a Microsoft Excel spreadsheet were analysed using IBM SPSS software version 25. The Mann-Whitney U test was applied for inter-group

comparisons. A p-value of less than 0.05 was considered statistically significant for all analyses.

RESULTS

from 0.041 to 0.043.

- Table 1 and Graph 1 show the changes in mean aligner fit at different levels of the attachment in the PET-Ggroup from T₀to T₁₅. The fit at the incisal end decreased from 419.42 to 397.20, and at the incisal one-fourth, it dropped from 345.58 to 313.24. A more significant reduction was seen at the middle of the attachment, where the fit fell from 261.98 to 10.60. In contrast, the gingival one-fourth rose from 334.18 to 567.28 and the gingival end showed an increase from 99.60 to 413.84. All these changes were statistically significant, with p-values ranging
 - Table 2 and Graph 2 show the intra-group comparison of mean aligner fit at different levels of the attachment in the Co-polyestergroup from T_0 to T_{15} . At the incisal end, the mean fit increased from 274.30 to 623.80, and at the incisal one-fourth, it rose from 144.52 to 276.00. The middle of the attachment also showed an increase from 64.82 to 130.36, while theat the gingival one-fourth, the fit showed only a slight increase from 223.14 to 223.18, which was not statistically significant (p = 0.50). However, gingival end improved from 19.56 to 113.90. All these changes were statistically significant, with p-values ranging from 0.041 to 0.043.
 - Table 3 and Graph 3 show the inter-group comparison of mean aligner fit at different levels of the attachment at T_0 . At the incisal end, the co-polyester group had a higher mean fit (274.30) compared to the PET-G group (419.42), which was statistically significant (p=0.009). Similarly, at the incisal one-fourth, the mean fit was 345.58 in the PET-Ggroup and 144.52 in the Co-polyester group (p=0.010). At the middle of the attachment, the PET-Ggroup showed a mean of 261.98, significantly greater than the Co-polyester group's 64.82 (p=0.009). At the gingival one-fourth region, the copolyester group demonstrated a significantly higher mean fit (223.14) compared to the Co-polyester group (334.18) (p=0.010). Additionally, gingival margin the PET-Ggroup exhibited a mean fit of 99.60, whereas the Co-polyester group showed a mean fit of 19.56 (p=0.009).

Table 4 and Graph 4 present the inter-group comparison of mean aligner fit at different levels of the attachment at T_{15} . At the incisal end, the Co-polyester group showed a higher mean fit (397.20) compared to the PET-Ggroup (623.80), which was statistically significant (p = 0.008). At the incisal one-fourth, the co-polyester had a slightly higher fit (276.00) than the PET-G group (313.24), also statistically significant (p = 0.009). In the middle of the attachment, the PET-G group had a greater mean fit (10.60) compared to the PET-Ggroup (130.36) (p = 0.009). At the gingival one-fourth, the co-polyester group again showed a higher fit (223.18) compared to the PET-G group (567.28), which was statistically significant (p = 0.009). Lastly, gingival end, the co-polyester group (113.90) had a much higher fit than the PET-G group (413.80), with a significant difference (p = 0.007).

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

181

182

183

184

185

186

187

188

189

190

DISCUSSION

This study aims to investigate how two different aligner materials affect the adaptation of aligner fit over time at the attachment site, comparing measurements before and after intraoral use. The attachment on the modelis ellipsoid which is most commonly used for space closure. Multiple factors must be considered when evaluating the efficiency and effectiveness of aligners 15,16. According to Fang et al., the mechanical characteristics of thermoplastic materials showed no statistically or clinically significant changes after intraoral use¹⁷. Gaining insight into the biomechanical force dynamics between aligners and attachments is key to enhancing aligner performance. The type of interaction whether passive oractive, significantly influences treatment outcomes. Fry et al. conducted a clinical trial with 10 moderately complex cases to evaluate the effectiveness of three different aligner change protocolsfor 2 weeks and 1 week combined with AcceleDent. After 12 weeks, all groups demonstrated comparable aligner fit, indicating that, in the short term, the frequency of aligner changes may not significantly influence fit¹⁸. Conversely, Linjawi et al. (2022) demonstrated that a 15-day wear period resulted in better adaptation and the least width between the attachment and aligner, as observed through scanning electron microscopy (SEM)¹. Their study showed that while width remained relatively consistent across days 3, 7, and 10, it varied depending on the location of attachment.

Comparison of Initial Fit (T_0)

At baseline (T₀), the Co-polyester aligners exhibited a smaller mean gap width across most attachment levels compared to the PET-G aligners indicating a superior initial fit. This could

be attributed to the inherent material properties of Co-polyesterincluding higher rigidity and better thermoforming accuracy, which allow closer adaptation to the attachment surfaces. PET-Gby contrast, possesses greater elasticity and lower form stability upon thermoforming which may result in slightly increased internal stress relaxation and dimensional deviations following fabrication. These findings align with previous studies suggesting that Co-polyester-based aligners demonstrate enhanced mechanical strength and better reproduction of fine surface details following thermoforming compared to PET-G-based materials 19,20. The superior adaptation of Co-polyester at T0 thus supports its suitability for applications requiring precise attachment engagement and effective force transmission during the early phase of treatment.

Effect of Intraoral Usage (T₁₅)

After 15 days of intraoral usage (T_{15}) , both materials exhibited notable alterations in fit, though the direction and magnitude of changes differed between groups. PET-G aligners demonstrated a nonuniform variation in gap width, with a reduction in fit at the incisal and middle levels but an increase at the gingival ends. This irregular pattern suggests localized deformation and potential relaxation of the material due to cyclic thermal and mechanical stresses encountered intraorally such as temperature fluctuations, salivary moisture absorption, and masticatory forces.

Conversely, Co-polyester aligners exhibited more uniform dimensional changes with a general increase in gap width across most attachment levels. Although the increase indicates slight expansion or stress relaxation, the extent of change was smaller and more consistent compared to PET-G. The superior dimensional stability of Co-polyester could be related to its higher glass transition temperature (Tg) and reduced water absorption rate, which minimize distortion during wear. These results corroborate previous investigations that highlighted Co-polyester's improved resistance to deformation under oral conditions 1^{10,21}.

LIMITATIONS

- The repeatability of micrometric measurements has not been done.
- Smaller sample size.

CONCLUSION

- ❖ The PET-G aligners showed a significant decrease in fit at the incisal and middle regions from T₀to T₁₅, while the gingival regions exhibited a marked increase in fit, indicating material deformation or relaxation leading to differential adaptation over time.
- ❖ The co-polyester aligners demonstrated a significant improvement in fit at most attachment levels over the 15-day period, suggesting better dimensional stability and consistent adaptation, except at the gingival one-fourth where the change was not significant.
- ❖ At T₀, the co-polyester aligners exhibited superior fit compared to the PET-G aligners at all attachment levels, indicating better initial adaptation of the co-polyester material immediately after fabrication.
- ❖ By Day 15, PET-G aligners showed higher fit values in the incisal and middle regions, while co-polyester aligners maintained better fit at the gingival areas, reflecting materialdependent changes in aligner adaptation over time.

272 **REFERENCES**

- 1. Linjawi AI, Abushal AM. Adaptational changes in clear aligner fit with time. Angle Orthod. 2022 Mar 1;92(2):220-225.
- 2. Hennessy J, Garvey T, Al-Awadhi EA. A randomized clinical trial comparing
- mandibular incisor proclination produced by fixed labial appliances and clear
- 277 aligners. Angle Orthod. 2016;86(5):706–712.
- 3. Ravera S, Castroflorio T, Garino F, Daher S, Cugliari G, Deregibus A. Maxillary
- 279 molardistalization with aligners in adult patients: a multicenter retrospective study.
- 280 Prog Orthod. 2016;17:12–21.
- 4. Gerard Bradley T, Teske L, Eliades G, Zinelis S, Eliades T. Do the mechanical and
- chemical properties of Invisalign TM appliances change after use? A retrieval
- analysis. Eur J Orthod. 2016;38(1):27–31.
- 5. Krieger E, Seiferth J, Saric I. Jung B, Wehrbein H. Accuracy of invisalignt treatments
- in the anterior tooth region. J OrofacOrthop. 2011;72(2):141–149
- 6. Hennessy J, Garvey T, Al-Awadhi EA. A randomized clinical trial comparing
- mandibular incisor proclination produced by fixed labial appliances and clear
- aligners. Angle Orthod. 2016;86(5):706–712.
- 7. Ravera S, Castroflorio T, Garino F, Daher S, Cugliari G, Deregibus A. Maxillary
- 290 molar distalization with aligners in adult patients: a multicenter retrospective study.
- 291 ProgOrthod. 2016;17:12–21.
- 8. Fontaine-Sylvestre C. Predictability of Deep Overbite Correction Using Invisalign
- [master's thesis.] Winnipeg, Manitoba, Canada: University of Manitoba; 2019.
- 9. Schuster S, Eliades G, Zinelis S, Eliades T, Bradley TG. Structural conformation and
- leaching from in vitro aged and retrieved Invisalign appliances. Am J
- 296 OrthodDentofacOrthop 2004;126(6):725–728.
- 10. Mantovani E, Castroflorio E, Rossini G, et al. Scanning electron microscopy
- evaluation of aligner fit on teeth. Angle Orthod. 2018;88(5):596–601.
- 299 11. Pazzini L, Cerroni L, Pasquantonio G, et al. Mechanical properties of "two
- generations" of teeth aligners: change analysis during oral permanence. Dent Mater.
- 301 2018;37(5): 835–842.

303

302 12. Joffe L. Invisalign: early experiences. J Orthod. 2003;30(4): 348–352.

- 13. Al-Nadawi M, Kravitz ND, Hansa I, Makki L, Ferguson DJ, Vaid NR. Effect of clear aligner wear protocol on the efficacy of tooth movement. Angle Orthod. 2021 Mar 1;91(2):157-163.
- 14. Invisalign, "How Invisalign works?", Align Technology, Inc. Santa Clara, CA, USA,
 Available at: https://www.invisalign.com.sa/en/how-invisalign-works. Accessed
 April 10, 2021.
- 310 15. Grunheid T, Loh C, Larson BE. How accurate is Invisalign in "nonextraction cases?

 Are predicted tooth positions achieved?. Angle Orthod. 2017;87(6):809–815.
- 16. Hennessy J, Garvey T, Al-Awadhi EA. A randomized clinical trial comparing mandibular incisor proclination produced by fixed labial appliances and clear aligners. Angle Orthod. 2016;86(5):706–712.
- 17. Fang D, Li F, Zhang Y, Bai Y, Wu BM. Changes in mechanical properties, surface morphology, structure, and composition of Invisalign material in the oral environment. Am J Orthod Dentofacial Orthop. 2020 Jun;157(6):745-753.
- 318 18. Fry R. Weekly aligner changes to improve Invisalign treatment efficiency. J Clin Orthod . 2017;51(12):786–791.
- 19. Kwon J-S, Lee Y-K, Lim B-S, Lim Y-K. Force delivery properties of thermoplastic orthodontic materials. American Journal of Orthodontics and Dentofacial Orthopedics.2008;133(2):228-234.
- 20. Ryokawa H, Miyazaki Y, Fujishima A, Miyazaki T, Maki K. The mechanical properties of dental thermoplastic materials in a simulated intraoral environment.

 Orthodontic Waves. 2006;65(2):64-72.
- 21. Eliades, T., & Athanasiou, A. E. (2002). In vivo aging of orthodontic alloys: Implications for corrosion potential, nickel release, and biocompatibility. The Angle Orthodontist, 72(3), 222–237.