Jana Publication & Research

A Comprehensive Study of Contemporary Advancements in Hybrid Renewable Energy Systems Incorporating Artificial Int...

BioTech

Institut Seni Indonesia Surakarta

Document Details

Submission ID

trn:oid:::1:3424184806

Submission Date

Nov 25, 2025, 1:56 PM GMT+7

Download Date

Nov 25, 2025, 3:34 PM GMT+7

File Name

IJAR-54946.pdf

File Size

1015.7 KB

17 Pages

5,522 Words

31,857 Characters

45% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text

Match Groups

52 Not Cited or Quoted 42%

Matches with neither in-text citation

Matches with neither in-text citation nor quotation marks

6 Missing Quotations 3%

Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

26% 📕 Publications

16% La Submitted works (Student Papers)

Match Groups

52 Not Cited or Quoted 42%

Matches with neither in-text citation nor quotation marks

6 Missing Quotations 3%

Matches that are still very similar to source material

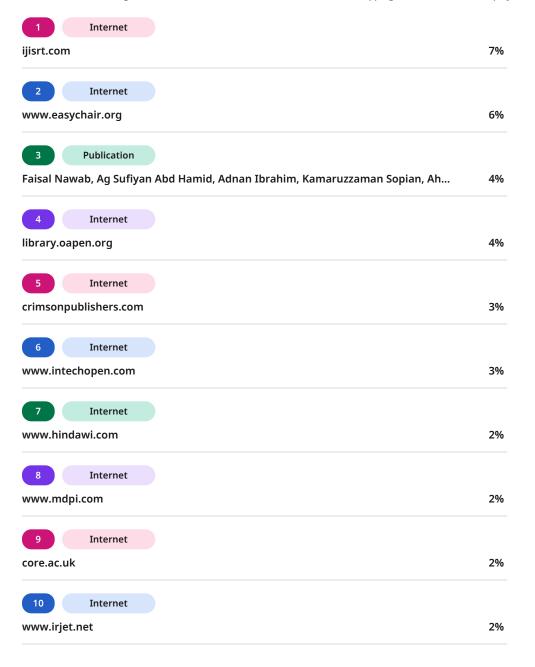
0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources


40% Internet sources

26% 📕 Publications

16% Land Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

11	Internet		
arxiv.org			2%
12	Student papers		
National 1	Institute of Technology, Raipur		2%
13	Internet		
www.cou	rsehero.com		2%
14	Internet		
www.cell.	com		<1%
15	Internet		
www.rese	earchgate.net		<1%
16	Publication		
Pushpa C	houdhary, Sambit Satpathy, Arvin	d Dagur, Dhirendra Kumar Shukla. "Re	<1%
17	Internet		
pmc.ncbi.	nlm.nih.gov		<1%
18	Publication		
"Recent A	dvances in Power Systems", Sprir	ger Science and Business Media LLC, 2	<1%
19	Publication		
Kremers,	Enrique, Pablo Viejo, Oscar Baran	nbones, and Jose Gonzalez de Durana	<1%
20	Publication		
Snehasis	Dey, Barsha Baishali Sahoo. "chaր	ter 5 Artificial Intelligence-Integrated	<1%
21	Internet		
cchronicle	e.com		<1%
22	Internet		
www.diva	n-portal.org		<1%
23	Publication		
Ali Etem (Gürel, Ümit Ağbulut, Hüseyin Bakı	r, Alper Ergün, Gökhan Yıldız. "A state	<1%
24	Publication		
Humaira	Hamid, Sandeep Samantaray. "Fu	ture directions of computer vision and	<1%

A Comprehensive Study of Contemporary Advancements in Hybrid Renewable Energy Systems Incorporating Artificial Intelligence Methodologies.

Abstract

An extremely useable and excellent alternate power source is solar power which can really reduce or it may say cut our dependency on the non-renewable energy sources and destructive fossil fuels. Amongst all renewable energy sources, solar radiation energy source has an important role in various platforms like climate and weather extremes, photosynthesis, hydrological cycles, balancing the radiation and geographic conditions etc that is why it has very important role. Solar radiation (SR) can be anticipated with extraordinary accuracy, and it could be feasible to definitely limit the effect cost related with the advancement of solar energy. In order to predict the advancement of renewable energy frameworks, this study intends to investigate several artificial intelligence applications in relation to various basic forecast benchmark models from literature assessments. Differential conditions, massive PC power, and time requirements are among the many models that are used to regulate or predict energy framework exhibits. Machine learning techniques seem to be among the best options. With a special focus on Artificial Intelligence, the study provides an overview of broad AI philosophies related to renewable energy sources.

- **Keywords:** Solar Radiation, Renewable Energy, AI, ML, Algorithms.
- 21 Introduction

Current decade is enriched by the invention of two important source of advancement commonly known as renewable energy and artificial intelligence. Their contribution in science is immense and effective [1-2]. With a growing global population and advancing economy and culture, it is inevitable that the need for energy will rise. Renewable energy is being assigned increased responsibility for sustaining energy demands in order to avert an energy crisis and protect the environment from pollution produced by the usage of fossil fuels. One approach to the

turnitin turnitin

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

aforementioned issues is to employ renewable resources and technologies such as solar, wind, and geothermal. Since renewable energy systems are highly impacted by their surroundings, it is imperative to apply methodologies and simulations to predict these changes for enhanced system efficiency and energy dispensation. The energy system is vital to the development of the human society, especially in daily life, industry and transportation. Energy is a fundamental requirement, not a luxury, and is crucial for sustainable development. Most energy produced today comes from fossil fuels, which are reliable yet unsustainable because their supplies deplete quickly and significantly negatively impact the environment. Greenhouse gas (GHG) emissions from fossil fuel combustion drive climate change and global warming [1-3]. Due to the intermittent nature of renewable power, the market supply of electricity is therefore becoming increasingly unpredictable. Simultaneously, more energy intensive industries and a larger workforce are creating sizable swings in energy demand. This fluctuating supply-demand mismatch has led to volatile electricity market prices. As a result, both energy consumers and energy providers can substantially benefit from improved short-term production, demand, and price forecasting. In the bigger picture, improved forecasts can lead to lower costs of renewable energy projects and therefore higher renewable energy penetration [4-6]. Solar irradiation varies from location to location and is a function of different meteorological and geographical parameters and physical parameters of the atmosphere. In close areas, solar irradiation values may not be the same. And using the nearby station data for any feasibility study may lead to project failure. Physically measuring this data for all locations is practically hard, especially in developing countries, due to the costs and difficulties involved [13,14].

Artificial intelligence (AI) is picking tremendous growth in recent times which acts as human intelligence and provides effective solutions in energy sectors. AI has sub fields like machine learning and deep learning they are quite beneficial in renewable energy sectors [6-10]. It enhances hybrid renewable energy systems (HRES) through the application of machine learning techniques to scrutinize data, thereby facilitating improved forecasting, optimization, and control, which in turn augments both efficiency and reliability. Its functions encompass the anticipation of energy generation and consumption, the optimization of solar panel and wind turbine performance, the management of energy storage systems, and the provision of predictive maintenance aimed at minimizing costs and operational interruptions. Furthermore, AI promotes the development of advanced grid systems that can effectively reconcile fluctuating energy

- 18 60 supply with demand, ultimately contributing to a more robust and sustainable energy
 - 61 infrastructure. In the past, researchers developed various strategies to get around the challenges
 - and costs of assessing global horizontal irradiation (GHI) on the ground. Empirical models and
 - models based on artificial intelligence (AI) have received the most research attention. GHI
 - forecasting using AI models has yielded encouraging results. ANN has been widely implemented
 - in several worldwide regions, including Turkey, Oman, China, India, Australia, and other places,
 - with promising results [7-9]. AI methods use huge data to develop intelligent machines capable
 - of performing activities that would normally require intelligence of a human. Since AI
 - techniques including deep learning (DL) and machine learning (ML) are able to address
 - nonlinear and complex data structures, they are gaining popularity in various fields of science
 - and technology in order to solve real-life issues.
- In recent years, with the fast development of AI-driven IoT technology, the applications of deep
 - learning technologies have been extended to various fields, such as digital twinning,
 - 73 computersecurity, cyberphysical systems, transportation systems, and air quality forecasting.
- 74 MLalgorithms comprise artificial neural networks (ANNs), kernel and nearest-neighbour (k-
 - NN), extreme learning machine (ELM), support vector machine (SVM), to name a few. These
 - techniques have an advantage over statistical approaches in that they do not require any internal
 - parameters of the solar systems [10-12].
 - 78 Thisstudyaimstoreviewtheuseof MLapplicationsandtechnologiesinrenewable energy's.
- Therefore, a detailed review of the latest studies conducted in major applications is carried out.
 - In addition, the view of current issues, future trends and challenges are also discussed to improve
 - the renewable energy systems.

Literature Study:

- 84 The incorporation of AI/ML with renewable energy may provide many solutions in energy
- 85 sectors including automation, data optimization, data simulation, data streaming and
- 86 productivity. This section provides detailed literature study in the mentioned field
- 87 comprehensively and providing the key findings with solution.

88

82 83

Research work	Research work Detailed study with technologies	
Lili Zhang et.al(2022)	 This study uses the Web of Science Core Collection Database for bibliometric analysis and science mapping. AI-related technologies (e.g., machine learning, neural networks) are applied in power systems integration, such as solar and wind forecasting, power system frequency analysis, and transient stability. Tools: VOS Viewer, Cite Space. 	 AI technologies can effectively address issues like integrating renewable energy with power systems. The study identifies research trends and collaboration patterns, highlighting the importance of future AI advancements in the field.
Ali Azawii et.al (2022)	 Overview of AI techniques applied across renewable energy sources (wind, solar, geothermal, hydro, bio, hydrogen, hybrid systems) for design, optimization, prediction, management, and regulation. Focuses on deep learning and machine learning. Techniquesincludeneuralnetwo rks (NNWs). 	 Deep learning and machine learning are crucial for improving renewable energy systems. Neural networks are most prominently used in future applications. AI, combined with IoT, sensors, and drones, helps overcome data gaps, enabling more efficient renewable energy systems.
Dey S et. al (2025)	• Describes the techniques of AI,	• Innovative AI
	ML for building sustainable	schemes like
	energy system .	SVM,RF,kNN for
		energy related data
		storage and

		optimization
Dey S (2025)& Dey S.	• Studies different algorithms for	• Different methods
et.al(2022)	solar power plant and	like innovative plant
	renewable energy extraction	set up through the
	methods	help of AI.
Trung Van Nguyen (2023)	 Explores AI algorithms and modelsfor renewable energy systems, focusing on smart grids, power forecasting, and balancing supply- demand in intermittent energy sources. Emphasizes optimization, reliability, and cost reduction in renewable energy. 	 AI helps optimize renewable energy systems, improving efficiency, reliability, and costeffectiveness. AI models provide high prediction accuracy and help balance supply-demand. However, challenges exist in dealing with data quality (especially for cloudy days) and training models effectively.
Hasan Alkahtani et.al(2024	 Focuses on AI technologies for forecasting energy consumption and demand. Introduces Explainable AI (XAI) for improving transparency in AImodelsusedinenergyapplicati ons. Techniques include machine learning (ML) and deep learning (DL). 	 XAI enhances transparency and interpretability of AI models in energy applications. The study emphasizes the importance of making AI technologies accessible and aligned with sustainability
		goals while focusing on optimizing operations and system maintenance.

96

- Table 1: Literature survey on incorporation of AI/ML with renewable energy.
- The key findings from the detailed literature survey have been shown in above table 1. There is
- 95 huge research gap in some key areas which has been listed below:
 - Research gap in proper utilization of AI/ML technologies.

Page 9 of 21 - Integrity Submission

100

103

104

106

107

108

109

110

112

113

116

117

118

125

126

- Innovative algorithm and their application should be properly designed and applied.
- Huge research gap in systematic studies of AI incorporation.
 - Finding the methodologies of incorporation of these technologies.

Utility and challenges faced by renewable energy sources in recent times:

101
102 The sustainability of biological and chemical processes in nature depends on solar radiation,

which is a free and highly beneficial input for the majority of industries, including heat, health,

and tourism, agriculture, and energy generation. Climate data, the hydrologic cycle, sensible

heat, latent heat, evaporation, ecological life, migration, and many other significant parameters

are all directly impacted by changes in solar radiation. As environmental concerns have grown,

solar energy systems have started to be widely used on a large scale in many countries

worldwide, but only in those with greater potential for solar energy.

Solar radiation is electromagnetic waves which are received from the sun, over a wide range of wavelengths at varying intensities. The wavelength comes from the sun are between the

intensity of 300 nm to 3000 nm called shortwave radiation. If the wavelength is short then

other. Therefore, these waves come to earth with very high energy. The total energy emitted

frequency must be high because the wavelength and frequency is indirectly proposal to each

bythe sun is around 3.72X 1020 MW. The solar radiation reaches at a rate of 1,367W/m2to the

upper surface of the earth. For enhancingthe quality of lifeand for the progress of society we

upper surface of the earth. For chilanellighte quantyof intends for the progress of society we

need the high amount of energy but the extensive use for fossil fuel creates bad impactson the environment such as air pollution (due to combustion of carbon contained in fuel) and social

and sustainability problems like the Greenhouse effect. So, to overcome the dependency on

conventional fuels many researchers and some organizations are working on to get some

alternative fuel, which should be a convenience to use, easy to store, also minimize the

pollution and must be abundant in nature [19].

The increasing rate of energy consumption is essential for progress of our civilization and

therefore main problem is how we produce energy. Extensive use of fossil fuels and nuclear

energy has created bad impact on environmental, social, and sustainability problems. So, we

need such energy sources that will forever and can be used without pollution. Furthermore,

conventional energy systems using fossil resources, especially old ones in numerous and small

scale, are found to be major contributors to atmosphere pollution and green house effect.

Renewable energies are mostly intermittent; hence, the storage of energy is essential if we are to be fully dependent on renewable sources. Batteries are currently one of the most promising technologies for these purposes. However, an effective management system is essential to determine the battery's charging and discharging pattern, which can offer a cost- effective option for battery-integrated micro grid systems. For this, a long short-term memory was proposed which showed that the real-time strategy outperforms the offline optimization strategy, reducing the operating cost by 3.3% [20].

Renewable energy comes from natural replenish able sources like sunlight and wind and is often 135 referred to as clean energy because it doesn't cause pollution. The presently known reserves of 136 non-renewable sources of energy like coal, gas, oil are depleting fast and the renewable energy 137 has emerged as the more preferred alternative. Moreover, rising prices of fossil fuels, particularly 138 139 natural gas and electricity, environmental concerns, energy security reasons and greater investment in clean energy have resulted in the greater generation of renewable energy globally 140 141 [21]. All sectors and regions have the potential to contribute by investing in renewable energy technologies and policies to reduce them.RES awareness should also cut across individuals, 142 143 corporate organizations, companies, business owners, decision-makers, owners of business and personnel involved in the business of RES technology and its utilization, and the public. 144

Reducing our carbon footprint through lifestyle changes and behavioral patterns can greatly contribute to mitigating climate change. The environmental effect of the materials used in the building of hybrid renewable energysystems is one of their environmental problems. Alot ofthe raw materials needed for solar cells, wind generators, and energy storage devices are removed using harmful environmental practices. These materials' production and removal mayharm the ecosystem bypolluting the environment and destroyinghabitats. Wind Turbine and solar panel installations can harm local environments and habitats while wind mills have been linked to birdand bat deaths. Installations forgreen energycan becarefully planned and managed to reduce these effects and safeguard delicate environments. There should be favourable government policies on power generation for RES that will be different from the conventional fossil fuel generating sources. These policies should Favor reduction or total exemption in taxpayment, tariff plan, low-interest loans, subsidies in RES utilization, custom dutywaivers, tax rebate to encourage people to own solar-powered plants, government-sponsored programs on RES, etc.

145

146

147

148

149

150

151

152

153

154

155

156

- 9 158 Research on innovations and technologies that can reduce land use and can also reduce
- accidentsfromrenewableenergysourcesandthe riskofresource competition, for example in the field
 - of bio-energy where food for consumption competes with energy production.
- 15 161 The cost of acquiring the least rated capacity of renewable energy is far above the minimum
- wage as earned in most developing nations. Traditional energysources have a lower cost and
 - price than renewable energies. As the production cost of renewable energy is higher than that of
 - fossil fuels with the same technology, there are serious barriers for the commercialization and
 - distribution in relation to renewable energy. The main reasons in high production cost of
 - renewable energy are small scale and low production technology. Hybrid renewable energy
 - system fundingmethods canbedifficulttounderstand, particularly in the absence of a market
 - for these products. To support the implementation of these systems and guarantee that they are
 - available to a broad variety of stakeholders, creative financing methods, such as green bonds or
 - crowdsourcing, may be required.
- Increase international cooperation and support developing countries to expand infrastructure and
 - modernize technology for modern supply and sustainable energy services as a means of
 - mitigating climate change and its impact. The current development of renewable energy includes
 - the cost barriers. However, a system operation reliability and decreasing production costcan
 - beobtainedbymeansof adeveloped market. The influence of special interests in the conventional
 - energyindustryis a sociopolitical issue. In order to advance their own interests, fossil fuel
 - corporations and other energy incumbents may oppose the implementation of green energy
 - systems through legislative lobbying or direct action. This may hinder the installation of green

 - energy technologies and impede the shift to a more sustainable energy future. It is challenging
 - for renewable energy systems to contend on an even playing field in many nations because the
 - regulatory climate is still geared toward promoting fossil fuels and other non-renewable energy
 - sources. These obstacles can be overcome with the aid of policies that encourage the use of
 - renewable energy, such as feed-in prices and renewable portfolio requirements.
- One of the major challenges of RES development in developing countries is the lack of
- skilled/trained manpower. RES technologyis evolvingveryfast. However skilled and trained
 - manpower to match this pace of development is obviously lacking. The shortage ofmanpower
 - and competency level has resulted in poor or no consideration of solar insulation, panel

189

190

191

192

193

194

195

196

197

198

efficiency, and specific consideration of the geospatial angle of installation of the panels, among others. Policy enactment and implementation are distinctive elements of the policy process. In the future, renewable energy should be developed to an industrial scale. Thus, depending on the support of policies, market share of renewable energy has to be increased. Due to variations in each source's voltage, frequency, and output characteristics, it can be difficult to combine and maximize these various technologies so that they coexist harmoniously. The sporadic and unpredictable nature of green energy sources. For instance, weather-related energy sources like solar and wind can generate electricity sporadically. The electricity infrastructure may become unstable as a result, making it challenging to satisfy demand during peak hours. Hybrid systems must incorporate energy storage technologies to both store surplus energy during periods of high production and release it during periods of low production in order to overcome this problem.

In order to have more sustainable lifestyles, barriers related to the societal and cultural patterns 199 must be prevented, and thus desirable and more sustainable alternatives and various 200 incentives will be required. The current economic system still remains a barrier to change due to the 201 202 existing belief in unlimited natural resources and in continuous economic growth. On the other hand, the existing construction sector is a rather conservative industry. It is well known those 203 204 new and more sustainable designs, building materials and construction methods are only emerging and being implemented slowly. The other challenge for the energy efficiency of 205 206 buildings is related to high costs and long payback period for renovations.

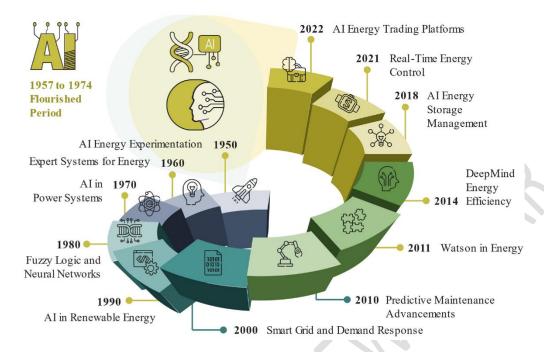


Figure 1: Al deployment in energy sector from 1950 to 2022 [22]

AI and its Systematic usage in Renewable energy Sectors:

Generative Artificial Intelligence: The energy business enveloping areas like oil and gas, renewable energy, and utilities assumes basic part in driving economies and social orders all over the planet. Dynamic inside the space has generally depended on master knowledge, authentic data investigation, and complex demonstrating procedures. However, the coming of generative artificial intelligence has achieved a huge change in the business. With its capacity to dissect tremendous measures of data, create precise models, and significantly more. AI devices are turning out to be progressively fundamental for energy organizations, offering robotization for data investigation, anticipating, advancing sustainability, thus significantly more. The far and wide reception of AI isn't just a pattern however an essential shift that can encourage development and drive achievement. Generative AI can be utilized in the energy business to further develop repository recreation and demonstrating. Overwhelminglyofdata, the viability of AI in carbon control depends on the profundity and nature of available datasets. Sensors and IoT technology, which empower more exact and various measurements. Gen-AI likewise assumes a

207

208

209

210

211

212

213

214

215

216

217

218

219

turnitin

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241242243244

246247

248

245

249250

251

252253

254

255

256

1 turnitin

vital part in dealing with the convergence of new data coming about because of the shift towards clean energy. This shift is exemplified by the fast development of appropriated energy resources (DERs), which aim to decentralize and confine energy creation.

- **Blockchain Technology:** Blockchain technology is changing the Renewable Energy Industry, to improve things. Blockchain technology, in this way, makes a decentralized energy sharing economy, where power can be traded between peers, settling the network. Blockchain technology will consider a safer, cost proficient, low carbon network - manufacturing a more grounded way towards a zero-carbon world. The combination of blockchain technology into the renewable energy area offers a huge number of possibilities; in any case, it likewise entails an assortment of deterrents and constraints that should be overcomes to guarantee a prosperous sending. A huge deterrent is the inborn unusualness of power dispatching frameworks, explicitly in regards to successfully dealing with the steadily changing qualities of renewable energy sources, for example, solar and wind. Moreover, the transparency innate in blockchain technology brings about protection concerns, which require careful treatment of delicate data to defend client security and stick to administrative necessities. Also, it is basic to focus on the insurance of the renewable energy foundation's respectability by guaranteeing protection from likely weaknesses and digital threats [23,24].
- Smart Grids: The connection between the smart grid and renewable energy spins around social occasion data. By utilizing smart grids, energy organizations can gather energy utilization data from each and every gadget on the grid, and afterward utilize this data to foster energy proficiency projects for their clients. It likewise permits energy organizations to screen energy stream and energy use in close to ongoing. Energy organizations can then decrease energy utilization through robotized request reaction frameworks which can switch off energy during top hours, bringing about energy reserve funds for property holders as well as energy organizations. Changing ordinary energy networks into Smart grids (SG) changes the energy area and further develops execution and unwavering quality. It additionally gives better administration, control, and correspondence

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

abilities. Smart grids are known to be cutting edge traditional grids because of the data stream capacities and two-ways power supply [25].

- **Artificial neural networks (ANNs):** It have picked up speed to where they have become famous and helpful models for order, clustering, acknowledgment, and expectation in a wide assortment of utilizations. ANNs are progressively being utilized for various applications because of their capacity and viability in taking care of various issues. They have shown to be extremely proficient when it is perplexing to separate through a mass of existing data, for instance, in the assessment of public transportation of individuals and merchandise, image acknowledgment, clinical examination, effectiveness investigation in nonlinear settings, or to change creation capabilities, among different applications. Inside the sustainable power blend, wind energy is presently viewed as the most prudent method for producing power. As of late, there has been new investigation into strategies fit for anticipating wind speed. This is vital because of the nonstop development of wind power age around the world. Inside sun powered energy, the ANN strategy has shown to be an option in contrast to conventional techniques, giving extraordinary advantages with regards to accuracy, execution, and displaying. The review demonstrates that the upside of ANN strategies over conventional methods is that they don't need information on interior framework boundaries, require less computational exertion, and proposition robust results to multivariate issues. ANNs have additionally been applied in various fields of sea, beach front, and environmental engineering [26].
- Energy Storage Application: Energy storage in renewable energy sources, especially in solar sources will allow progress in the energy sector, the impact of energy storage is its ability to smooth unpredictable energy generation and sustain the evolution of demand. The potent influence of every new technology is to be cost-effective so that energy storage does, and it leads to lower costs of lithium-ion batteries. With the help of the battery, power conversion system and monitoring and control systems we can built a system which can control energy system [27-29].

306

Internet of Tings (IoT): The combination of IoT in renewable energy portion is empowering its development by and large. Uses of Internet of Things moderate a few difficulties that are restricting the acknowledgment of renewables. The osmosis of IoT in solar and wind energy frameworks alongside sensors application can build their unwavering quality much further. To augment energy creation, the vast majority of the solar boards utilize double pivot trackers. These global positioning frameworks adjust the point of solar boards and assist them with getting the most extreme solar radiation over the course of the day. IoT frameworks can be utilized to remotely direct and control these global positioning frameworks to guarantee most extreme energy creation proficiency. By utilizing investigation arrangements, the development of the sun can be followed which can then be utilized to change the point of solar boards consequently. The expense related with creating energy from these sources has diminished throughout the long term yet coordinating them with IoT can additionally decrease expenses and increment reliability. IoT frameworks can help remotely screen and manage these trackers to guarantee their ideal capability. IoT arrangements are changing the energy area, empowering practical development and the reception of renewable energy frameworks through associated arrangements. IoT improves the exactness of figures with respect to renewable energy yield. IoT works with more prominent admittance to renewable energy sources, especially in emerging countries [30-33].

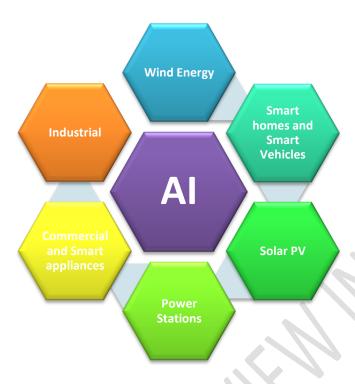


Figure 2: Applications of AI in different sectors

Conclusion

 The significant job of artificial intelligence strategies and their compelling job in creating renewable energy methods is admirable in each perspective from where we can apply in different regions. Subsequent to surveying the vast majority of the procedures utilized in various regions, it is vital to zero in on the deep learning andAI strategies to further develop workinrenewable energy. Deep LearningislikewiseanexceptionallypowerfulAIprocedure broadly took on for a great many applications. It presents a high learning limit fromenormousscopedatasets, upholdsunsupervisedlearning, andhasahighspeculationcapacity. It issignificantthat, amongallAImethods,theneuralnetworks(NNWs)arecurrentlygetting the most consideration for future applications. Anticipating photovoltaic power age is basic for safeguarding framework security and organizing asset utilization.

References:

- [1]Gopalakrishna, M., & Dey, S. (2022). Study and Modelling of Solar Energy and Solar Power
- Tower. Journal of Interdisciplinary Cycle Research, ISSN, (0022-1945), 360-365.
- 328 [2] Dey, S. (2025). Technological Advancement and Phenomenon of Environmental
- 329 Sustainability (TAPES) in 6G Wireless Communication System. 6G Impacts on Natural
- 330 Habitats and Human Life, 169-190.
- 331 [3]Sahoo, B. B., & Dey, S. (2024). SVM and RF Based Performance Enhancement in
- Organization: A Study on KGI, Odisha and its Organizational Growth. Journal of Engineering
- 333 *Research and Reports*, 26(6), 190-197.
- 334 [4] M. K. Deshmukh and S. S. Deshmukh, "Modelling of hybrid renewable energy systems,"
- Renewable and sustainableenergy reviews, vol. 12, no. 1, pp.235-249, 2008.
- 336 [5] S. E. Hosseini and M.A. Wahid, "Utilization of palm solid residue as a source of renewable
- and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, vol. 40, pp.
- 338 621-632, 2014.
- 339 [6] L. Zhang, J. Ling, and M. Lin, "Artificial intelligence in renewable energy: A comprehensive
- 340 bibliometric analysis," Energy Reports, vol. 8, pp.14072-14088, 2022/11/01/ 2022, doi:
- 341 https://doi.org/10.1016/j.egyr.2022.10.347.
- [7] C. Brancucci Martinez-Anido, B. Botor, A. R. Florita, C. Draxl, S. Lu, H. F. Hamann, B.-M.
- Hodge, The value of day- ahead solar power forecasting improvement, Solar Energy 129 (2016)
- 344 192–203. doi: 10.1016/j.solener.2016.01.049.
- 345 [8] T. Jonsson, P. Pinson, H. Madsen, On the market impact of wind energy forecasts, Energy
- 346 Economics 32 (2) (2010) 313–320. 'doi:101016/j.eneco.2009.10.018.
- 347 [9] B.-M. Hodge, C. B. Martinez-Anido, Q. Wang, E. Chartan, A. Florita, J. Kiviluoma, the
- 348 combined value of wind and solar power forecasting improvements and electricity storage,
- 349 Applied Energy 214 (2018) 1–15.
- 350 [10] Tamer Khatib, Mohamed Azah, Sopian Kamarulzaman, Mahmoud M. Assessment of
- artificial neural networks for hourly solar radiation prediction. Int. J. Photoenergy. 2012;2012.
- 352 [11] Ahmed Aljanad, Nadia ML Tan, Agelidis Vassilios G., Hussain Shareef. Neural network
- approach for global solar irradiance prediction at extremely short-time-intervals using particle
- swarm optimization algorithm. Energies. 2021; 14(4):1213.
- 355 [12] Tamer Khatib, Mohamed Azah, Sopian K., Mahmoud M. The 11th WSEAS/IASME
- 356 International Conference on Electric Power Systems. High Voltages; Electric
- Machines: 2011. Modeling of solar energy for Malaysia using artificial neural networks; pp. 486–
- 358 489
- 359 [13] B. MdAbul Ehsan, F. Begum, S. J. Ilham, and R.S. Khan, "Advanced wind speed prediction
- using convective weather variables through machine learning application,"Applied Computing
- 361 and Geosciences, vol. 1, p. 100002, 2019/10/01/ 2019, doi:
- 362 https://doi.org/10.1016/j.acags.2019.100002.

- 363 [14] M. Qiu, S.Y. Kung, and Q.Yang, —Editorial: IEEE transactions on sustainable computing,
- special issue on smart data and deep learning in sustainable computing, IEEE Transactions on
- 365 Sustainable Computing, vol. 4, no. 1, pp. 1–3, 2019.
- 366 [15]K.Yan,L.Liu,Y.Xiang,andQ.Jin,—Guesteditorial:Alandmachinelearningsolutioncyberintellig
- 367 encetechnologies: new methodologies and applications, IEEE Transactions on Industrial
- 368 *Informatics*, vol. 16, no. 10, pp. 6626–6631, 2020.
- 369 [16] Lili Zhang, Jie Ling, Mingwei Lin, "Artificial intelligence in renewable energy: A
- 370 comprehensive bibliometricanalysis", 2352-4847/© 2022 The Author(s), Elsevier Ltd
- 371 https://doi.org/10.1016/j.egyr.2022.10.347.
- 372 [17] Dey, S., Mohapatra, D., & Archana, S. D. R. P. (2014). An approach to calculate the
- performance and link budget of leo satellite (iridium) for communication operated at frequency
- 374 range (1650–1550) mhz. Int. J. Latest Trends Eng. Technol, 4(4), 96-103.
- 18] Dey, S. (2024). Phenomenon of Excess of Artificial Intelligence: Quantifying the Native AI,
- 376 Its Leverages in 5G/6G and Beyond. In Radar and RF Front End System Designs for Wireless
- 377 Systems (pp. 245-274). IGI Global Scientific Publishing.
- 178 [19] Dey, S., Khampariya, P., & Jain, M. (2022). Analysis of various AI based algorithms and
- learning perspective for 5G wireless networks. *IJME*, 7(5), 1234-124.
- 380 [20] Dey, S., Moharana, B., De, U. C., Samant, T., Behera, T. M., & Banerjee, S. (2024, March).
- 381 Search engine for qna using distributed inverted index system. In 2024 3rd International
- *Conference for Innovation in Technology (INOCON)* (pp. 1-4). IEEE.
- 183 [21] Dey, S., & Sahoo, B. B. (2025). AI Integration in Education 5.0: Design, Challenges, and
- Future Prospects. *Impacts of AI on Students and Teachers in Education 5.0*, 77-92.
- 385 [22] Danish, M. S. S. (2023). AI in Energy: Overcoming Unforeseen Obstacles. AI, 4(2), 406-
- 386 425. https://doi.org/10.3390/ai4020022
- 387 [23] Dey, S. (2021). Various Antenna Design Schemes in Recent MIMO Wireless
- 388 System. International Journal of Future Generation Communication and Networking, 14(1),
- 389 1570-1585.
- 390 [24] Dey, S. (2025). Phenomenon of AI-Driven Traffic Flow Prediction: Conceptualization,
- 391 Utilization, and Research Perspective. Neural Networks and Graph Models for Traffic and
- 392 *Energy Systems*, 293-316.
- 393 [25] Dey, S., Vandana, R., & Patikrit, U. (2014). Capacity calculation and performance analysis
- of different transmission structures in wireless communication. Int J Latest Trends Eng Technol
- 395 (*IJLTET*), *4*(4), 134-6.

- 396 [26] Dey, S. (2025). From Ingestible to Edible: Quantifying and Analyzing Edible Electronics'
- 397 Role in Environment Monitoring and Future Advancement. In Edible Electronics for Smart
- 398 Technology Solutions (pp. 197-216). IGI Global.
- 399 [27] Patnaik, S., Kumar, M. R., Mishra, S. K., & Gautam, S. P. (2023, May). Fuzzy controller
- 400 based DC bus voltage stabilization of hybrid energy storage system for PV applications with
- 401 charging efficiency analysis. In 2023 International Conference on Communication, Circuits, and
- 402 *Systems (IC3S)* (pp. 1-6). IEEE.
- 403 [28] Pattnaik, S., Kumar, M. R., Mishra, S. K., & Gautam, S. P. (2025). Enhanced Control
- 404 Approach for PV Hybrid Energy Storage System With Supercapacitors Using Fuzzy MPPT
- Technique and Optimally Tuned Fractional Controllers. *Energy Storage*, 7(2), e70147.
- 406 [29] Pattnaik, S., Kumar, M. R., Mishra, S. K., Gautam, S. P., Appasani, B., & Ustun, T. S.
- 407 (2022). DC bus voltage stabilization and SOC management using optimal tuning of controllers
- 408 for supercapacitor based PV hybrid energy storage system. *Batteries*, 8(10), 186.
- 409 [30] Dey, S. (2026). Defining the Role of Innovative AI and Blockchain Technology in 6G
- 410 Networks: Current Trends and Furture Research. In 6G Networks and AI-Driven
- 411 *Cybersecurity* (pp. 133-150). IGI Global Scientific Publishing.
- 412 [31] Dey, S., & Sahoo, B. B. (2025). Artificial Intelligence-Integrated Educational Revolution
- 413 (AIIER): Current Trends, Key Algorithms, and Future Research Path. In Educational AI
- 414 *Humanoid Computing Devices for Cyber Nomads* (pp. 99-116). IGI Global Scientific Publishing.
- 415 [32] Dey, S. (2025). Analysis and Quantification of Different Security Issues in Deploying AI
- and Blockchain: Cybersecurity Perspective. In *Deep Learning Innovations for Securing Critical*
- 417 *Infrastructures* (pp. 119-130). IGI Global Scientific Publishing.
- 418 [33] Dev, Snehasis. (2014) "Performance Analysis of LEO Satellite (Sky Bridge) For Mobile
- 419 Terminal with Varying Implementation Margin.", IJLTET, vol4, issue 4, 191-196.