

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-54927

Title: IMPACT OF COW DUNG ADDITION ON THE THERMAL AND MECHANICAL

PROPERTIES OF NÂ' DJAMENA CLAY

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept after major revision	Originality		✓		
	Techn. Quality			✓	
	Clarity			✓	
	Significance			✓	

Reviewer Name: Dr.K.Arumuganainar Date: 26.11.2025

Detailed Reviewer's Report

DETAILED REVIEW REPORT

Manuscript Title: Impact of Cow Dung Addition on the Thermal and Mechanical Properties

of N'Djamena Clay

Journal: IJAR (as per manuscript)

Type: Research Article

Overall Recommendation: Major Revision Required

1. GENERAL ASSESSMENT

The manuscript explores the influence of cow dung as a bio-based stabilizer on the thermal

and mechanical properties of raw earth bricks. The topic is relevant, especially for

sustainable, low-cost construction materials in Sahelian regions. The study is experimentally

grounded and employs recognized methods such as hot-plate thermal conductivity

measurement, flash diffusivity testing, and compressive strength evaluation.

However, the paper requires major structural, methodological, and editorial

improvements to meet the standards of a high-quality journal publication. Certain sections

lack clarity, key numerical data are missing, figures lack captions/details, and the discussion

does not deeply compare results with the cited literature.

2. STRENGTHS OF THE MANUSCRIPT

1. **Relevant Topic:** Sustainable and low-carbon construction materials are globally

important, aligning with SDG 9 and SDG 11.

2. Use of Local Resources: The study emphasizes local clay and cow dung—important

for affordable housing in Chad.

3. Established Methods:

o Hot plate technique for thermal conductivity.

Flash method using Degiovanni's model.

Standard compressive strength testing.

4. Clear Trend in Results:

- o Thermal properties improve with cow dung addition.
- Mechanical strength increases significantly.
- 5. **Potential Practical Impact:** Provides an optimum (10%) stabilizer content for local construction industries.

3. MAJOR COMMENTS (Need Revision)

3.1 Abstract

- The abstract is incomplete and contains placeholder text (".....").
- Quantitative results (values of diffusivity, strength improvements, etc.) are mentioned only partially.
- Needs restructuring into:
 - o Background
 - o Methods
 - o Results
 - Conclusion

3.2 Research Gap Not Clearly Stated

While the introduction cites relevant studies, it does not clearly identify:

- What has not been studied in previous research.
- Why cow dung's impact on N'Djamena clay specifically is significant.

3.3 Missing Experimental Details

Several essential details are missing:

a) Material Characterization

- No information on clay composition (Atterberg limits, mineralogy).
- No moisture content or density of cow dung.
- No preparation procedure (mixing, drying time, curing conditions).

b) Thermal Experiments

- Dimensions, boundary conditions, environmental conditions not fully defined.
- No uncertainty analysis or calibration details.

c) Mechanical Tests

- Number of specimens per batch unknown.
- Loading rate not mentioned.
- Standard followed (ASTM/ISO) unclear.

3.4 Figures Need Improvement

- Many figures in the provided PDF are **schematics only** without clear numbering or captions.
- Some figures (like thermograms) are mentioned but not shown in high clarity.
- Axes labels and units are missing or too small.

3.5 Results Section Requires Numerical Tables

Only graphs are provided. The reviewers/journal requires:

- Numerical values of λ , α , Rc in tabular form.
- Standard deviation for each measurement.

3.6 Discussion is Too Brief

Although references are cited, the authors do not:

- Compare numerical results with prior studies.
- Explain the mechanism of improvement quantitatively.
- Discuss limitations (e.g., durability, moisture effects).

3.7 English Language and Grammar

The manuscript requires extensive language editing:

• Verb tense inconsistencies

- Long, unclear sentences
- Repeated phrases
- Incorrect punctuation

3.8 Conclusion Needs Better Structure

The conclusion only restates results. It should also include:

- Implications
- Limitations
- Future work recommendations

4. MINOR COMMENTS

- 1. Keywords should be alphabetically arranged.
- 2. Units must follow SI standards (e.g., m²·s⁻¹).
- 3. Space and formatting consistency needed (extra lines, misaligned text).
- 4. References should be updated—most citations are old (1990–2015).
- 5. Figures should include numbering such as "Figure 1: ...", "Figure 2: ...".

5. SUGGESTIONS FOR IMPROVEMENT

- 1. **Rewrite the abstract** with quantitative data and clear structure.
- 2. Add complete material characterization (XRD, plasticity index, granulometry).
- 3. Include a methodology workflow diagram.
- 4. **Provide numerical tables** for thermal and mechanical results.
- 5. **Improve figures** with proper resolution and labelled axes.
- 6. **Expand discussion** with comparisons to Dadi et al. (2016), Meukam et al. (2004), Gaye (1998), etc.
- 7. Add a durability study or mention its need.
- 8. **Include environmental advantages** of using cow dung as a stabilizer.
- 9. **Perform statistical analysis** (ANOVA, error bars).

10. English language proofreading required throughout.

6. FINAL RECOMMENDATION

Recommendation: MAJOR REVISION

The study is valuable and relevant, but the manuscript needs substantial improvements in structure, methodology clarity, result presentation, and language quality before it can be considered for publication.