ISSN(O): 2320-5407 | ISSN(P): 3107-4928

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-55023

Title: Coût de production du litre de lait cru en ferme laitière dans le bassin laitier de Niamey

1 - Production cost of a liter of rawmilk on a dairyfarm in Niamey'sdairy basin.

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is	Originality		\checkmark		
	Techn. Quality			\checkmark	
	Clarity		$\sqrt{}$		
	Significance		$\sqrt{}$		

Reviewer Name: Dr. Manju M Date: 01-12-2025

Detailed Reviewer's Report

1. Context and Rationale

- Improving local milk competitiveness in the Niamey basin requires understanding farm-level production costs.
- Economic assessment guides investments, optimizes practices, and informs valuechain stakeholders

2. Overall Objective

• Determine the cost of producing one liter of raw milk in dairy farms based on structural characteristics, investments, and herd-management practices.

3. Specific Objectives

- Classify dairy farms by technical and organizational traits.
- Assess cost components of milk production.
- Compare cost variations among farm types.
- Identify profiles with lowest and highest production costs.

4. Study Area and Geographic Coverage

• Conducted in Niamey and four peri-urban communes (Bitinkodji, Karma, Kollo, Namaro), a peri-urban dairy basin with mixed livestock farming.

5. Dairy Farm Census

• Out of 33 farms identified, 10 had lactating cows during verification and formed the study sample.

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

6. Sampling Strategy

• Purposive selection of 10 farms representing diverse production systems, sizes, and management practices.

7. Data Collection Approach

- Digital KoboODK survey and interviews with farm owners and resource persons.
- · Collected data on:
 - > Land area
 - > Infrastructure and equipment
 - > Herd characteristics (size, breeds, reproduction)
 - Labor organization
 - > Feeding strategies
 - > Mobility and grazing
 - > Milk production levels

8. Analytical Methodology

- Two-step statistical analysis:
 - 1. Principal Component Analysis (PCA) to reduce dimensionality.
 - 2. Hierarchical Cluster Analysis (HCA) to classify farms into homogeneous groups.

9. Farm Typology Criteria

- Based on:
 - > Level of crop-livestock integration
 - Intensification (selection, genetics, inputs)
 - ➤ Market orientation (≥50% milk sold vs. other products)

10. Identification of Farm Types

- Three distinct types identified based on:
 - Land size
 - Labor force
 - > Infrastructure intensity
 - > Herd size and breed composition
 - > Reproductive management
 - Mobility
 - Crop-livestock integration

11. Farm Type I Characteristics

Large land and herd

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

- · Many workers
- High infrastructure investment
- Sedentary system with improved breeds
- Significant fodder production
- Result: Highest cost 525 FCFA/L

12. Farm Type II Characteristics

- Medium investment
- Moderate infrastructure
- Mixed breeds
- Partial herd mobility
- · Some crop activity and limited fodder
- Result: Intermediate cost 293 FCFA/L

13. Farm Type III Characteristics

- Low infrastructure investment
- Local breeds
- Mixed sedentary and mobile grazing
- Reduced labor and input use
- Minimal crop-livestock integration
- Result: Lowest cost 257 FCFA/L

14. Production Performance

- Average daily milk production:
 - > Type I: 23 L/day
 - > Type II: 32 L/day (highest efficiency)
 - > Type III: 12.5 L/day

15. Cost Components

- Feed: 66-74% of total cost
- Labor: 5-25%
- Infrastructure & equipment: 7-11%
- Health: ~2%
- Artificial insemination: 0-11%

16. Average Production Cost

- Overall mean cost: 359 FCFA/L
- Indicates non-profitability under current conditions.

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

17. Economic Interpretation

- Type I: Highest cost due to heavy investment and low productivity.
- Type II: Balanced cost and productivity, good compromise.
- Type III: Low-cost model using local resources efficiently.

18. Competitiveness Issue

• Local milk cost exceeds market price (250-350 FCFA/L), reducing profitability and competitiveness versus imported milk.

19. Key Implications

- Type III demonstrates that low investment, local breeds, mixed management, and natural resources reduce costs.
- Guides policymakers, development partners, and farmers to improve economic viability.

20. Major Applications

- · Classifying farms for targeted technical advice
- Identifying key cost components
- · Informing policy and investment decisions
- Supporting farmers in productivity improvement

21. Main Limitations

- Small sample (10 farms) limits representativeness
- Calculation excludes by-products, possibly overestimating costs
- Single-period data collection ignores seasonal variations

22. Recommendations

- Promote balanced, diversified rations
- Encourage local fodder production
- Implement herd management best practices
- Develop Al use with technical support
- Provide subsidies, credit access, and infrastructure support
- Conduct training and ongoing advisory systems for cost optimization