

1 **Evaluation of the physicochemical quality of milk from Djallonkè goats fed silage made from**
2 ***Pennisetum pedicellatum Trin* in Burkina Faso**

6 **ABSTRACT**

7 In order to assess the physical and chemical quality of milk from goats fed a diet of silage made from
8 *Pennisetum pedicellatum Trin*, the second most common grass in Burkina Faso, the study compared
9 four diets, two feeding practices, diet A (natural grazing) and diet B (natural grazing + corn bran), and
10 two diets, C (silage + corn bran + peanut husks) and D (silage + corn bran), based on silage made from
11 this grass. In a Latin square design with four experimental units or lots, the factors were the type of diet
12 and the distribution of the goats into twelve (12) goats, with three (3) per lot. The bromatological values
13 of samples of the pre-wilted and ensiled grass were analyzed. The amount of feed refused for diets A
14 and B and the average ash, dry matter, fat, protein, and lactose content of the milk were determined for
15 each batch. Analysis of the variance of the results using R revealed that pre-wilted *Pennisetum*
16 *pedicellatum Trin* silage resulted in losses in nitrogen (-4%), total nitrogen (-20%) and digestibility (-
17 12%). Feed conversion of the silage is better without weight gain with diet C. Unlike diet D, diet C
18 reduces the fat and lactose content of milk obtained with diets A and B. The addition of additives to
19 *Pennisetum pedicellatum* silage in barrels is essential to improve the nitrogen content of this forage
20 grass for feeding Djallonkè dairy goats.

22 **Keywords:** Ensiled forage, feed, lactation, caprine, Burkina Faso.

24 **INTRODUCTION**

25 Milk plays a vital role in maintaining human health thanks to its high calcium and vitamin D content. Per
26 capita milk consumption is low and is expected to increase from 20.2 kg in 2016 to 21.4 kg in 2026 in
27 developed countries, and from 10.9 kg to 13.2 kg in developing countries (Fayama et al., 2024). Global

28 milk production comes largely from cattle, buffalo, goats, sheep, and camels. Goat milk and products
29 are increasingly preferred for their health and nutritional benefits, including greater digestibility and
30 better lipid metabolism, in addition to their taste, compared to cow's milk (Desjeux, 1993). According to
31 the FAO (Food and Agriculture Organization), the global goat population is estimated at 1,128,106,236
32 head in 2020, with Africa accounting for 43% and Asia ranking first in terms of numbers with 52% of the
33 global herd. (FAOSTAT, 2022). The global population of dairy goats was estimated at 218 million in
34 2017 (FAOSTAT, 2022). In Burkina Faso, a country with an agricultural and pastoral vocation, goats
35 represent a national asset in terms of the size of the herd, the number of people involved in their
36 breeding, and the income they generate. Goat breeding is practiced throughout the country and by
37 almost all ethnic communities (Kagoné, 2001). Goats play a very important social role within the
38 Burkinabe population (Tchouamo et al., 2005). Goat farming is an activity that is accessible to all social
39 groups, particularly women, young people, and the elderly (Tekodjinan, 2011). The potential of goats for
40 the sustainable supply of milk and meat for human consumption is undeniable, and their contribution to
41 improving the nutrition of rural populations is likely to increase (Alexander and Wasike, 2019). However,
42 they are prone to problems of quantitative and qualitative food shortages. Indeed, variability and
43 fluctuations in rainfall, combined with extensive animal husbandry practices, expose them to recurrent
44 nutritional deficiencies, especially during difficult seasons when grazing lands are almost desert-like
45 (Sanon et al., 2014).

46 To compensate for this, dairy farms, particularly in urban and semi-urban centers, supplement their
47 goats' feed with agro-industrial by-products, hay, and green fodder (MRA, 2007). In recent years,
48 farmers in the city of Bobo-Dioulass in Burkina Faso have been producing and marketing fodder. The
49 most popular natural grasses are *Andropogon gayanus* (17%), *Echinochloa stagnina* (16%),
50 *Pennisetum pedicellatum* (14%) and *Rottboellia exaltata* (13%). In addition, barrel silage made from
51 *Pennisetum pedicellatum* Trin is developing and gaining momentum (Sanou et al., 2016; Sissao et al.,
52 2024). Silage is a long-term forage preservation technique that ensures a stable and nutritious diet for

53 livestock throughout the year. Several studies have shown that the composition of goat milk varies
54 depending on many factors: season, diet, stage of lactation, physiological status, udder health, genetics,
55 environment, and regions of production (Soryal et al., 2004). However, little information is available on
56 the chemical composition of goat milk produced under the farming conditions in Burkina Faso. With this
57 in mind, the present study aims to evaluate the physicochemical composition of milk from Djallonkè
58 goats fed silage made from *Pennisetum pedicellatum Trin.*

59

60

61

62

63 **STUDY ENVIRONMENT**

64 The study was conducted from November 2021 to May 2022 in the province of Tuy, one of the three
65 provinces of the Upper Basins region located in western Burkina Faso. The area is a Sudanian
66 phytogeographic domain with a South Sudanian climate and rainfall of between 1,000 and 1,400
67 mm/year during a 5- to 6-month rainy season (Fonte and Guinko, 1995). It is one of the雨iest regions
68 in the country. The experiment was conducted in Koumbia on the model farm, an area covered by the
69 Appropriate Agricultural Mechanization (ASMC) project (Figure 1).

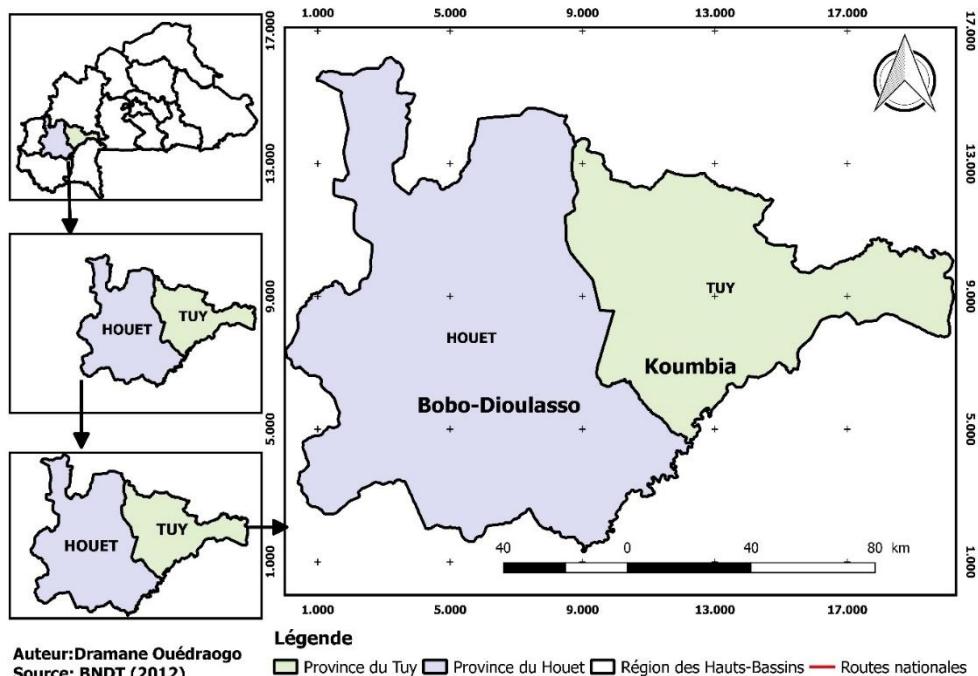


Figure1 : Location of the study area and site

70
71
72

73 **MATERIAL AND METHODS**

74 ***Setting up the experimental design***

75 A Latin square experimental design with four experimental units or lots was used, with the factors being
 76 the type of diet and the distribution of goats (Figure 2). The trial was conducted with twelve (12)
 77 Djallonké goats, six (6) of which were between the first and second weeks of lactation and the other six
 78 (6) were pregnant. The goats were randomly divided into four (04) batches of three (03) goats per batch.
 79 Four types of diet were tested. Batch 1, or the control batch, was fed on natural pastures. Group 2 was
 80 fed natural pastures supplemented with corn bran. For group 3, the diet was , consisting of corn bran
 81 combined with silage and peanut husks. Group 4 was fed silage and corn bran. Unlike the animals in
 82 groups 3 and 4, which were kept in stalls throughout the experiment, the animals in groups 1 and 2 were
 83 allowed to roam freely in search of natural forage. To ensure the study was conducted properly, at the
 84 start of the trial, all goats underwent bleaching using Bolumisole M1 internal deworming, an injection of
 85 trypanocide (Veriben), and a vitamin and mineral supplement (CMV) called Boluvit.

86

Group 1	Group 2
Goat 10	Goat 7
Goat 11	Goat 8
Goat 12	Goat 9
Lot 3	Lot 4
Goat 1	Goat 4
Goat 2	Goat 5
Goat 3	Goat 6

87 **Figure2: Experimental setup**

88 **Production and nutritional quality analysis of silage made from *Pennisetum pedicellatum* in
89 barrels**

90 For the production of silage in barrels made from *Pennisetum pedicellatum*, the amount of fodder was
91 collected taking into account the fodder requirements for a goat based on live weight (PEP caprin, 2013)
92 and the volume of silos in barrels with an average capacity of 96.51 ± 1.55 kg of fodder (Koudougou,
93 2018). The silage was produced according to the methodology of Sissao et al. (2024). Samples of 500 g
94 were selected and nutritional analyses were performed using near-infrared spectroscopy (NIRS) in the
95 animal production laboratory of the Institute for the Environment and Agricultural Research (INERA) in
96 Bobo Dioulasso.

97 **Diet formulation and rationing**

98 The goats in batches 1 and 2 were rationed on a natural pasture-only basis (diet A) or on a natural
99 pasture basis supplemented with corn bran (diet B). Only the goats in batches 3 and 4 received feed
100 diets based on *Pennisetum pedicellatum* silage. Based on the nutritional requirements of goats (CTA
101 fact sheet, 2015), the nutritional values of feed (CIRAD, 1999), the availability of feed in the study area (),
102 and local feeding practices, diets C and D were formulated for the goats in stalls in batches 3 and 4,
103 respectively (Table 1). Barrel silage made from *Pennisetum pedicellatum* was the main energy source in
104 both diets. The protein sources were corn bran and peanut hulls for dietC and corn bran alone for dietD.
105 Every morning during the trial, the silage was fed to the six (06) goats in total housing according to the
106 diet calculations for the two (02) groups. Peanut husks were brought in the afternoon to batch 3, then
107 corn bran in the evenings to batches 3 and 4 respectively. Batch 2, which was grazing on natural
108 pastures, was supplemented with corn bran on a weekly basis.

109
110
111

Table 1.Diet composition

Ingredients	Diet C (in g)	Diet D (in g)
Silage	1880	1820
Peanut tops	115	0
Corn bran	99	197
Total	2094	2017

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Monitoring and collection of silage acceptability data

The adaptation period was 14 days before measurements were taken. The experimental pre-test lasted five weeks. The study focused exclusively on measuring silage refusal. The unconsumed silage was weighed 24 hours after distribution to the animals. An electronic scale was used to weigh the six pregnant goats in total housing at the beginning and end of the trial. The refusal rate was determined as the percentage ratio of silage refusal to the amount served. The feed conversion ratio (FCR) measured the efficiency with which the animals converted feed into biomass or production, based on the formula:

$$\text{FCR} = \text{Amount of feed consumed} / \text{Weight gain} \text{ (Laisse, 2018).}$$

Sampling and analysis of the physical and chemical composition of goat milk

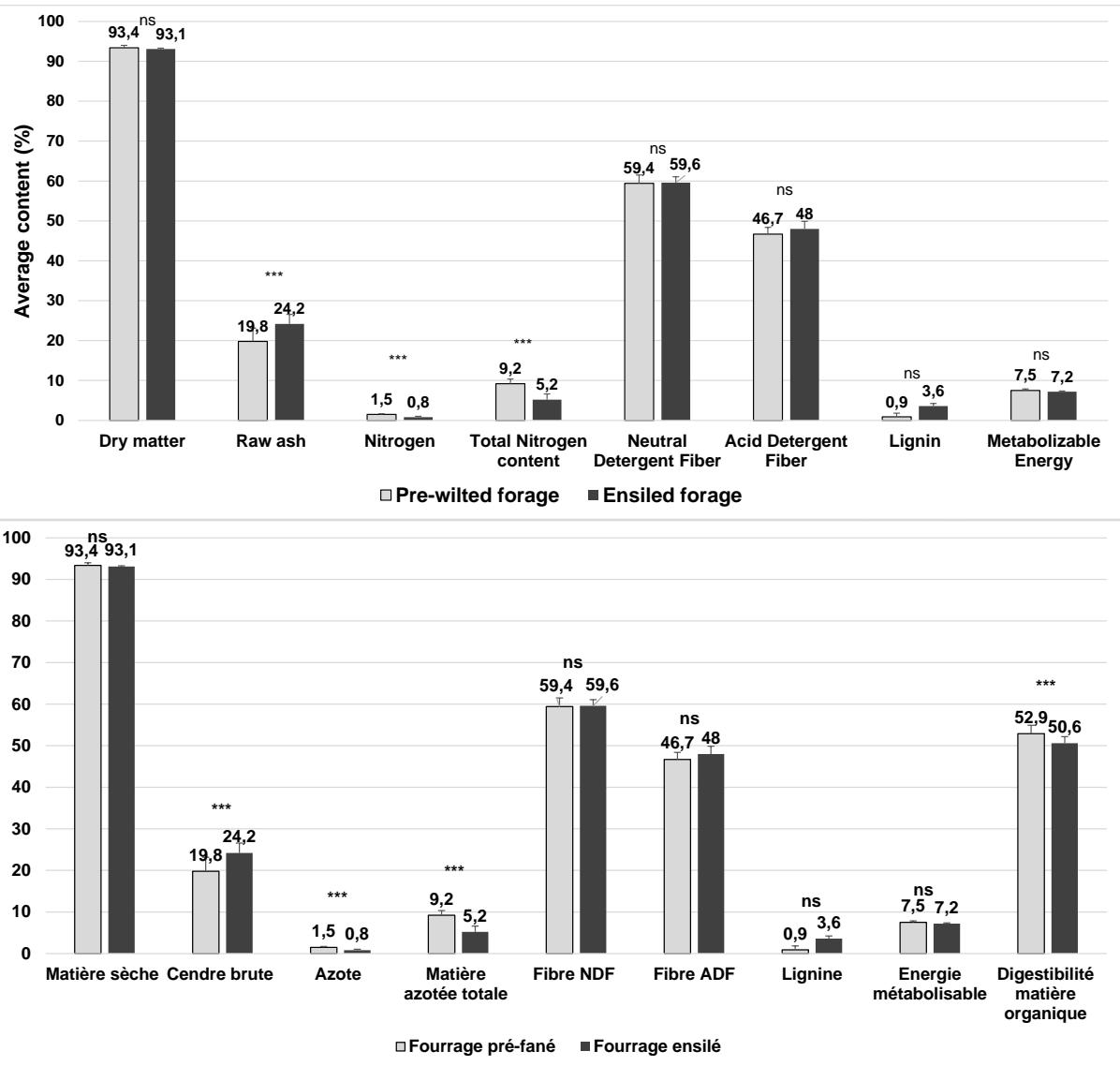
The study was conducted in a real-world setting, i.e., under the producer's farming conditions. Milking was carried out every two (02) weeks, followed by analysis at the Laboratory for Research and Teaching in Animal Health and Biotechnology (LARESBA) using farm milk analysis (Miris® FMA). Milking was done manually. The samples collected were placed in a water bath at a temperature of 40°C. Using a syringe, the raw milk was sampled and placed in the device, which measured the light intensity transmitted by each of the sample's constituents in the infrared range and converted it into a percentage of the total sample at room temperature before analyzing the raw milk. To ensure data reliability, the FMA was cleaned with liquid (water) and then the following samples.

131

132

133 **Statistical Analyses**

134 The measured densities over time were analyzed using a mixed linear model for longitudinal data,
135 followed by an ANOVA to assess the effect of batches and blocks. The fat, protein, and lactose contents
136 were analyzed using a Poisson-type generalized linear model with mixed effects, also supplemented by
137 an ANOVA. The comparison of means was performed using Tukey's test at a 5% threshold.


138 Marginal and conditional R² values were calculated using the Nakagawa and Schielzeth method with the
139 r.squaredGLMM function from the MuMln package. All analyses and graphical representations were
140 performed using R 4.5.1.

141

142 **RESULTS**

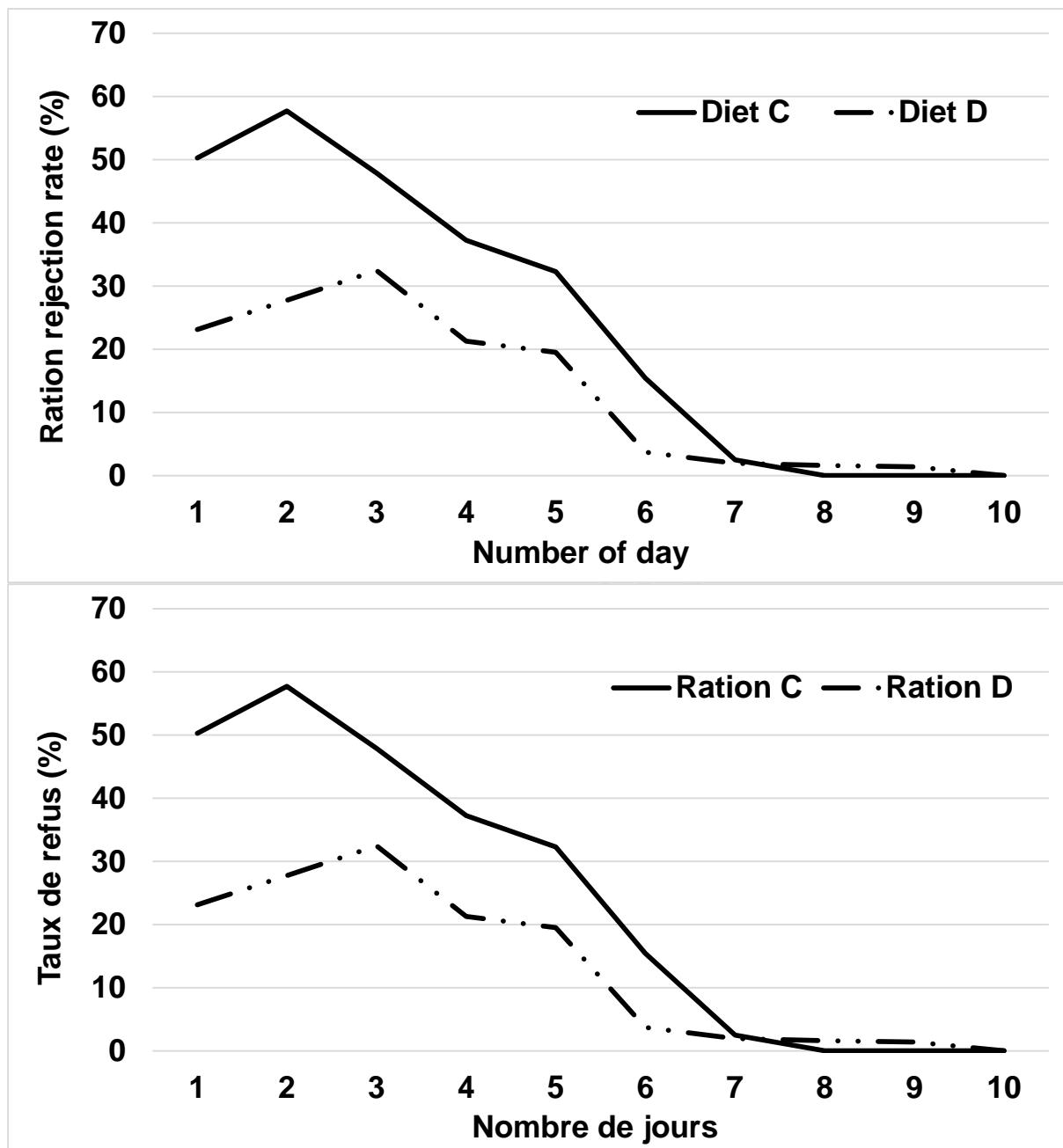
143 ***Bromatological value of Pennisetum pedicellatum Trin silage***

144 Barrel silage had no significant effect ($p > 0.05$) on the dry matter, fiber (NDF, ADF), and lignin content
145 of pre-wilted *Pennisetum pedicellatum* (Figure 2). However, the crude ash content was significantly ($p <$
146 0.05) improved by 22%. As for the nitrogen and total nitrogen- dry matter contents, this technique
147 reduced them by 4% and 20%, respectively. The organic digestibility of the organic matter was reduced
148 by 12% (52.9% and 50.6% for pre-wilted and ensiled forage respectively).

149

150

151 **Figure 2. Bromatological values of pre-wilted and ensiled *Pennisetum pedicellatum Trin* forage**


152 **N.B.:** ns: values not significant, ***values highly significant at a probability threshold of 0.05.

153

154 **Acceptability of *Pennisetum pedicellatum Trin* silage**

155 During the 14-day adaptation period, the rejection rates for the two diets formulated with *Pennisetum*
 156 *pedicellatum Trin* gradually decreased over the first 10 days. The rejection rate was twice as high for
 157 dietC as for dietD during the first two days. This difference decreased and then reversed from the 7th
 158 day onwards, when the goats fully accepted diet C (Figure 3). Similarly, diets C and D did not cause the
 159 goats to gain weight, as diet C had a feed conversion ratio of 7-day when the goats fully accepted

160 dietC. Similarly, diets C and D did not cause the goats to gain weight, as dietC had a feed conversion
161 ratio 73% higher than dietD (Table 2).

162
163
164 Figure 3. Variation in diet rejection rate during the adaptation period
165

166 Table 2: Feed conversion ratio of formulated diets

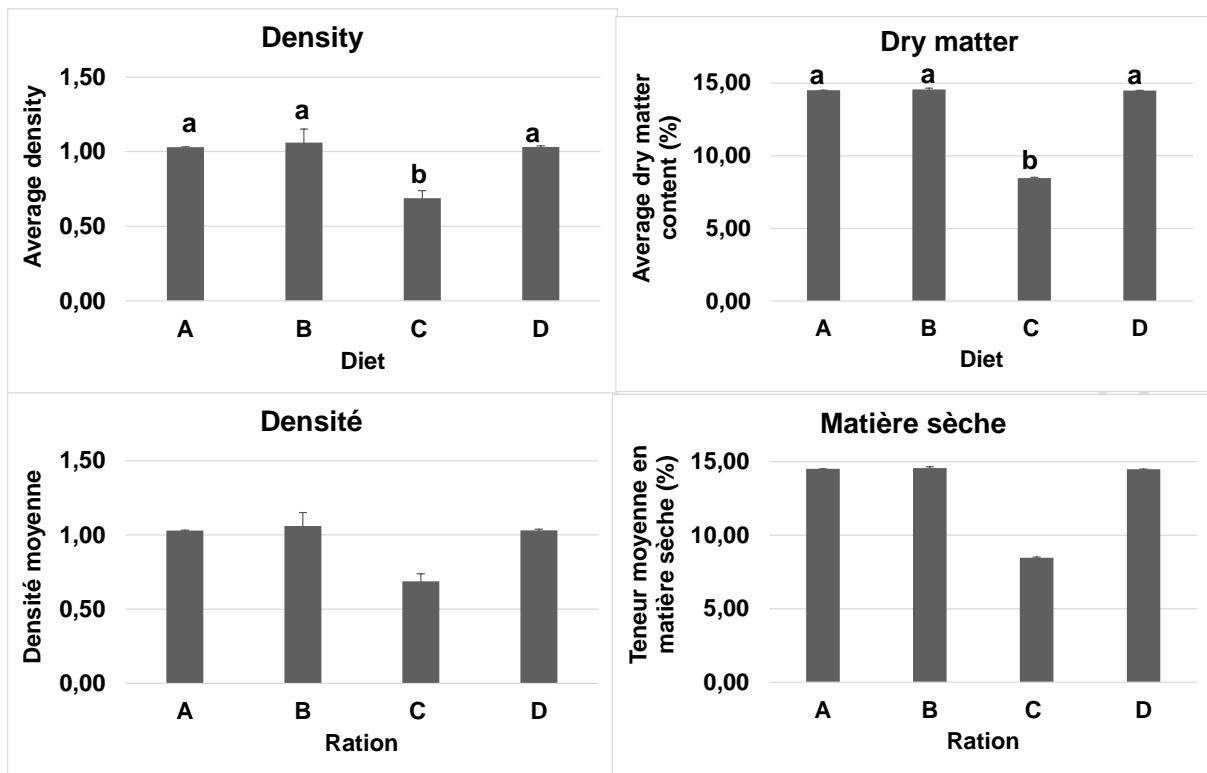
Diet	Weight gain	Average amount of forage ingested	Feed conversion ratio
Diet C	-0.33	68.7	13

DietD	-0.33	68.5	3.5
-------	-------	------	-----

167

168

169


170 **Effect of silage made from *Pennisetum pedicellatum* on the physical quality of raw milk**

171 The density and dry matter content of raw milk did not vary significantly ($p > 0.05$) over the course of the
 172 days. They varied significantly ($p < 0.05$) depending on the diet (Table 3). The density of raw milk
 173 obtained when goats were fed diets based on *Pennisetum pedicellatum* was estimated at 0.69 ± 0.05
 174 and 1.03 ± 0.01 for diets C and D, respectively. The dry matter content was $8.5 \pm 1.4\%$ and $14.5 \pm$
 175 1.1% for diets C and D, respectively. The addition of peanut leaves (diet C) to the silage significantly (p
 176 < 0.05) reduced the density and dry matter content of the milk by 71% and 87%, respectively. The
 177 density and dry matter content of raw milk obtained when the goat was fed dietD were significantly ($p <$
 178 0.05) similar to those obtained when it was fed on natural pastures with (1.03 ± 0 and $14.5 \pm 1.1\%$) or
 179 without supplementation (1.06 ± 0.1 and $14.6 \pm 1.5\%$). (Figure 4)

180 **Table 3:** Effect of feed type on dry matter and density of raw milk

Variable	Factor	NumDF	DenDF	F statistic	Prob(>F)	R ² margin al	R ² condition al
Density	(Intercept)	1	22	15860.73	<0.0001***		
	Day	2	22	107.26	0.2684	0.9765	0.9765
	Lot	3	22	137.15	<0.0001***		
	Day:Lot	6	22	137.71	0.437		
		DF		Chisq	Pr(>Chisq)		
Dry matter content (%)	Day	3		2.06	0.5609		
	Lot	4		3.46	0.0374*	0.9731	0.9988
	Day:Lot	6		4.03	0.6724		

181 **Signif. codes:** 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1; **DF:** Degree of freedom; **NumDF:** Degrees of freedom of the numerator related to fixed factors;
 182 **DenDF:** Degrees of freedom of the denominator related to the overall variation of the model

183 **Figure 4. Effect of treatments on the average density and dry matter content of raw milk**^[GM1]

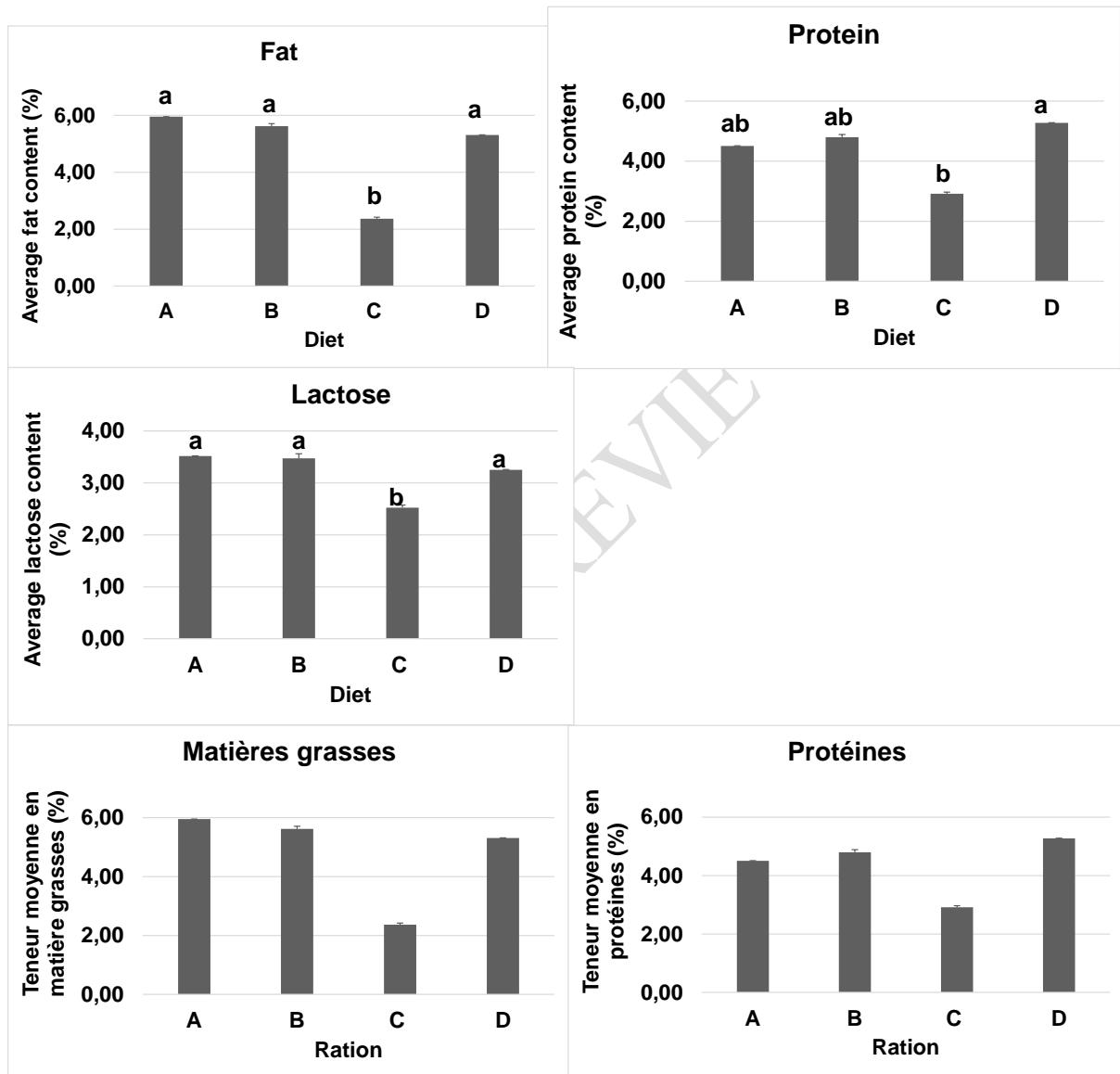
184 **Significance codes:** treatments with different letters a or b were significantly different at the 5% level

185

186 **Effect of silage made from *Pennisetum pedicellatum* on the chemical quality of raw milk**

187

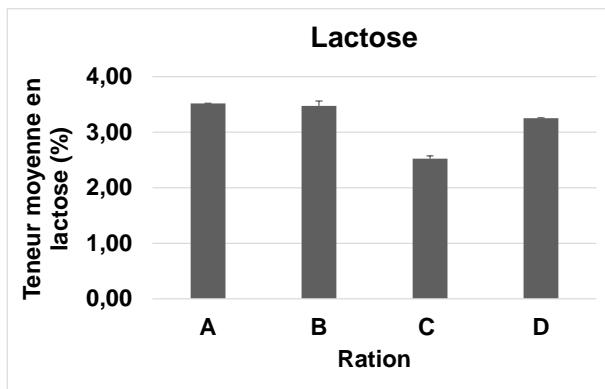
188 Goats fed on natural pastures with or without supplements produced raw milk with higher fat ($5.6 \pm 1.2\%$)
 189 and $6 \pm 1.2\%$ respectively), protein ($4.8 \pm 0.4\%$ and $4.5 \pm 0.4\%$ respectively), and lactose ($3.5 \pm 0.21\%$
 190 and $3.5 \pm 0.3\%$ respectively) (Table 4). These values did not differ significantly ($p > 0.05$) from each
 191 other and were significantly ($p < 0.05$) similar to those obtained when the goats were fed silage made
 192 from *Pennisetum pedicellatum* supplemented with corn bran (diet D) ($5.3 \pm 1.3\%$ fat; $2.9 \pm 0.2\%$ protein,
 193 $2.5 \pm 0.9\%$ fat). However, the fat and lactose contents of raw milk were significantly ($p < 0.05$) lower
 194 than all these values when the goats were fed diet C. The protein content of raw milk was significantly (p
 195 < 0.05) reduced by 81% when the goats consumed diet D instead of diet C (Figure 5).


196 **Table 4:** Effect of feed type on the chemical quality of raw milk

Variable	Factor	DF	Chisq	Pr(>Chisq)	R ² marginal	R ² conditional
Fat content (%)	Day	3	5.77	0.1229	0.9683	0.9964
	Lot	4	2.99	0.03692*		
	Day:Lot	6	3.12	0.7936		

	Day	3	1.17	0.7604		
Protein content (%)	Lot	4	1.72	0.04492*	0.9677	0.9960
	Day:Lot	6	4.97	0.5479		
	Day	3	1.05	0.7897		
Lactose content (%)	Lot	4	4.18	0.02961*	0.9684	0.9949
	Day:Lot	6	0.69	0.9947		

198


199

200

201

202

203
204 **Figure 5. Effect of treatments on fat, protein, and lactose (C) in raw milk**

205 **Discussion**

206 ***Nutritional quality and acceptability of Pennisetum pedicellatum Trin silage***

207 The results show no significant difference ($p > 0.05$) in dry matter content, fiber content (NDF, ADF),
208 and lignin between pre-wilted grass and silage. These results confirm that silage in *Pennisetum*
209 *pedicellatum* preserves the fibrous structure and are consistent with those of Ma et al. (2024),
210 which indicate that lignin-rich tropical grasses retain their cell walls after silage due to their low
211 degradability. They also agree with the observations of Maciel (2025), showing that when tropical
212 grasses are ensiled without additives and fermentable substrates, the degradation of fiber walls remains
213 limited.

214 The reduction in total nitrogen content (-4%) and total nitrogenous matter (-20%) indicates that silage
215 leads to losses in organic matter, nitrogen, and digestibility, probably due to microbial deamination and
216 the conversion of true protein into non-protein nitrogen (NPN), corroborating the results of Riyanti et al.
217 (2024) on *Pennisetum purpureum*. These losses can be compensated for, as shown by Ma et al. (2024)
218 on *Pennisetum giganteum* + rice straw, where the addition of additives (lactic acid bacteria + cellulase)
219 improves in vitro digestibility and silage quality. Riyanti et al. (2024) also confirm that inoculation with
220 microorganisms increases the digestibility and stability of silage.

221 The gradual decrease in refusals during the first ten days shows that goats normally adapt to the new
222 diet. This phenomenon corresponds to the observations of Gomes et al. (2020) and Lopes et al. (2023),
223 which highlight the influence of forage quality and feeding experience on the intake and selectivity.

224 Castillejos Rosa et al. (2022) add that goats adjust their selection and consumption based on
225 digestibility, secondary compounds, and prior experience, illustrating their ability to adapt. Full
226 acceptance of the diet after a few days illustrates this food learning phenomenon described by Gomes
227 et al. (2020). The higher feed conversion ratio for diet A, despite the lack of weight gain, suggests better
228 nutrient utilization in meeting the maintenance and production needs of goats. These results are
229 consistent with the observations of Castillejos Rosa et al. (2022) and Lopes et al. (2023), which show
230 that moderate-quality forage with suitable particle size can improve digestive efficiency without
231 necessarily leading to rapid weight gain.

232

233 ***Physicochemical quality of milk from a diet based on *Pennisetum pedicellatum* on the chemical***
234 ***quality of raw milk***

235 The results on milk density and dry matter, which were stable over time but varied according to the
236 diets, confirm that diet has a strong influence on milk composition (Morand-Fehr et al., 1980; Ramos et
237 al., 2020). Several studies confirm this decisive role of the diet. Vicente et al. (2017) showed that milk
238 composition varies according to the type of diet (silage, pasture, dry fodder), while De La Torre Santos
239 et al. (2021) observed that the type of silage and the use of pasture alter the lipid profile and
240 antioxidants in milk. DietC, which is more nutritious, leads to a marked decrease in dry matter (-71 to -
241 87%), while dietD provides values close to those of the natural pasture. DietD, combining *P.*
242 *pedicellatum* silage and corn bran, maintains normal levels of fat, protein, and lactose, while a more
243 balanced diet, such as dietC, reduces the fat and lactose content, thereby improving milk quality. Thus,
244 a well-formulated silage preserves or even improves the chemical quality of milk (Morand-Fehr et al.,
245 1980; Ramos et al., 2020). Milk that is less dense and lower in fatty acids and protein is similar to skim
246 milk. Thus, properly formulated silage that is balanced in energy and protein can support the production
247 of milk with good chemical quality, maintaining total solids, fat, and protein at normal levels (Meethip et
248 al., 2024; Sidibé-Anago et al., 2025).

249

250 **CONCLUSION**

251 The relevance of evaluating the effect of feed on the quality of raw goat milk is justified by the results
252 obtained. *Pennisetum pedicellatum* grass ensiled in barrels requires the addition of additives to improve
253 nitrogen content. A balanced diet based on *Pennisetum pedicellatum* silage in barrels must be dieted by
254 combining different sources of nitrogen, such as corn bran and peanut husks, to make it more
255 acceptable to Djallonké goats and produce high-quality milk.

256

257 **CONFLICTS OF INTEREST**

258 The authors declare that there are no conflicts of interest.

259 **ACKNOWLEDGMENTS**

260 The authors would like to thank the staff of the Animal Health and Biotechnology Research and
261 Teaching Laboratory, the Bobo-Dioulasso urban center, and the model farm for their collaboration.

262

263 **References**

264 **Barton K. 2016.** MuMln: Multi-Model Inference. Available from: <https://cran.r-project.org/web/packages/MuMln/index.html>.

266 **FAOSTAT, 2022.** Crops and Animal Products. In "Statistics Division," Rome, Italy.

267 **Castillejos-Rosa D., HiltonK., Schwartzkopf-Genswein K. 2022.** Selection of Forage Resources by
268 Juvenile Goats in a Cafeteria Trial: Effect of Browsing Experience, Nutrient and Secondary Compound
269 Content. *Animals*, 12(10), 1317p

270 **De La Torre-Santos S., Royo LJ., Martínez-Fernández A., Menéndez-Miranda M., Rosa-García R.,**
271 **Vicente F. 2021.** Influence of the Type of Silage in the Dairy Cow diet, with or without Grazing, on the
272 Fatty Acid and Antioxidant Profiles of Milk. *Dairy*, 2(4): 716-728.

273 **Desjeux Jf. 1993.** Nutritional value of goat's milk. *Le Lait*, 73 (5_6): 573-580. hal-00929371

274 **Fayama T., Sodré E., Sib O., Dabiré D.** 2024. Report on the Study of Milk and Dairy Product
275 Consumption Preferences in the City of Bobo-Dioulasso. The CGIAR. 35 p.

276 **Fonte J. & Guinko S.** 1995. Map of vegetation and land use in Burkina Faso. Explanatory note. French
277 Ministry of Cooperation, Campus Project (8813101). Toulouse: Paul Sabatier University.

278 **Gomes HFB., de Souza SF., Oliveira D., Biagioli B., Teixeira IAMA., Resende KT.** 2020. Selectivity
279 and feeding behavior of Saanen goats subjected to three nutritional levels. Revista Brasileira de
280 Zootecnia, 49, e20190095.

281 **Lopes DS., Rodrigues MT., Oliveira TS.de.** 2023. Effects of forage quality and particle size on feed
282 intake and ruminoreticulum content of goats. Translational Animal Science, 7(1), txad101.

283 **Haenlein G.** 2004. Caprine milk in human nutrition. Small Ruminant Research 51, 155-163.

284 **Kagoné H.** 2001. Forage profile – Burkina Faso. FAO, Rome, Italy.

285 **Kuznetsova A., Brockhoff PB., Christensen RHB.** 2017. lmerTest Package: Tests in Linear Mixed
286 Effects Models, Journal of Statistical Software, 82(13): 1-26. URL: <https://doi.org/10.18637/jss.v082.i13>.

287 **Ma J., Lin L., Lu Y., Weng B., Feng Y., Du C., Wei C., Gao R., Gan S.** 2024. The influence of silage
288 additives supplementation on chemical composition, aerobic stability, and in vitro digestibility in silage
289 mixed with *Pennisetum giganteum* and rice straw. Agriculture, 14(11), 1953.
290 <https://www.mdpi.com/2077-0472/14/11/1953>

291 **Maciel Aguiar Freitas IO., Chaves Gurgel AL., Araújo MJD., Dias-Silva TP., Martins EVF., Miranda
292 RDS., & Emerenciano Neto JV** 2025. Agro-Industrial Residues as Additives in Tropical Grass Silage:
293 An Integrative Review. Grasses, 4(3), 38 p.

294 **Meethip W., Paengkoum S., Onjai-Uea N., Thongpea S., Taethaisong N., Surakhunthod J.,
295 Paengkoum P.** 2024. Utilization of Purple Napier Grass Silage on Milk Quality and Blood Antioxidant
296 Activity in Lactating Dairy Goats. Animals 2024, 14(22), 3209; <https://doi.org/10.3390/ani14223209>.
297 <https://creativecommons.org/licenses/by/4.0/>

298 **Morand-Fehr P., Sauvant D., 1980.** Composition and yield of goat milk as affected by nutritional
299 manipulation. Journal of Dairy Science, 63(10): 1671–1680.
300 <https://www.sciencedirect.com/science/article/pii/S0022030280831298>

301 **MRA (Ministry of Animal Resources), 2007.** Diagnosis of the livestock and small ruminant sectors in
302 Burkina Faso, Final report, AGRER-Statistika, Ouagadougou, 144 p.

303 **Nakagawa S., Schielzeth H. 2013.** A general and simple method for obtaining R-squared from
304 generalized linear mixed-effects models, Methods in Ecology and Evolution, 4(2):133-142.
305 doi:10.1111/j.2041-210x.2012.00261.x.

306 **Ramos J P. de F., de Sousa WH., Oliveira JS., Pimenta Filho EC., Santos EM., Cavalcante IT.**
307 **2020.** Forage sources in diets for dairy goats. Acta Scientiarum Animal Sciences, 41, e46084.
308 https://www.researchgate.net/publication/338299747_Forage_sources_in_diets_for_dairy_goats

309 **R Core Team 2025.** R: A language and environment for statistical computing. R Foundation for
310 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

311 **Riyanti L., Zahera R., Kisworo AN., Wihansah RRS., & Febriza G. 2024.** Nutritive value, digestibility,
312 and gas production of *Pennisetum purpureum* silage supplemented with *Saccharomyces cerevisiae* and
313 *Lactobacillus plantarum*. Tropical Animal Science Journal, 47(3), 312–320.
314 <https://journal.ipb.ac.id/index.php/tasj/article/view/53159>

315 **Alexander KK and Wasike CB., 2019.** Dairy goat production in sub-Saharan Africa: current status,
316 constraints and prospects for research and development. Asian-Austral. J. Anim. Sci. 32, 655 1266-
317 1274.

318 **Sanon HO., Savadogo M., Tamboura HH., Kanwé BA. 2014.** Characterization of production systems
319 and forage resources in a test area in the Sudanian zone of Burkina Faso. Electronic Journal of
320 Environmental Sciences 14(2): 1–20.<https://doi.org/10.4000/vertigo.15171> [Google Scholar]

321 **Sanou KF., Ouédraogo S., Nacro S., Ouédraogo M., Zoungrana CK. 2016.** Sustainability of supply
322 and nutritional value of fodder marketed in the urban area of Bobo-Dioulasso, Burkina Faso. Cahiers

323 *Agricultures* 25(15002): 1–10. <https://doi.org/10.1051/cagri/2016007> [CrossRef] [EDP Sciences] [Google Scholar]

325 **Sidibé-Anago AG., Millogo V., Bonou AG., Djikoldingam RR., Sissao M., Kéré M., Mensah GA.**

326 **2025.** *Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso.*

327 International Journal of Biosciences, 27(5), 173-181. <https://innspub.net/composition-and-variation-of-milk-from-djallonke-goats-fed-with-different-diets-in-Burkina-Faso>.

328

329 **Sissao M., Millogo V., Sidibe-Anago AG., Djikoldingam RR., Kere M. 2024.** Bromatological values of

330 silage stored in plastic barrels and voluntary consumption in Djallonké goats in Burkina Faso. *Natural*

331 and *Applied Sciences*, Vol. 43, No. 1 – January-June 2024.

332 **Soryal KA., Zeng SS., Min BR. and Hart SP. 2004.** Effect of feeding treatments and lactation stages

333 on composition and organoleptic quality of goat milk Domiati cheese. *Small Ruminant Research* 52(1):

334 109-116.

335 **Tchouamo IR., Tchoumboué J. and Thibault L. 2005.** Socio-economic and technical characteristics of

336 small ruminant farming in the western province of Cameroon. *Tropicultura*, 23, 201-211.

337 **Tekodjinan T. 2011.** Characteristics of dwarf goat farming in the Borgou and Atacora departments

338 (Benin). Final thesis for a Bachelor's degree in Animal Production, EPAC, UAC, 59 p.

339 **Vicente F., Santiago C., Jiménez-Calderón JD., Martinez-Fernader A. 2017.** Capacity of milk

340 composition to identify the feeding system used to feed dairy cows. *Journal of Dairy Research*,

341 84(3):254-263.