

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: IJAR-55078

Title: Phytochemical study and larvicidal activity evaluation of essential oils from Cymbopogon citratus

(D.C.) Stapf. and Cymbopogon giganteus Chiov. on Anopheles gambiae s.l.

Recommendation:

Accept as it isYes
Accept after minor revision
Accept after major revision
Do not accept (Reasons below)

Rating	Excel.	Good	Fair	Poor	
Originality		$\sqrt{}$			
Techn. Quality		$\sqrt{}$			
Clarity			$\sqrt{}$		
Significance		$\sqrt{}$			

Reviewer Name: Professor Dr Dillip Kumar Mohapatra

Detailed Reviewer's Report

- 1. Strengths
- a. Strong scientific relevance

The study targets *Anopheles gambiae*, the major malaria vector, addressing a **high-priority public health problem**.

Work aligns with the global need for eco-friendly alternatives to synthetic insecticides.

b. Well-structured methodology

Essential oil extraction using a standard Clevenger apparatus maintains reproducibility.

Larvicidal bioassay strictly follows WHO protocol (1985), adding credibility and comparability.

LD50 computation and ANOVA with Tukey's test show appropriate statistical analysis.

c. Clear results & comparative insight

Extraction yields of both species clearly reported.

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Identification of C. citratus components (citral-rich profile) is well presented.

Effective comparison between **natural essential oils vs. deltamethrin** strengthens scientific value.

d. Importance for local biodiversity

Uses aromatic plants found in Niger—contributes to valorisation of local resources.

Supports sustainable control strategies using native Cymbopogon species.

2. Weaknesses

a. Incomplete phytochemical characterization

Essential oil of C. giganteus is **not analysed in this study**; reliance on literature limits originality.

Lack of detailed chromatograms or identification of compounds reduces the completeness of phytochemical analysis.

b. Limited scope of biological testing

Only **2nd and 3rd instar larvae** tested; absence of pupal or adulticidal evaluation.

No evaluation of **synergistic effects**, repellency, or residual toxicity.

Only one synthetic insecticide (deltamethrin) used for comparison.

c. Data presentation issues

Figures lack statistical annotations (error bars, p-values).

Table 4 has minor formatting inconsistencies and unclear letter-coded comparisons.

d. Interpretation gaps

Mechanism of action of citrals/limonene is not deeply discussed.

Environmental and non-target toxicity assessment is missing.

Stability and shelf-life of essential oils not addressed.

e. Limited generalizability

Essential oils vary widely due to climate, soil, season; single-location sampling limits extrapolation.

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

- 3. Significance of the Study
- a. Scientific Significance

Adds evidence that **citral-rich** essential oils from *C. citratus* and limonene-rich oils from *C. giganteus* possess strong larvicidal activity.

Provides updated LD50 values for wild Anopheles gambiae populations.

b. Environmental Significance

Results support the use of **biodegradable**, **plant-based insecticides** that reduce ecological burden compared to pyrethroids.

Highlights opportunity for community-based integrated vector management.

c. Public Health Significance

Offers an alternative approach for malaria-endemic countries facing rising pyrethroid resistance.

Could guide development of **affordable mosquito-control products** using local agricultural resources.

4. Key Points (Summary for Publication)

Extraction yields:

C. citratus (1.91%) > C. giganteus (0.46%).

Chemical composition:

C. citratus EO dominated by α -citral (44.8%) and β -citral (32.7%).

C. giganteus composition not analysed in this study but literature indicates **limonene chemotype**.

Larvicidal activity:

C. giganteus EO most active (LD50 = 70.13 ppm).

C. citratus EO moderately active (LD50 = 114.36 ppm).

Deltamethrin highly potent (LD50 = 2.3 ppm).

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Dose-dependent mortality observed for all treatments.

Essential oils are less potent than synthetic insecticides, but more environmentally friendly.

Study supports the traditional use of Cymbopogon plants as mosquito repellents.