Diagnosis and characterization of the bacterial flora of mango (Mangifera indica L.) in western Senegal.

3 4

5

1

2

Abstract

- Fungal and bacterial diseases are one of the major constraints to mango productivity and fruit 6 7 quality. In Senegal, data on the diversity of pathogenic bacteria associated with mango remain 8 limited. To address this gap, field surveys were conducted in orchards in the Niayes production area, during where symptomatic leaves and twigs were collected. The isolates 9 were subjected to morphological and biochemical characterization, followed by molecular 10 identification through PCR and 16S rDNA sequence analysis. Seven bacterial genera were 11 detected: Stenotrophomonas, Pseudomonas, Bacillus, Ochrobactrum, Exiguobacterium, 12 Burkholderia and Aeromonas. Several of these genera include known plant pathogens. The 13 most frequent were Stenotrophomonas and Pseudomonas, representing 35.29% and 23.53% 14 15 of the isolates, respectively. This study provides the first baseline dataset on the bacterial flora associated with mango in western Senegal, providing essential information for understanding 16 and managing bacterial diseases. 17
- 18 Keywords: Mango, phytopathogenic bacteria, biochemical and molecular characterization,19 Senegal.

Introduction

- 21 The mango (Mangifera indica L.), which has been improved through top-grafting and the
- 22 introduction of American cultivars, makes a significant contribution to local food security and
- employment in Senegal. It is currently the leading export product in the fruit and vegetable
- sector, accounting for 47% of national fruit production (IPAR, 2023).
- 25 Production is concentrated in the regions of Dakar, Thiès, Saint-Louis, Fatick, Kolda,
- 26 Ziguinchor and Sédhiou (Diedhiou et al., 2014), with an estimated annual yield of 125,000–
- 27 150,000 tonnes over a six-month harvest season, the longest in West Africa. However, a
- decline of 7.03% was recorded in 2020 due to the impact of the pandemic (IPAR, 2023). Prior
- 29 to this crisis, exports had grown by an average of 20% each year for 16 consecutive seasons,
- with exports reaching 16,285 tons in 2022 (ASEPEX, 2016; IPAR, 2023). Although exports,
- 31 mainly from the Niayes and Casamance zones (4%), represent only 10% of national

- 32 production, Senegal has become the second-largest exporter of West African mangoes after
- 33 Côte d'Ivoire.
- 34 However, mango export potential is limited by the perishable nature of the fruit and
- 35 quarantine organisms such as fruit flies, fungi and bacteria. Fruit fly (*Bactrocera invadens*)
- infestations result in losses of 30–50% in the Niayes area and up to 80% in Casamance
- 37 (Ndiaye et al., 2015). Anthracnose remains responsible for nearly 90% of post-harvest
- damage in southern Senegal (Diedhiou et al., 2014). In contrast, the contribution of bacterial
- 39 diseases remains poorly documented in Senegal, with no published studies characterizing
- 40 their diversity or impact.
- 41 Mango bacterial black spot (MBBS) is the most widely recognized bacterial disease of
- mango. It is associated with several pathogens, including *Bacillus mangiferae* (Doidge, 1915);
- 43 Pseudomonas mangiferae-indicae (Patel et al., 1948; Daniel et al., 1975); Xanthomonas citri
- 44 pv. mangiferaeindicae (Sanahuja et al., 2016; Zombré et al., 2016) and the most widespread
- pathogen worldwide, Xanthomonas campestris pv. mangiferaeindicae (Pruvost et al., 2005).
- 46 Under favorable climatic conditions, MBBS causes premature leaf and fruit abscission fruit
- cracking resultingin fruit losses of up to 85% (Prakash & Misra, 1992).
- 48 However, MBBS only emerged in West Africa, in the early 2010s. X. citri pv.
- 49 mangiferaeindicae has been reported in several neighboring countries, in Burkina Faso, Côte
- d'Ivoire, Mali, Ghana, Benin, and Togo (Pruvost et al., 2011, 2012, 2014; Zombré et al., 2015,
- 51 2016; Honger et al., 2021). There is therefore concern that the pathogen may have entered the
- 52 country, especially since bacterial disease symptoms have been observed in local orchards.
- Regional pest management guides (PIP-COLEACP, 2022) identify MBBS as an emerging
- 54 risk, underscoring the need for enhanced surveillance. Therefore, effective diagnostic of
- 55 pathogenic bacteria in mango orchards is essential to mitigate damage and reinforce national
- surveillance and regional coordination.
- 57 This study forms part of ongoing efforts to strengthenmango disease management and
- 58 specially aims to i) inventory bacterial pathogens associated with mango in the Niayes
- 59 production area andii) characterize bacteria isolates using morphological, biochemical, and
- 60 molecular tools, including PCR and 16S rDNA sequencing.

Materials and methods

Sampling:

61

- Field surveys were conducted in sixteen orchards located in Séssène, Notto Diobass, and
- 64 Taïba Ndiaye in the Thiès region (Figure 1). Symptomatic vegetative organs (leaves and
- 65 twigs) were collected from ten randomly selected mango trees in each orchard. The samples
- were then transported to the Laboratory of Phytochemistry and Plant Protection (LPPV) of the
- 67 Department of Plant Biology at Cheikh Anta Diop University of Dakar (UCAD).

Isolation

68

77

- Leaf and twig samples were surface-sterilizedwith 70% ethanol and then rinsed three times
- 70 with sterile distilled water. The explantswere macerated in a 0.85% NaCl solution and
- incubated for 2 hours. Serial dilutions were prepared up to 10^{-4} , and $100\mu l$ of each dilution
- 72 (three replicates) were plated on nutrient agar and incubated at 37°C for 24-28 hrs. Colonies
- with distinct morphologies were subcultured until pure isolates were obtained.
- 74 The isolates obtained in the various orchards are coded by assigning a number preceded by
- 75 the letter "S". Gram staining was performed to differentiate between Gram-positive (G+) and
- 76 Gram-negative (G-) bacteria.

Morphological, biochemical, and molecular characterization

- 78 The isolates were characterized based on morphological traits (colony shape, color, margin,
- surface, elevation, etc.) and subjected to biochemical testsfollowing standard references (Tine,
- 80 1996; Borkar, 2017). Commercial identification kits (API 20^E and API 20^{NE}, BioMérieux)
- were also used, and the results were interpreted using APIweb software (BioMérieux, 2021).
- 82 Isolates DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega
- 83 Corporation, 2016). Universal primers targeting the 16S rRNA gene (Weisburg et al., 1991)
- were used for PCR amplification:
- 85 fD1: 5'- AGAGTTTGATCCTGGCTCAG 3'
- 86 rD1: 5'AAGCTTAAGGAGGTGATCCAGCC-3'
- 87 The composition of the PCR reaction mixture with the volumes of each component is
- presented in Table 1. For each sample, 3 µl of diluted DNA (1/50) was added to the mixture
- 89 for a final reaction volume of 25 μl per tube. Amplification was performed in a thermocycler
- under the following program: an initial denaturation at 96°C for 3 min, 30 cycles consisting of
- 91 denaturation at 95°C for 30 s, annealing at 57°C for 30 s, and extension at 72°C for 40 s;
- 92 followed by a final elongation step at 72°C for 3 min.

- 93 The amplicons obtained were visualized on agarose gels and then sent for sequencing to
- 94 Inqaba Biotec (Pretoria, South Africa). The sequences were edited using BioEdit and
- 95 compared to NCBI (National Centre for Biotechnology Information) reference databases
- 96 using BLASTn (Basic Local Alignment Search Tool).

Results

97

104

119

- 98 The isolates obtained from the surveyed orchards are summarized in Table 2. A total of
- 99 nineteen isolates were obtained, of which fourteen were from Séssène and five were from
- Taïba Ndiaye, whileno isolates were recovered from Notto Diobass. Older orchards recorded
- more isolates than younger ones, with VS2a (8 isolates) and VT1A (3 isolates) recorded the
- highest number of isolates. Most of the isolates originated from leaves (15), and four (4) were
- obtained from twigs.

Morphological and Biochemical Identification

- The bacterial isolates are bacilli and are immobile, with only isolate S2 forming chains.
- 106 Gram-negative (G⁻) bacteria represented 80% of the isolates.
- The results of carbohydrate and energy metabolism tests (Table 5) revealed similarities
- among several isolates regarding both morphology and biochemical traits. Based on these
- 109 characteristics, the 19 bacterial isolates were classified into 9 groups (G): G1 (S1, S11, S12),
- 110 G2 (S2), G3 (S3, S7, S8₁), G4 (S4, S9), G5 (S5, S10), G6 (S8₂), G7 (S14₁), G8 (S14₂), and
- 111 G9 (S13, S15, S16, S17).
- Among the nine groups, two isolates (S2 and S4) were subjected to identification using the
- Api 20^E, while seven isolates (S5, S81, S10, S11, S141 and S17) were identified using the Api
- 114 20^{NE}. The codes recorded from the Api results were interpreted using the Apiweb
- identification software. The identified bacteria are presented in Table 3, with a percentage of
- similarity of all species exceeding 85%. Identifications included *Lactobacillus delbrueckii*,
- 117 Klebsiella pneumoniaewith Api $20^{\rm E}$, Ochrobactrum spp., Burkholderia spp.,
- 118 Stenotrophomonas spp., Aeromonas spp., and Pseudomonas spp. with Api 20^{NE}.

Molecular Identification:

- After amplification, agarose gel electrophoresis showed bands ranging in size from 1,400 to
- 1,600 base pairs (Figure 2). No rDNA bands were detected in isolates S8₂ and S14.

- The sequences obtained from the PCR products were submitted to the NCBI reference
- database identified for BLASTn analysis. The results revealed various bacterial genera
- 124 commonly associated with plants and soil, including known plant pathogens, with
- similarities ranging from 88% to 98% (Table 4). The genera detected included
- 126 Stenotrophomonas (S1, S3, S8₁), S11, S12, and S13), Bacillus (S2), Ochrobactrum (S5, S6),
- 127 *Pseudomonas* (S15, S7, S14₁, S16, S17), and *Exiguobacterium* (S14₂).
- 128 Among the 14 isolates obtained from Séssène samples, species identified
- 129 includedStenotrophomonas maltophilia, Pseudomonas aeruginosa, Bacillus cereus,
- 130 Pseudomonas sp, and Exiguobacterium sp. In contrast, the five strains isolated from Taïba
- Ndiaye were identified as S. maltophilia, Ochrobactrum anthropi, and Burkholderia cepacia.
- The most prevalent genera in the orchards were Stenotrophomonas and Pseudomonas with
- frequencies of 35.29% and 23.53%, respectively.
- The molecular analysis confirmed the presence of S. maltophilia, P. aeruginosa, and O.
- anthropi, B. cepacia, identified with the Api 20^{NE}. It also revealed the presence of additional
- genera: Bacillus, Burkholderia, Pseudomonas and Exiguobacterium.

Discussion

- Mango (Mangifera indica L.), cultivated worldwide, ais threatened by several destructive
- 139 fungal and bacterial diseases that reduce fruit production and quality. In most orchards
- surveyed in the Niayes area, symptoms similar to bacterial black spot described in previous
- studies have been observed(Gagnevin and Pruvost, 2001, Ah-you et al., 2007; PIP-
- 142 COLEACP, 2013).
- However, the observed symptoms are nonspecific and may hinder definitive identification of
- the causal agent. Several bacteria species including *Bacillus mangiferae* (Doidge, 1915),
- 145 Pseudomonas mangifera indicae (Patel et al., 1948; Daniel et al., 1975), Xanthomonas citri
- 146 pv. mangiferaeindicae (Sanahuja et al., 2016; Zombré et al., 2016) and Xanthomonas
- campestris pv. mangiferaeindicae (Pruvost et al., 2005) have been reported to inducesimilar
- symptoms. Consequently, universal primers were used for 16S rDNA amplification instead of
- species-specific primers.
- Biochemical and molecular analysis identified isolates belonging to the genera *Pseudomonas*,
- 151 Stenotrophomonas, Bacillus, Ochrobactrum, Exiguobacterium, and Burkholderia. These

- findings are consistent with those of Khan et al. (2014), who additionally identified *Erwinia*,
- 153 Pantoea, Acinetobacter and Enterobacter, asplant pathogenic bacteria.
- 154 The molecular analysis corroborated the Api 20^{NE} identification of several species and
- revealed the identification of new genera. However, the limitation of 16S rDNA analysis were
- evident, as several isolates exhibited similarity with multiple strains within the same genus.
- 157 This is the case for isolate S2, which exhibited 97% similar to *Bacilluscereus*, *B. thuringiensis*
- and B. anthracis; while S15 showed 91% similarity to multiple Pseudomonas
- strains(Pseudomonas sp, P. trivialis, P. poae, P. fluorescens and P. simiae). In addition,
- 160 sequences annotated as "uncultured bacterium" reflects the diversity of bacterial taxa
- associated with mango, many of which remain insufficiently characterized and require further
- isolation and pathogenicity testing to determine their ability to induce symptoms.
- Among the identified genera, *Pseudomonas* and *Burkholderia* are established plant pathogens,
- suggesting their involvement in the disease symptoms observed in the surveyed orchards. The
- genus *Pseudomonas* comprises more than 140 species that can be found in water, moist soil,
- humans, animals and plants, with several species reportedas pathogenic. Pseudomonas
- syringae has been identified as the causal agent of apical necrosis in mango (Cazorla et al.,
- 168 1998; Golzar and Cother, 2008). *Pseudomonas aeruginosa*, although primarily opportunistic
- pathogen, can induce soft rot symptoms in crops such as tomato, lettuce, onion and tobacco
- 170 (Kominos et al., 1972; Abd-Alla et al., 2011). Itis also known to be present on fruits and green
- plants, where it can persist without causing symptoms (Cho et al., 1975). The presence of
- 172 Pseudomonas sp,P. aeruginosa and Stenotrophomonas maltophilia and their potential
- association with symptoms development is therefore likely, noting the taxonomic
- 174 reclassificationS. maltophilia from Pseudomonas toXanthomonas and finally
- 175 Stenotrophomonas (Palleroni and Bradbury, 1993). The isolates identified as P.
- 176 aeruginosaexhibited biochemical characteristics (Table 5) consistent with published
- description(Richard & Kiredjian, 1995), except for immobility of our isolates.
- 178 Species of Burkholderia are ecologically distinct from Pseudomonas encompassing non-
- pathogenic (B. tuberum), phytopathogen species (B. cenocepacia, B. gladioli pv. alliicola, B.
- cepacia), and pathogens capable of infecting both animals and plants (Compant et al., 2008;
- 181 Conn et al., 2012). The identification of *B. cepacia* in this study is noteworthy, as this strain
- has been causing soft rot in onions and infects rice and bananas (Janette et al., 2008),
- demonstrating its pathogenic nature and justifying its isolation and possible involvement in
- the development of symptoms observed. The isolate characterized here exhibited traits

consistent with previous reports (Richard and Kiredjian, 1995; Seconds et al., 1988), 185 including Gram-, catalase and oxidasepositive and the ability to utilize glucoseor mannitol as 186 sole carbon source. 187 The isolation of *P. aeruginosa* and *B. cepacia* from mango samples can be explained by their 188 189 ability to infect plants and induce necrotic or soft rot symptoms. Virulence tests havedemonstrated that B. cepacia strain cause necrosis and maceration of 34 to 100% of the 190 onion bulb tissue (Janette et al., 2008), while P. aeruginosa induced soft rot sin Arabidopsis 191 thaliana and Lactuca sativa (Rahme et al., 2000), and mortality in Arabidopsis and Ocimum 192 193 basilicum withing 7 days after inoculation (Walker et al., 2004). Their pathogenicity in mango requires further investigation through host specificity and pathogenicity tests. 194 Beyond these genera, mango microbiome also includes Acetobacter senegalensis, a 195 196 thermotolerant acetic acid bacterium previously isolated from mango fruit (Ndoye et al., 2007). However, Xanthomonas citri pv. mangiferaeindicae, the causal agent of MBBS and 197 widely reported in neighboring countries (Pruvost et al., 2011, 2012, 2014; Zombré et al., 198 2015, 2016; Honger et al., 2021) has not been isolated from our samples. Nevertheless, 199 MBBS has been identified as an emerging risk in West Africa, underscores the need for 200 targeted surveillance (PIP-COLEACP, 2022). Therefore, future studies should employ 201 pathovar-specific primers targeting X. citri pv. mangiferaeindicae and perform PCR directly on 202 symptomatic plant material, coupled with or bypassing the isolation on solid media, to confirm 203

Conclusion

or exclude its presence in Senegalese orchards.

This study provides the first baseline characterization of bacteria flora associated with mango trees in Niayes production zone. Seven bacteria genera were identified through morphological, biochemical and molecular analyses, with *Pseudomonas* and *Stenotrophomonas* being the most prevalent. The absence of *Xanthomonas citri pv. Mangiferaeindicae* in the sampleshighlights the need for continued surveillance and expended surveys across other mango production area.

212

213

204

205

206

207

208

209

210

211

References

214	Abd-Alla, M. H., Bashandy, S. R., Ratering, S., & Shnell, S. (2011). First report of soft rot of
215	onion bulbs in storage caused by <i>Pseudomonas aeruginosa</i> in Egypt. <i>Journal of Plant</i>
216	Interactions, 6(4), 229–238. https://doi.org/10.1080/17429145.2010.535618
	11110111111111111111111111111111111111
217	Agence Sénégalaise de Promotion des Exportations (ASEPEX). (2016). Guide export -
218	Mangue du Sénégal. Dakar, Sénégal : ASEPEX / Projet d'Amélioration de la
219	Compétitivité de la Mangue Sénégalaise (PACMS). Retrieved from
220	https://www.senegal-export.com/IMG/pdf/guide20sur20d0d4.pdf
221	Ah-You, N., Gagnevin, L., Chiroleu, F., Jouen, F., Rodrigues Neto, J., & Pruvost, O. (2007).
222	Pathological variations within <i>Xanthomonas campestris</i> pv. <i>mangiferaeindicae</i>
223	support its separation into three distinct pathovars that can be distinguished by AFLP.
224	Journal of Plant Pathology, 89(1), 43–45. https://doi.org/10.1094/PHYTO-97-12-
225	<u>1568</u>
226	BioMérieux. (2021). API® Reference Guide. Marcy-l'Étoile, France : bioMérieux SA.
227	https://www.biomerieux-industry.com/sites/default/files/2021-
228	08/API%20Reference%20Guide.pdf
220	08/Ar 17020Reference 70 200 uide.pdf
229	Borkar, S. G. (2017). Laboratory techniques in plant bacteriology. CRC Press.
230	https://doi.org/10.1201/9781315206882
230	https://doi.org/10.1201/9701313200002
231	Cazorla, F. M., Tores, J. A., Olalla, L., Pérez-García, A., Farré, J. M., & de Vicente, A.
232	(1998). Bacterial apical necrosis of mango in southern Spain: A disease caused by
233	Pseudomonas syringae pv. syringae. Phytopathology, 88(7), 614–620.
234	https://doi.org/10.1094/PHYTO.1998.88.7.614
235	Cho, J. J., Schroth, M. N., Kominos, S. D., & Green, S. K. (1975). Ornamental plants as
236	carriers of <i>Pseudomonas aeruginosa</i> . <i>Phytopathology</i> , 65(4), 425–431.
237	https://doi.org/10.1094/Phyto-65-425
238	Compant, S., Nowak, J., Coenye, T., Clément, C., & Barka, E. A. (2008). Diversity and
239	occurrence of <i>Burkholderia</i> spp. in the natural environment. <i>FEMS Microbiology</i>
240	Reviews, 32(4), 607–626. https://doi.org/10.1111/j.1574-6976.2008.00113.x
241	Daniel, J. F., Gardan, L., Luisetti, J., & Pruner, J. P. (1975). Identification de l'agent
242	responsable de la maladie des taches noires de la mangue (Mangifera indicae). Fruits,
243	30(10), 625–630 <u>https://agritrop.cirad.fr/414615/</u>
244	Diédhiou, P. M., Mbaye, N., Faye, R., & Samb, P. I. (2014). Field tests of fungicides against
245 246	post-harvest rot of mangoes in Senegal. <i>International Journal of Science, Environment and Technology</i> , 3(2), 597–606. https://doi.org/10.4236/ajps.2014.515236
247	Doidge, E. M. (1915). A bacterial disease of the mango <i>Bacillus mangiferae</i> n. sp. <i>Annals of</i>
248	Biology, 2, 1–45. https://doi.org/10.1111/j.1744-7348.1915.tb05424.x
249	Gagnevin, L., & Pruvost, O. (2001). Epidemiology and control of mango bacterial black spot.
250	Plant Disease, 85(9), 928–935. https://doi.org/10.1094/PDIS.2001.85.9.928
	, , ,

- Golzar, H., & Cother, E. J. (2008). First report of bacterial necrosis of mango caused by
- 252 Pseudomonas syringae pv. syringae in Australia. Australasian Plant Disease Notes,
- 253 *3*(1), 107–109. <u>https://doi.org/10.1007/BF03211259</u>
- Honger, J. O., Osabutey, S., Nyaku, S. T., & Lambon, J. B. (2021). Molecular
- characterization, pathogenicity and copper sensitivity of *Xanthomonas citri* pv.
- 256 mangiferaeindicae, the causal agent of mango bacterial black spot disease in Ghana.
- *Archives of Phytopathology and Plant Protection, 54*(19–20), 1703–1721.
- 258 https://doi.org/10.1080/03235408.2021.1936995
- 259 Initiative Prospective Agricole et Rurale (IPAR). (2023). Étude sur le profilage d'opportunités
- de la chaîne de valeur mangue en Casamance. Feed the Future Senegal Dooleel Mbay
- 261 / USAID. Dakar, Sénégal.https://www.ipar.sn/
- Jacobs, J. L., Fasi, A. C., Ramette, A., Smith, J. J., Hammerschmidt, R., & Sundin, G. W.
- 263 (2008). Identification and onion pathogenicity of *Burkholderia cepacia* complex
- isolates from the onion rhizosphere and onion field soil. *Applied and Environmental*
- 265 *Microbiology*, 74(10), 3121–3129. https://doi.org/10.1128/AEM.01941-07
- 266 Khan, A. I., Khan, A., Asif, H., Jiskani, M. M., Mühlbach, H.-P., & Azim, M. K. (2014).
- Isolation and 16S rDNA sequence analysis of bacteria from dieback-affected mango
- orchards in southern Pakistan. *Pakistan Journal of Botany*, 46(4), 1431–1435.
- Conn, K. E., Lutton, J. S., Rosenberger, S. A., Black, L., Gabor, B., Kao, J., & Lutton, J.
- 270 (2012). Onion disease guide: A practical guide for seedsmen, growers and
- 271 *agricultural advisors.* Seminis® Plant Health, 72 pp.
- Kominos, S. D., Copeland, C., Grosiak, B., & Postic, B. (1972). Introduction of *Pseudomonas*
- 273 *aeruginosa* into a hospital via vegetables. *Applied Microbiology*, 24(4), 567–570.
- https://doi.org/10.1128/am.24.4.567-570.1972
- Ndiaye, O., Ndiaye, S., Djiba, S., Ba, C. T., Vaughan, L., Rey, J.-Y., & Vayssières, J.-F.
- 276 (2015). Preliminary surveys after release of the fruit fly parasitoid *Fopius arisanus*
- Sonan (Hymenoptera: Braconidae) in mango production systems in Casamance
- 278 (Senegal). Fruits, 70(2), 91–99. https://doi.org/10.1051/fruits/2015001
- Ndoye, B., Cleenwerck, I., Engelbeen, K., Dubois-Dauphin, R., Guiro, A. T., Trappen, S. V.,
- Willems, A., & Thonart, P. (2007). Acetobacter senegalensis sp. nov., a
- thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from
- mango fruit (Mangifera indica L.). International Journal of Systematic and
- 283 Evolutionary Microbiology, 57(7), 1576–1581.https://doi.org/10.1099/ijs.0.64678-0
- Palleroni, N. J., & Bradbury, J. F. (1993). Stenotrophomonas, a new bacterial genus for
- 285 Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of
- 286 Systematic Bacteriology, 43(3), 606–609. https://doi.org/10.1099/00207713-43-3-606
- Patel, M. K., Kulkarni, Y. S., & Moniz, L. (1948). Pseudomonas mangiferae-indicae,
- pathogenic on mango. *Indian Phytopathology*, 1(2), 147–152.

289 290 291	PIP-COLEACP. (2013). Bactériose du manguier provoquée par Xanthomonas citri pv. mangiferaeindicae. Programme PIP, COLEACP. Bruxelles, Belgique. 13 p. https://www.coleacp.org/pip
292 293 294	PIP-COLEACP. (2022). Guide de production COLEACP pour la mangue issue de la production biologique (<i>Mangifera indica</i>): Guide de bonnes pratiques phytosanitaires. https://www.coleacp.org
295 296	Prakash, O., & Misra, A. K. (1992). Important diseases of mango and their effect on production. Biol. Mem, 18, 39–55.
297 298 299 300	Promega Corporation. (2016). Wizard® Genomic DNA Purification Kit technical manual (Technical Manual No. TM050). Madison, WI: Promega Corporation. https://www.promega.com/resources/protocols/technical-manuals/0/wizard-genomic-dna-purification-kit-protocol/
301 302 303 304	Pruvost, O., Roumagnac, P., Gaube, C., Chiroleu, F., & Gagnevin, L. (2005). New media for the semiselective isolation and enumeration of <i>Xanthomonas campestris pv. mangiferaeindicae</i> , the causal agent of mango bacterial black spot. Journal of Applied Microbiology, 99(4), 803–815. https://doi.org/10.1111/j.1365-2672.2005.02681.x
305 306 307 308	Pruvost, O., Boyer, C., Grygiel, P., Boyer, K., Vernière, C., Gagnevin, L., Soro, S., N'Guessan, C., & Koné, D. (2014). First report of <i>Xanthomonas citri pv. mangiferaeindicae</i> causing mango bacterial canker on <i>Mangifera indica</i> in Ivory Coast. Plant Disease, 98(12), 1740. https://doi.org/10.1094/PDIS-07-14-0669-PDN
309 310 311 312	Pruvost, O., Boyer, C., Vital, K., Vernière, C., Gagnevin, L., & Somda, I. (2011). First report in Burkina Faso of <i>Xanthomonas citri pv. mangiferaeindicae</i> causing bacterial canker on <i>Mangifera indica</i> . Plant Disease, 95(10), 1312. https://doi.org/10.1094/PDIS-04-11-0324
313 314 315 316	Pruvost, O., Boyer, C., Vital, K., Vernière, C., Gagnevin, L., & Traoré, Y. N. (2012). First report in Mali of <i>Xanthomonas citri pv. mangiferaeindicae</i> causing mango bacterial canker on <i>Mangifera indica</i> . Plant Disease, 96(4), 581. https://doi.org/10.1094/PDIS-01-12-0001-PDN
317 318 319	Richard, C., & Kiredjian, M. (1995). Méthode de laboratoire pour l'identification des bacilles à Gram négatif non aérobies stricts : Pseudomonas, Alcaligenes, Flavobacterium, Acinetobacter, Brucella, Bordetella (2e éd., pp. 22–26). Institut Pasteur.
320 321 322 323 324	Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Goumnerov, B. C., Lau, G. W., Mahajan-Miklos, S., Plotnikova, J., Tan, M. W., Tsongalis, J., Walendziewicz, C. L., & Tompkins, R. G. (2000). Plants and animals share functionally common bacterial virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 8815–8821. https://doi.org/10.1073/pnas.97.16.8815
325 326 327 328	Sanahuja, G., Ploetz, R. C., Lopez, P., Konkol, J. L., & Palmateer, A. J. (2016). Bacterial canker of mango, <i>Mangifera indica</i> , caused by <i>Xanthomonas citri pv. mangiferaeindicae</i> , confirmed for the first time in the Americas. Plant Disease, 100(12), 2522.https://doi.org/10.1094/PDIS-03-16-0412-PDN

339	tous ses états. Médecine et Maladies Infectieuses, 28(Suppl.), 72–78.
331	Tine, E. (1996). Travaux pratiques de microbiologie générale : Guide des tests biochimiques
332	d'identification des bactéries. Analyses Biologiques – Industries Alimentaires, 1ère
333	année. No
334	Walker, T. S., Bais, H. P., Déziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., & Vivanco, J
335	M. (2004). Pseudomonas aeruginosa-plant root interactions: Pathogenicity, biofilm
336	formation, and root exudation. Plant Physiology, 134(1), 320–
337	331. <u>https://doi.org/10.1104/pp.103.027888</u>
338	Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA
339	amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.
340	https://doi.org/10.1128/jb.173.2.697-703.1991
341	Zombré, C., Sankara, P., Ouédraogo, S. L., Wonni, I., Pruvost, O., Boyer, C., Vernière, C.,
342	Adandonon, A., Vayssières, J. F., & Ahohuendo, B. C. (2015). First report of
343	Xanthomonas citri pv. mangiferaeindicae causing mango bacterial canker on
344	Mangifera indica L. in Benin. Plant Disease, 99(12), 1854.
345	https://doi.org/10.1094/PDIS-04-15-0392-PDN
346	Zombré, C., Wonni, I., Ouédraogo, S. L., Kpemoua, K. E., Assignon, K., Sankara, P.,
347	Vernière, C., Boyer, C., Boyer, K., Javegny, S., & Pruvost, O. (2016). First report of
348	Xanthomonas citri pv. mangiferaeindicae causing mango bacterial canker on
349	Mangifera indica in Togo. Plant Disease, 101(3), 503. https://doi.org/10.1094/PDIS-
350	<u>09-16-1259-PDN</u>

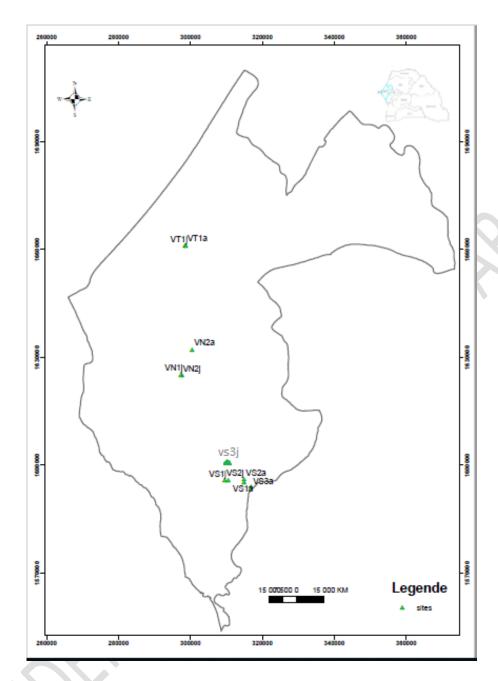


Figure 1: Geographic location of the surveyed mango orchards within the Niayes production area of Senegal.

Tableau 1: Composition of the PCR reaction mixture

Component	Volume/Sample (µl)
Water	14.05
PCR Buffer	5x
dNTPs (10 mM)	0.2
Primer FD1 (10 µM)	1.25
Primer RD1 (10 µM)	1.25
GoTag Flexi DNA polymerase	0.25

Tableau 2: Isolates obtained from Mango orchards

Site	Orchard ID	Isolate ID	No of isolates
	VS2aF3	S1	
	VS2j F3	S2	
	VS3a F10 (1)	S 3	
	VS2aF10 (2)	S4	
	VS1jF22	S7	
	VS3a F10 (2)	S 9	
Cássàna	VS2a F10 (1)	S11	1.4
Séssène	VS3a F9	S12	14
	VS2a F11	S13	
	VS2aF10 (3)	$S14_1$	
$\langle O \rangle$	VS2aF10 (3)	S14 ₂	
	VS2jF8	S15	
	VS2aR2	S16	
	VS2aF4	S17	
	VT1jR1	S5	
	VT1aR6	S 6	
Taïba Ndiaye	VT1aR3	$S8_1$	5
	VT1aR3	$S8_2$	
	VTaF	S10	

V = orchard; S = Séssène; T = Taïba Ndiaye; a = old orchard; j = young orchard; F = leaf; R = twig.

Api	Isolate ID	Identified species	Identification code	Probability (%)	
20 ^E	S2	Lactobacillus delbrueckii	24h : 23261373	//	
20	S4	4 Klebsiella pneumoniae 24h : 52357733		97,5	
	95	O obrob a otromo anthroni	24h : 1641344	00.0	
	S5	Ochrobactrum anthropi	48h: 1643755	98,8	
	S8 ₁	D 11 11 1	24h : 1473775	05.6	
		Burkholderia cepacia	48h : 1473355	95,6	
	S11		24h : 1472345	00.5	
• NF		Stenotrophomonas maltophilia	48h: 1472355	99,5	
20 ^{NE}	S14 ₁	4	24h :5450004	07.6	
		Aeromonas salmonicida	48h :5454204	85,6	
	S14 ₂		24h : 1557577	0.5	
		Burkholderia cepacia	48h : 1557577	95,6	
	S17		24h : 5554575	07.7	
		Pseudomonas aeruginosa	48h: 5757775	97,5	

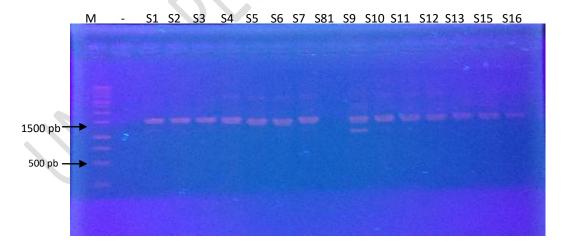


Figure 2: Visualization of 16S rDNA from bacterial isolates on agarose gel (M: marker; -: negative control; S: strain)

Isolate ID	Reference species identified (GenBank accession)	Similarity (%)
S1		92
S 3		97
$S8_1$	Stenotrophomonas maltophilia	92
S11	CP022053.2	94
S12		91
S13		88
S2	Bacillus cereus MF767513.1	97
S5	Ochrobactrum anthropi	96
S 6	KY570296.1	95
S15	Pseudomonas sp KT890304.1	91
S7		93
S14 ₁	Pseudomonas aeruginosa	96
S16	JQ659891.1, FM997073.1, EF062514.1, FJ859913.1	93
S17	EF002314.1, FJ039913.1	91
S14 ₂	Exiguobacterium sp MG819389	98

Tests	Stenotrophomonas maltophilia	Bacillus cereus	Ochrobactrum anthropi	Pseudomonas aeruginosa	Exiguobacterium sp	Ochrobactrum sp	Burkholderia cepacia	Aeromonas salmonicida
Shape	bacillus	bacillus	bacillus	bacillus	bacillus	bacillus	bacillus	bacillus
Gram reaction	-	-	+	-	-	\\-\\-	-	-
Oxidase	+	+	+	+	+	+	+	+
Catalase	+	+	+	+	+	+	+	+
Motility	-	-	-	-	1-	-	-	-
Nitrate reductase	+/-	+/+	+/+	+/+	+/+	+/+	+/+	+/+
Oxidative	+	-	+	+	+	-	-	-
Fermentative	-	+	-	-	· -	+	+	+
Lactose utilization	-	-	-		-	+	-	+
Glucose utilization	-	+	-	0	-	+	+	+
ADH	-	//	-	+	+	-	-	-
PNPG	+	//	-, <	-	-	-	+	-
RM	-	+		-	-	-	-	+
VP	-	-		-	-	+	-	-
Citrate utilization	-	-	0 -1	+	-	+	-	-
Mannitol	+	+	+	-	+	+	+	+
Urease	-		+	-	-	-	-	-
Kovacs	-	1-	-	-	-	-	-	-
TDA	-	137	+	-	-	-	-	-

Tableau 5:Biochemical characteristics of identified bacterialisolated from mango orchard in Niayes area

(+) positive reaction; (-) negative reaction; (+/-) variable or weak reaction; (//) not determined. ADH = arginine dihydrolase; PNPG = p-nitrophenyl-β-D-galactopyranoside; MR = methyl red; VP = VogesProskauer; TDA = tryptophan deaminase.