- 1 Comparative assessment of BMP-9 levels and clinical implant parameters in
- 2 immediately restored implants using bone compaction drilling versus conventional
- 3 drilling: a randomized controlled study.

4 ABSTRACT

- 5 **Background-**This study aimed to compare the effects of bone compaction drilling and
- 6 conventional drilling techniques on bone marker BMP-9 and clinical implant parameters.
- Materials and Methods: Forty-two participants were randomized into two groups (n = 21
- 8 each): OD and CD. Randomization was computer-generated with allocation concealment,
- 9 and both participants and outcome assessors were blinded. Over a 6-month follow-up,
- peri-implant crevicular fluid (PICF) levels of bone morphogenetic protein-9 (BMP-9),
- implant stability, and crestal bone loss were evaluated.
- **Results:** At 2 weeks, the CD group exhibited significantly higher BMP-9 levels (177.67 \pm
- 13 8.24 pg/mL) than the OD group (150.43 \pm 4.96 pg/mL; p < 0.05). By 16 weeks, the OD
- group showed greater BMP-9 expression (440.90 ± 33.57 pg/mL vs. 423.62 ± 15.58
- pg/mL). Implant stability was consistently higher in the OD group at all time points, with
- 16 ISQ values initially declining at 2 weeks and increasing thereafter in both groups. The OD
- group also demonstrated significantly less crestal bone loss at each follow-up interval (p
- 18 <.05).

19 Conclusion:

- 20 Bone compaction drillingor osseodensificationusing Densah burs demonstrated enhanced
- secondary healing, as indicated by increased BMP-9 levels, along with improved implant
- 22 stability and reduced crestal bone loss compared to conventional drilling. These findings
- 23 indicate a potential biomechanical advantage for implant placement.

- 24 **Keywords:** BMP-9; Crestal bone loss; Immediate restoration; Implant; Implant stability;
- 25 Osseodensification

26 INTRODUCTION

- 27 Dental implants have completely transformed the realm of oral rehabilitation with a well-
- documented success rate typically ranging between 90% 95% after 10 years of follow-
- ups.^{1,2} However in the maxillary arch, there's often a deficiency in both the quality and
- 30 quantity of bone, because of which achieving successful osseointegration of implants is
- 31 particularly challenging. Insufficient bone surrounding implants may adversely affect
- implant stability, percentage of bone-to-implant contact (BIC) and bone volume (BV),
- 33 which consequently delays osseointegration.³
- In the past, undersizing the osteotomy, 4osteotome technique by Summer's 5 and implant
- 35 site preparation using peizosurgery⁶ have been introduced to improve osseointegration in
- low bone density areas. However major drawbacks like increased mechanical strain on the
- bone leading to bone compression and ischemia, increased marginal bone loss and risk of
- 38 overheating associated with ultrasonic devices reduced the clinical implications of these
- techniques. 6,7,8 Also use of wider, longer implants with a reverse buttress, larger thread
- depth, narrow pitch and a self-tapping design were reported to be beneficial in
- 41 compromised bone sites.⁹
- 42 Huwais in 2013¹⁰ developed an innovative osteotomy preparation method known as
- osseodensification (OD). This bone compaction drilling technique sparked a significant
- change in the methods used for implant site preparation, being a non-subtractive drilling
- 45 technique. Osseodensification technique is indicated where there is insufficient quantity or
- quality of bone. Relying on the elastic and plastic properties of bone, the

- 47 osseodensification (OD) technique aids in preserving the bone bulk, increasing the density at the implant preparation site and also accelerate the formation of new bone. 11 48 Various animal studies¹²⁻¹⁶have reported that the use of osseodensification or bone 49 compaction drilling compared to conventional drilling has resulted in higher insertion and 50 removal torque values, improved primary and secondary implant stability, higher BV and 51 BIC. This favours and rationalizes the use of bone compaction drilling technique. 52 Although numerous studies on animal models exists, its clinical impact in humans during 53 bone healing remains limited. Also, our understanding of the molecular mechanisms 54 involved in the process and its impact on crestal bone loss is lacking. 55 Various bone turnover markers act on the regulation of molecular and biological events 56 leading to osseointegration. Bone morphogenetic proteins (BMPs) belong to the 57 transforming growth factor beta (TGF-β) family. They play a crucial role in the formation 58 of bone and differentiation of stem cells. BMP-9, alternatively referred to as Growth 59 Differentiation Factor 2 (GDF2), is recognized as one of the most potent osteogenic bone 60 morphogenetic proteins.¹⁷ The levels of BMP-9 during the early and late stages of peri-61 implant bone healing may reflect the biological advantages conferred by osteogenic 62 differentiation ¹⁸ Additionally, implant stability and crestal bone loss (CBL) remain critical 63 indicators of long-term implant success. 64 This study aims to compare bone compaction drilling and conventional drilling techniques 65 using both molecular (BMP-9 expression) and clinical (implant stability, CBL) parameters. 66 The null hypothesis posits that there is no significant difference between the two
 - MATERIALS AND METHODS

68

69

techniques.

70 A two yearstudy was carried out in a tertiary hospital setting. Ethical approval (XIV-71 PGTSC-IIA/PII) was obtained and registration in the Clinical Trial Registry of India 72 (ICMR-NIMS) (CTRI/2023/03/050409) was done prior to the commencement of the study. The study followed a randomized controlled design (computer-generated random numbers) 73 with participants and outcome assessor blinding following the CONSORT (Consolidated 74 Standards of Reporting Trials) guidelines. 19 Allocation of treatment was concealed using 75 opaque sealed envelope. Sample size of 21 participants in each group was calculated based 76 on the minimum difference $d = max (\sigma 1, \sigma 2)$, considered to be clinically significant. Type I 77 error $\alpha = 5\%$ corresponding to 95% confidence level, Type II error $\beta = 10\%$ for detecting 78 results with 90% power of study. 17 79 Participants visiting prosthodontics clinic for rehabilitation of a single edentulous space in 80 81 the maxillary arch that could be restored with an implant supported single unit crown were screened as per predetermined inclusion and exclusion criteria (Figure 1). Participants 82 aged 18-60 years of both genders, capable of comprehending and signing an informed 83 consent, with a bounded edentulous space in the maxillary arch post-extraction for at least 84 3 months were included. Keratinized tissue >2 mm from mid crest to mucogingival 85 86 junction, simplified oral hygiene index of 0-3 indicating good to fair oral hygiene and adequate bone for optimal implant placement and a safe distance (>2 mm) from vital 87 tissues and an opposing dentition with a stable occlusion were assessed and included in the 88 89 study. Participants with history of systemic conditions or under medications, presence of any 90 91 local risk factor, history of treated periodontitis, smoking, any parafunctional habits, 92 pregnant or lactating women were excluded. Also participants fulfilling any criteria either group 1 or 2 according to second ITI (International Team of Oral Implantology) Consensus 93

report were excluded from the study. ²⁰The participants underwent comprehensive clinical 94 95 examination, laboratory investigations, and radiological assessment before being enrolled 96 in the study. 97 All patients were prescribed prophylactic antibiotics before implant surgery. Drilling 98 technique for bone compaction drilling or osseodensification group (OD) was using Densah Burs (Versah International, USA) (Figure 2 and 3) and for CD group was using the 99 conventional drills supplied by the manufacturer corresponding to the implant (Figure 100 101 2and 4). MIS implants (MIS Implants Technologies Ltd, Israel) were used which have an 102 SLA treated surface with V shaped design, pitch of 1.0 mm, thread depth of 0.5 mm and an internal hexagonal connection. Implants were placed 0.5 mm subcrestal into the prepared 103 104 osteotomy with the rate of 30 Ncm, and tightened using a torque wrench. Following 105 implant placement with either technique, immediate restoration was done with provisional poly methyl methacrylate (PMMA) crown fabricated using CAD/CAM within 1 week 106 withprosthesis held out of occlusion. ²¹ Afollow-up program of six months was designed for 107 108 all participants. Final implant prosthesis was fabricated after appropriate healing time (6 months) abiding by the principles of implant protected occlusion. 109 110 Samples for the assessment of BMP-9 levels were collected at 2 weeks, 8 weeks and 16 weeks post-implantation. Samples were collected prior to clinical measurements to 111 112 minimize blood contamination. Area around implant was isolated with the help of cotton 113 roles and any layer of supragingival plaque, if present was removed carefully. After air 114 drying the area, sterile absorbent paper points were inserted in the sulcus until light 115 resistance was felt and held steady for 30 seconds. For each implant site, four samples 116 were collected per time point and were transferred into a single Eppendroff tube containing 117 100µl of phosphate buffer solution. (Figure 5A). Visibly contaminated samples with blood were discarded and recollected after ensuring haemostasis. Samples were centrifuged at 118

119 1000 rpm for 10 minutes and stored at -80°C. While PICF volume was not measured 120 directly, standardization was ensured by consistent sampling time and PBS dilution. BMP-121 9 levels were quantified using sandwich ELISA technique (E0051Hu, Bioassay Technology Laboratory, Zhejiang, China) and expressed in picogram/millilitre. 122 123 Primary implant stability was assessed immediately after implant placement. Smart Peg (MIS Implants Technologies Ltd, Israel) specific to the implant system and the restorative 124 platform diameter was utilized and subsequently resonance frequency analysis (RFA) was 125 conducted using Osstell (Integration Diagnostics, Savedalen, Sweden)). Average of three 126 127 readings was recorded in terms of implant stability quotient (ISQ). Secondary stability was recorded in similar way in terms of ISQ values assessed at 2 weeks, 8 weeks and 16 weeks. 128 129 (Figure 5B). Standardized periapical radiographs were captured using the long-cone paralleling 130 technique, with individualized sensor holders employed for consistent and reproducible 131 positioning. The acquired images were analysed using ImageJ software (National Institutes 132 of Health, Bethesda, MD, USA). Dimensional calibration of the images was performed 133 134 using the known length of the inserted implant to correct for any magnification errors. Crestal bone loss was measured by subtracting the baseline measurements recorded at the 135 136 time of provisional prosthesis delivery frommeasurements taken at 2 weeks, 8 weeks, 16 137 weeks, and 6 months postoperatively (Figure 5C). Radiographic analysis was conducted independently by two calibrated investigators. To assess intra- and inter-examiner 138 139 reliability, 20% of the radiographs were randomly selected and re-evaluated after a two-140 week interval. Intra-class correlation coefficients (ICCs) were calculated, and values above 141 0.85 were considered acceptable, indicating high reliability. To determine the method error, duplicate measurements were analysed using Dahlberg's formula, and the standard 142 143 error of measurement (SEM) was calculated. This ensured that any reported differences in

- bone loss between groups exceeded the magnitude of measurement error, thereby
- supporting the validity of the statistical findings.
- Sample size was calculated based on the variation in BMP-9 levels among the study
- 147 groups, using the appropriate formula which is

148
$$n = k \frac{\left(z_{\alpha} + z_{\beta}\right)^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2}\right)}{d^{2}}$$

- Where n = number of samples to be collected
- $\sigma 1 = 300$, The SD of BMP-9 in first group with reduced torque, $\sigma 2 = 250$, The SD of
- BMP-9 in second group with conventional torque.³³ The data were analysed with a
- statistical software package (IBM SPSS Statistics, v26.0; IBM Corp) ($\alpha = .05$). ²² Unpaired t
- test, repeated measures ANOVA followed by Bonferroni post hoc analysis and Pearson's
- 154 correlation were the statistical tools used.

156

RESULTS

- The OD group had notably lower levels of BMP-9 after 2 weeks compared to the CD
- group (OD group: 150.43±4.96 and CD group: 177.67±8.24) which was statistically
- significant(P < 0.05). However, the levels of BMP-9 were higher at 8 weeks (OD group:
- 274.19 \pm 12.16 and CD group: 267.24 \pm 14.50) and 16 weeks (OD group: 440.90 \pm 33.57 and
- 161 CD group: 423.62±15.58) in the osseodensification group with the difference being
- statistically significant at 16-week(P < 0.05). There was a consistent upward trend in BMP-
- 9 levels from the 2nd week to the 16th week in both the groups indicating increased
- 164 formation of bone during this period. (Table 1)
- The mean ISQ values at baseline (OD group: 75.19±4.92 and CD group: 64.90±6.80), at 2
- weeks (OD group: 69.24±7.74 and CD group: 61.43±8.26), at 8 weeks (OD group:
- 167 72.76±5.12 and CD group: 62.95±8.40) and at 16 weeks (OD group: 74.62±4.57 and CD

168 group: 64.57±4.17) indicated that the implant stability of the OD group was more than the CD group which was statistically significant (P < 0.05) at every time point. There was a 169 170 decrease in the ISQ values at 2 weeks when compared to the baseline and subsequently showed a gradual increase in both the groups. (Table 2) 171 There was evidence of significant difference (P < 0.05) in the crestal bone loss of both the 172 OD and CD groups at all the time intervals. The mean values of crestal bone loss in mm at 173 2 weeks (OD group: 0.07 ± 0.01 and CD group: 0.10 ± 0.03), at 8 weeks (OD group: 174 0.24±0.03 and CD group: 0.29±0.05), at 16 weeks (OD group: 0.37±0.05 and CD group: 175 0.45±0.07) and at 6 months (OD group: 0.58±0.09 and CD group: 0.67±0.08) indicated 176 that the crestal bone loss of the CD group was significantly more than the OD group. 177 178 (Table 3) Pearson's correlation analysis showed that there was a significant (P<0.05) correlation 179 between BMP-9 and implant stability in the OD group and between BMP-9 and crestal 180 bone loss in the both the OD and CD group (Supplementary Table 1 and2) 181 182 183 **DISCUSSION** Over the past two decades, significant advancements in implantology have positioned 184 endosseous implants as the preferred method for replacing missing teeth. Despite their 185 widespread success, implant failures do occur, with rates reaching 8.16% and 4.93% in the 186 maxillary and mandibular arch respectively.²²Thiebotet al²³ noted that in most cases of 187 implant failures, the bone involved was classified as type III or IV. Ko et al²⁴showed that 188 189 the cortical bone thickness is least in the anterior and posterior maxilla, elucidating why 190 83% of the failures identified in Thiebot et al 's study occurred in the maxilla, as also observed in Kern et al's5-year follow-up investigation.²⁵ 191

192	The osseodensification technique, introduced by Huwaisin 2013 ¹⁰ utilizes specially
193	designed Densah burs to preserve and compact bone rather than removing it. This method
194	promotes dense autografted bone formation around the implant, improving bone-implant
195	contact and increasing insertion torque, thereby ensuring primary implant stability. 11
196	The demographic analysis confirmed no significant influence of age or gender between the
197	groups, ensuring homogeneity. The central biological marker evaluated in this study was
198	bone morphogenetic protein-9. BMP-9 plays a pivotal role in osteoblast differentiation and
199	bone tissue formationby activating the SMAD-dependent signalling pathway. ²⁶ Studies by
200	Nieet al ²⁷ , Kawecki F ²⁸ , Haimov H ²⁹ and others have enumerated the recent applications of
201	BMP-9 ranging from alveolar bone healing to coatings on titanium implants.
202	BMP-9 levels increased progressively across all time points in both groups, with
203	significantly higher levels observed in the OD group at the 8- and 16-week follow-ups.
204	These findings align with the known osteoinductive properties of BMP-9, which peak
205	during thelate stages of bone remodelling. ³⁰ The lower levels observed in the OD group at
206	2 weeks may reflect the delayed inflammatory and resorptive phase due to early bone
207	compaction. 14 By 8 and 16 weeks, healing chambers created by OD likely served as active
208	sites for osteogenesis, accounting for elevated BMP-9 expression. 31,32
209	Implant stability values both primary and secondary were significantly higher in the OD
210	group compared to the CD group. These results which are in alignment withother animal
211	and human studies, ^{13,15,33,34,35} reinstate that OD promotes a biomechanical environment
212	conducive to immediate and long-term implant success.
213	Additionally, crestal bone loss was significantly lower in the OD group at all follow-ups.
214	This can be attributed to increased bone volume, higher bone density, and reduced
215	micromovement due to superior primary stability. Although some previous studies have
216	reported no statistically significant difference in crestal bone loss between drilling

217 techniques, they were often limited by smaller sample sizes or restricted anatomical locations. 36, 37 218 219 Importantly, this study found a positive linear correlation between BMP-9 levels and 220 implant stability, which was statistically significant in the OD group. This supports the biological rationale that increased osteogenic activity, as signalled by BMP-9, contributes 221 to enhanced implant anchorage and stability over time. 222 223 The study also found a positive correlation between BMP-9 and crestal bone loss, which may appear contradictory given BMP-9's role in bone formation. However, this 224 relationship likely reflects a reactive biological response rather than a direct causative one. 225 As bone remodelling intensifies (indicated by higher BMP-9 levels), localized bone 226 227 turnover may transiently elevate, especially in regions subject to biomechanical stress, surgical trauma, or inflammatory response. Given the multifactorial nature of crestal bone 228 loss, which includes biological, biomechanical, and surgical influences, this correlation 229 should not be interpreted as BMP-9 causing bone loss. Instead, it suggests that elevated 230 BMP-9 may co-occur with active bone remodelling processes, some of which could 231 232 contribute to marginal bone alterations. This study rejects the null hypothesis and confirms that bone compaction drilling enhances 233 234 peri-implant bone healing, increases implant stability, and reduces crestal bone loss, 235 supported by the levels of bone marker and clinical parameters. Limitations of this study include the relatively small sample size, limited follow-up 236 237 duration, and the unicentric design, which may introduce Berksonian bias. Future research 238 with broader populations and longer observation periods is needed to validate these 239 findings further. Additionally, more detailed exploration of the temporal relationship between BMP-9 expression and specific bone remodelling phases may provide deeper 240 241 insights into peri-implant healing dynamics.

242	CONCLUSION
243	Within the limitations of the present study, it can be concluded that the bone compaction
244	drilling technique demonstrated a superior biological response compared to conventional
245	drilling, as evidenced by elevated BMP-9 levels. Additionally, clinical parameters,
246	including improved implant stability and reduced crestal bone loss, further support the
247	efficacy of osseodensification as a favourable technique for implant placement.
248 249	REFERENCES
250	1. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the
251	survival and complication rates of implant-supported fixed dental prostheses (FDP s) after
252	a mean observation period of at least 5 years. Clinical Oral Implants Res 2012;22–38.
253	2. Hjalmarsson L, Gheisarifar M, Jemt T. A systematic review of survival of single
254	implants as presented in longitudinal studies with a follow-up of at least 10 years. Eur J
255	Oral Implantol 2016;9:S155-162.
256	3. Misch CE. Bone density: A key determinant for treatment planning. In: Resnik
257	Randolph R, Misch CE Contemporary Implant Dentistry. 4th ed. Mosby; 2020.p. 130-146.
258	4. Alghamdi H, Anand PS, Anil S. Undersized Implant Site Preparation to Enhance
259	Primary Implant Stability in Poor Bone Density: A Prospective Clinical Study. J Oral
260	Maxillofac Surg 2011;69:e506–12.
261 262	5. Summers RB. A new concept in maxillary implant surgery: The osteotome technique. Compendium 1994;15:152,154-6.
202	Componential 177 1,10.102,10 1 0.

- 6. Lajolo C, Valente NA, Romandini WG, Petruzzi M, Verdugo F, D'Addona A. Bone
- heat generated using conventional implant drills versus piezosurgery unit during apical
- 265 cortical plate perforation. J Periodontol 2018;89:661–8.
- 7. Degidi M, Daprile G, Piattelli A. Influence of Underpreparation on Primary Stability of
- Implants Inserted in Poor Quality Bone Sites: An In Vitro Study. J Oral Maxillofac
- 268 Surg2015;73:1084-8.
- 8. Shayesteh YS. A comparative study of crestal bone loss and implant stability between
- osteotome and conventional implant insertion techniques: A randomized controlled clinical
- trial study. Clin Implant Dent Relat Res 2013;15:350-7.
- 9. Khaohoen A, Sornsuwan T, Chaijareenont P, Poovarodom P, Rungsiyakull C,
- 273 Rungsiyakull P. Biomaterials and Clinical Application of Dental Implants in Relation to
- Bone DensityA Narrative Review. J Clin Med 2023;12:6924.
- 10. Huwais S. Fluted osteotome and surgical method for use. US-2017303935-A1. 2013.
- 276 11. Huwais S, Meyer E. A Novel Osseous Densification Approach in Implant Osteotomy
- 277 Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and
- Bone-to-Implant Contact. Int J Oral Maxillofac Implants 2017;32:27–36.
- 12. Oliveira PGFP, Bergamo ETP, Neiva R, Bonfante EA, Witek L, Tovar N, et al.
- 280 Osseodensification outperforms conventional implant subtractive instrumentation: A study
- in sheep. Mater Sci Eng C Mater Biol Appl 2018;90:300–7.
- 13. Lahens B, Lopez CD, Neiva RF, Bowers MM, Jimbo R, Bonfante EA, et al. The effect
- of osseodensification drilling for endosteal implants with different surface treatments: A
- study in sheep. J Biomed Mater Res B Appl Biomater 2019;107:615–23.

- 285 14. Delgado-Ruiz R, Gold J, Somohano Marquez T, Romanos G. Under-Drilling versus
- 286 Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone
- Density of the Implant Bed Walls. Materials 2020;13:390.
- 15. Mullings O, Tovar N, Abreu de Bortoli JP, Parra M, Torroni A, Coelho PG, et al.
- Osseodensification Versus Subtractive Drilling Techniques in Bone Healing and Implant
- 290 Osseointegration: Ex Vivo Histomorphologic/Histomorphometric Analysis in a Low-
- Density Bone Bovine Model. Int J Oral Maxillofac Implants 2021;36:903–9.
- 16. Seo DJ, Moon SY, You JS, Lee WP, Oh JS. The Effect of Under-Drilling and
- Osseodensification Drilling on Low-Density Bone: A Comparative Ex Vivo Study.
- 294 Applied Sciences 2022;12:1163.
- 17. Verrastro Neto A, Andrade R, Corrêa MG, Casarin RCV, Casati MZ, Pimentel SP, et
- al. The impact of different torques for the insertion of immediately loaded implants on the
- 297 peri-implant levels of angiogenesis- and bone-related markers. Int J Oral Maxillofac Surg
- 298 2018;47:651–7.
- 18. Kawecki F, Jann J, Fortin M, Auger FA, Faucheux N, Fradette J. Preclinical evaluation
- of BMP-9-treated human bone-like substitutes for alveolar ridge preservation following
- tooth extraction. Int J Mol Sci. 2022;23:3302.
- 302 19. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al.
- 303 CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel
- group randomised trials. BMJ. 2010;340:c869
- 305 20. Buser D, Von Arx T, Ten Bruggenkate C, Weingart D. Basic surgical principles with
- 306 ITI implants. Clinical Oral Implants Res 2000;11:59–68.

- 21. IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp
- 308 2019.

- 310 22. Moy PK, Medina D, Shetty V, Aghaloo TL. Dental implant failure rates and associated
- risk factors. Int J Oral Maxillofac Implants 2005;20:569–77.
- 23. Thiebot N, Hamdani A, Blanchet F, Dame M, Tawfik S, Mbapou E, et al. Implant
- failure rate and the prevalence of associated risk factors: a 6-year retrospective
- observational survey. J Oral Med Oral Surg 2022;28:19.
- 315 24. Ko Y, Huang H, Shen Y, Cai J, Fuh L, Hsu J. Variations in crestal cortical bone
- thickness at dental implant sites in different regions of the jawbone. Clin Implant Dent Rel
- 317 Res 2017;19:440–6.
- 318 25. Kern J, Kern T, Wolfart S, Heussen N. A systematic review and meta-analysis of
- removable and fixed implant-supported prostheses in edentulous jaws: post-loading
- implant loss. Clinical Oral Implants Res 2016;27:174–95.
- 321 26. Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in
- mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng2013;06:32–
- 323 52.
- 324 27. Nie L, Yang X, Duan L, Huang E, Pengfei Z, Luo W, et al. The healing of alveolar
- bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA
- 326 scaffolds. Sci Rep 2017;7:6373.
- 327 28. Kawecki F, Jann J, Fortin M, Auger FA, Faucheux N, Fradette J. Preclinical evaluation
- of BMP-9-treated human bone-like substitutes for alveolar ridge preservation following
- tooth extraction. Int J Mol Sci. 2022;23:3302.

- 330 29. Haimov H, Yosupov N, Pinchasov G, Juodzbalys G. Bone Morphogenetic Protein
- Coating on Titanium Implant Surface: a Systematic Review. J Oral Maxillofac Res
- 332 2017;8:e1.
- 333 30. Kuzyk PRT, Schemitsch EH. The basic science of peri-implant bone healing.
- 334 Indian J Orthop 2011;45:108–15.
- 31. Mello-Machado RC, Sartoretto SC, Granjeiro JM, Calasans-Maia J de A, de Uzeda
- MJPG, Mourão CF de AB, et al. Osseodensification enables bone healing chambers with
- improved low-density bone site primary stability: an in vivo study. Sci Rep
- 338 2021;11:15436.
- 32. Souza ATP, Bezerra BLS, Oliveira FS, Freitas GP, Bighetti Trevisan RL, Oliveira PT,
- et al. Effect of bone morphogenetic protein 9 on osteoblast differentiation of cells grown
- on titanium with nanotopography. J Cell Biochem 2018;119:8441–9.
- 33. Mercier F, Bartala M, Ella B. Evaluation of the Osseodensification Technique in
- 343 Implant Primary Stability: Study on Cadavers. Int J Oral Maxillofac Implants
- 344 2022;37:593–600.
- 34. Gaspar J, Esteves T, Gaspar R, Rua J, João Mendes J. Osseodensification for implant
- site preparation in the maxilla- a prospective study of 97 implants. Clin Oral Impl Res
- 347 2018;29:163–163.
- 35. Fereño-Cáceres A, Vélez-Astudillo R, Bravo-Torres W, Astudillo-Rubio D, Alvarado-
- Cordero J. Primary stability with osseodensification drilling of dental implants in the
- posterior maxilla region in humans: A systematic review. Dent Med Probl. 2024 Jul-
- 351 Aug;61(4):605-612.

352	36. Sultana A, Makkar S, Saxena D, Wadhawan A, Kusum CK. To compare the stability
353	and crestal bone loss of implants placed using osseodensification and traditional drilling
354	protocol: A clinicoradiographical study. J Indian Prosthodont Soc 2020;20:45–51.
355	37. Aloorker S, Shetty M, Hegde C. Effect of Osseodensification on Bone Density and
356	Crestal Bone Levels: A Split-mouth Study. J Contemp Dent Pract 2022;23:162–8.
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	

TABLES

Table 1. Comparison of levels of BMP-9 in OD and CD groups

	Group	N	Mean	Std.	Std. Error	p-value
BMP Levels			(pg/ml)	Deviation	Mean	
2 wk	OD group	21	150.43	4.96	1.083	0.000 ^a
2 WK	CD group	21	177.67	8.24	1.798	
8 wk	OD group	21	274.19	12.16	2.653	0.100
	CD group	21	267.24	14.50	3.164	
16 wk	OD group	21	440.90	33.57	7.326	0.039 ^a
	CD group	21	423.62	15.58	3.400	

- 374 Values are presented as mean±standard deviation
- 375 CD- conventional drilling, OD- osseodensification drilling
- 376 ^{a)}Statistically significant difference

Table 2. Comparison of implant stability in OD and CD groups

Implant	Group	N	Mean	Std.	Std.	p-value
Stability			(ISQ)	Deviation	Error	
					Mean	
Baseline	OD group	21	75.19	4.92	1.074	0.000^{a}
	CD group	21	64.90	6.80	1.484	18
2 weeks	OD group	21	69.24	7.74	1.688	0.003^{a}
	CD group	21	61.43	8.26	1.802	
8 weeks	OD group	21	72.76	5.12	1.116	0.000^{a}
	CD group	21	62.95	8.40	1.834	
16 weeks	OD group	21	74.62	4.57	0.996	0.000^{a}
	CD group	21	64.57	4.17	0.909	

Values are presented as mean±standard deviation

387 CD- conventional drilling, OD- osseodensification drilling

388 ^{a)}Statistically significant difference

Table 3. Comparison of crestal bone loss in OD and CD groups.

Crestal	Group	N	Mean	Std.	Std. Error	p-value
bone loss			(mm)	Deviation	Mean	
2 weeks	OD group	21	0.071	0.011	0.0025	0.000^{a}
	CD group	21	0.104	0.026	0.0057	
8 weeks	OD group	21	0.244	0.028	0.0060	0.001 ^a
	CD group	21	0.287	0.049	0.0107	
16 weeks	OD group	21	0.367	0.055	0.0120	0.000a
	CD group	21	0.469	0.070	0.0152	
6months	OD group	21	0.584	0.094	0.0205	0.002 ^a
	CD group	21	0.675	0.080	0.0174	

396 Values are presented as mean±standard deviation

397 CD- conventional drilling, OD- osseodensification drilling

^{a)}Statistically significant difference

406	Figure 1: CONSORT flow diagram.
407	Figure 2. Preoperative Computed Tomography scan. (A) Osseodensification (OD) group.
408	(B) Conventional drilling (CD) group.
409	Figure 3. Osseodensification (OD) group. (A) Preoperative site. (B) Implant site
410	preparation using Densah bur drills. (C) Prepared osteotomy.
411	Figure 4. Conventional drilling (CD) group. (A) Preoperative site. (B)Preparated
412	osteotomy using conventional drilling technique.
413	Figure 5. Assessment of outcomes. (A) BMP-9 using PICF (peri-implant crevicular fluid)
414	(B) Implant stability using RFA (Resonance Frequency Analysis). (C)Crestal bone loss
415	using IOPA (intraoral periapical radiographs).
416	
417	
418	
419	
420	
421	
422	
423	
424	
425	

