Jana Publication & Research

□ Exploring the Depths: Unraveling FGF-23 Driven-Hypophosphatemia in Shadows of Phosphaturic Tumours

E VRC34

Document Details

Submission ID

trn:oid:::2945:338513035

Submission Date

Dec 20, 2025, 11:21 AM GMT+5:30

Download Date

Dec 20, 2025, 11:24 AM GMT+5:30

File Name

IJAR-55298.pdf

File Size

762.8 KB

15 Pages

3,742 Words

19,202 Characters

24% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text

Match Groups

48 Not Cited or Quoted 24%

Matches with neither in-text cit

Matches with neither in-text citation nor quotation marks

2 Missing Quotations 1%

Matches that are still very similar to source material

O Missing Citation 0%

Matches that have quotation marks, but no in-text citation

O Cited and Quoted 0%
 Matches with in-text citation present, but no quotation marks

Top Sources

16% 📕 Publications

11% Land Submitted works (Student Papers)

Match Groups

48 Not Cited or Quoted 24%

Matches with neither in-text citation nor quotation marks

99 2 Missing Quotations 1%

Matches that are still very similar to source material

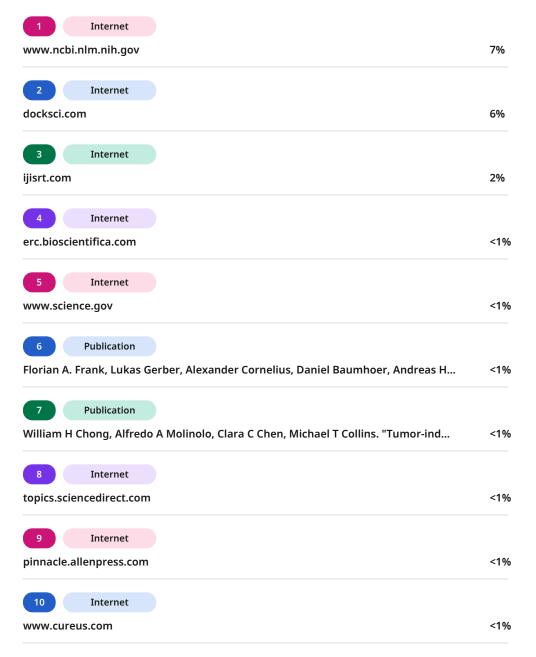
0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources


21% 🌐 Internet sources

16% 📕 Publications

11% 💄 Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

11 Student papers	
University of Florida on 2012-10-30	<1%
12 Internet	
assets.cureus.com	<1%
13 Internet	
coek.info	<1%
14 Internet	
bmcmusculoskeletdisord.biomedcentral.com	<1%
15 Internet	
link.springer.com	<1%
16 Internet	
www.wjgnet.com	<1%
17 Publication	
Qiang Cai. "Inhibition of Renal Phosphate Transport by a Tumor Product in a Pati	<1%
18 Publication	
Tumors and Tumor-Like Lesions of Bone, 2015.	<1%
19 Internet	
www.ijhsr.org	<1%
20 Internet	
www.nature.com	<1%
21 Publication	
Filippo Lococo, Alfredo Cesario, Massimiliano Paci, Angelina Filice et al. "PET/CT a	<1%
22 Publication	
"Nuclear Oncology", Springer Science and Business Media LLC, 2017	<1%
23 Student papers	
AUT University on 2016-05-28	<1%
24 Publication	
Davide Thomas Panciera, Carmelo Murè, Alessandro Piazza, Luigi Filippo D'Aco, G	<1%

turnitin 7

"Exploring the Depths:Unraveling FGF-23

Driven- Hypophosphatemia in Shadows of

Phosphaturic Tumours"

4 5

2

3

ABSTRACT

7

6

8 This paper delves into the intricate realm of FGF23-

induced hypophosphatemia secondary to a concealed

phosphaturic tumor, shedding light on a rare yet

clinically significant phenomenon. With only a limited

number of reported cases worldwide, this study navigates

the diagnostic challenges posed by the elusive nature of

these tumors, emphasizing the importance of considering

genetic etiologies. The research elucidates the

pivotal role of FGF23, identified as the primary causative

hormone, in orchestrating hypophosphatemia through

phosphaturia. Diagnostic hurdles arising from the tumors'

small size and concealed locations are addressed, with a

spotlight on advanced imaging modalities such as MRI,

FDG-PET scan, and 68 Ga-DOTA-TOC-PET CT scan.

Recent insights into the direct impact of elevated FGF23

levels on bone health are explored, unraveling the

complex interplay between FGF23, soluble Klotho, and

25 the bone mineralization process. The study probes the

26 ambiguity surrounding whether hypophosphatemia alone

is accountable for the observed osteomalacia. This

comprehensive analysis not only deepens our

understanding of FGF23-induced hypophosphatemia but

also underscores the necessity for heightened clinical

awareness, advanced diagnostic techniques, and a

multidisciplinary approach in managing patients

presenting with these challenging conditions.

Key words : FGF23,hypophosphetemia, phosphoturic tumors, osteomalacia

Introduction:

Hypophosphatemia is a relatively common laboratory abnormality and is often an incidental finding. The history of presenting illness will rarely indicate possible hypophosphatemia. For this reason, a clinician should have suspicion for phosphate abnormalities whenever an etiology is present that is associated with hypophosphatemia.

However, severe hypophosphatemia may have the clinical presence of altered mental status, neurological instability including seizures, and focal neurologic findings such as numbness or reflexive weakness, a cardiac manifestation of possible heart failure, muscle and bony pain, and muscular weakness and pathological fracture.

Fibroblast growth factor and hypophsphatemia:-

We are presenting a case report of Fibroblast growth factor -23 (FGF-23) Phosphaturic mesenchymal tumor induced osteomalacia and hypophosphatemia presenting as a pathological fracture and multiple bony pain in young male. only 500 cases of FGF-23 —tumor induced osteomalacia and hypophosphatemia has been reported worldwide.(1-3) Phosphorus contributes about 1 % of total body weight. out of that , 1% in serum , 14% in cells and 85% resides in bone.

Circulating factor that could cause 66 hypophosphatemia such idea firstly proposed by Prader 67 (4) and was demonstrated by Meyer et al and Nesbitt et 68 al. (5,6) Phosphaturic substance termed as 'Phosphatonin' 69 by econs and Drezner (7). because it lowers serum 70 phosphorus levels. Mesenchymal tumors have 71 phosphaturic action by producing phosphatonin which 72 leads to hypophosphatemia via decreasing renal 73 reabsorption of phosphate. such causative hormone 74 termed as FGF 23 which lead to Phosphaturia.(8) 75 The main cause of Tumor induced 76 Hypophosphataremia (TIO) is FGF 23. (9,10). To 77 diagnose these kinds of (TIO) cases always remains a 78 challenge because of their small size and location (11), 79 Non availability of Imaging modality for detection and 80 confirmation of tumor. like MRI, FDG-PET scan, 68 81 Ga-DOTA-TOC-PET CT scan. Genetic Etiology must 82 have to be taken under consideration because many 83 diseases like X- linked hypophosphatemia, autosomal 84 dominant hypophosphatemic rickets, autosomal 85 Recessive hypophosphatemic rickets mimics like tumor 86 induced hypophosphatemia. (12-15) Recent studies have 87 found that FGF23 (and soluble Klotho) may directly 88 impact bone in diseases with elevated FGF23 levels.[17-89 18] 90 The main function of FGF23 is to lower serum 91 phosphate levels. which act by two ways: direct and 92 indirect. In direct, Inhibition of phosphate reabsorption 93 at the level of the proximal tubular cells of kidneys, and 94 in indirect by suppression of necessary enzymes $(1-\alpha-$ 95 hydroxylase) which activate vitamin D. Direct actions 96 involve the binding of circulating FGF23 to FGF 97

receptors (FGFRs) and coreceptor klotho on the

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

basolateral surface of the proximal tubular cells which supresses two sodium-phosphate co-transporters called NaPi-2a and NaPi-2c. These transporters, located on the apical surface of the proximal tubular cell, are useful for renal phosphate reabsorption. Decreased expression of NaPi-2a and NaPi-2c is therefore a direct cause of phosphaturia. (16)

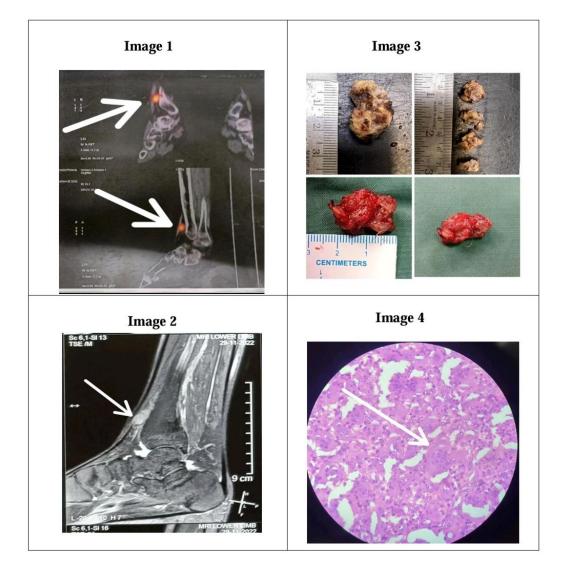
Raised levels of FGF23 are responsible for impairment of bone mineralization, since serum phosphorus concentration plays an important role in the process of growth plate mineralization. What is less clear is whether or not hypophosphatemia is solely responsible for the osteomalacia.

Case Report:-

26 years old male presented at the age of 21 years with the history of Acute progressive right hip pain and fracture of right femur neck due to minor trauma. Patient investigated for the same, (25OH) vitamin D = 19.2 $ng/ml (N^* - >30 ng/ml)$, Serum Calcium = 8.82 mg/dl (9-11 mg/dl), Serum intact PTH = 97.5 pg/ml (0-72 mg/ml)pg/ml), Serum phosphorus =1.6 mg/dl(3-5 mg/dl), Serum Alkaline phoshatase102.1Iu/L. [fully Automatic chemistry analyser cobas c 111]For this, patient got operated with closed reduction and internal fixation (IF) with Dynamic hip screw (DHS) and labelled as Pathological stress fracture due to Secondary Hyperparathyroidism. In this case, serum phosphorus level was too low with respect to level of 25-Hydroxy Vitamin D3, that suggest some other hidden factor was there, which is responsible for very low level of Serum

- phosphorus. Patient had advised for further
- investigations for Hypophosphatemia but he lost the
- follow up. 2-4 months after surgery and medication,
- patient started walking and doing daily work but still he
- had persistent on off pain, some degree of limping
- gate, not able to do strenuous work, not able to run.
- 138 Intermittently he went to local doctors and taken pain
- killers, but not investigated properly due to economic
- constraints. This continued for more than 2 yrs. After
- that symptoms was aggravated and he had been re-
- investigated, PTH intact 54.80 pg/ml(N-18.5-88pg/ml),
- ¹⁴³ Sr. Creatinine 1.15 mg/dl (N-0.6-1.3mg/dl), Sr.
- 144 Phosphorus **1.5 mg/dl (N-2.4- 4.5mg/dl),** Urine
- creatinine 95 mg/dl(N-20-320 mg/dl), Urine Phosphorus
- 38.9 mg/dl (N-70-870 mg/dl), 1-25-Hydroxy Vitamin D3
- -106.92nmol/l (N- <50nmol/l). On the basis of above
- values Tubular reabsorption of phosphate (TRP) was
- calculated and found to have 69 % which is low
- 150 (Normal 95 to 100%). TmP / GFR = 1.03 which was low.
- On the basis of above results, serum phosphorus level is
- very low with low urinary reabsorption. Patient was
- advised further workup but he was not able to do it due
- to economical constraints and lost follow up again.
- 155 Meanwhile Dynamic Hip Screw (DHS) was removed
- from Right femur neck almost after 3 years of surgery.
- After that patient could not able to walk properly. As
- screw was removed, probably there was fracture again
- but patient lost his all post screw removal X-rays. Patient
- was ambulatory with painful and restricted movements.
- 161 He took pain killers in consultation with local general
- practitioners. Due to covid pandemic he had not
- undergone any investigations. 4th year of Illness, he
- developed intermittent aches and pains all over body (not

relieved on medication) and generalised weakness. Bony 165 pains increased gradually and become more severe 5 166 years after initial presentation. Patient presented to us in 167 our tertiary care hospital with severe aches and pains all 168 over body, and was bedridden since 6 months. He was 169 vitally stable. Investigation showed severe 170 hypophosphatemia with normal calcium, vitamin D and 171 serum PTH levels. Serum Phosphorus 1.7mg/dl (N- 2.5-172 **4.5mg/dl**), Serum Calcium 9.5mg/dl (N-8.4-0.2mg/dl), 173 1-25 OH Vitamin D3- 35 ng/ml (N-30-100ng/ml), 174 Serum intact PTH 69.10 pg/ml (N-12-88pg/ml). CPK 175 total is normal, All routine investigations like CBC, 176 KFT,TFT, LFT except alkaline phosphatase were normal. 177 Urine creatinine 102 mg/dl (N-20- 320mg/dl)TRP = 78% 178 and TmP / GFR=1.32 both are low. Serum FGF23 was 179 done and patient was started on Phosphorus rich diet 180 with phosphate sachet 3.2gm half 6 times a day. Pain 181 reduced within 7-8 days of phosphorus supplementation. 182 FGF 23 level found to be high i.e 772 Ru/ml (N = 0.00 -183 300), which suggest us tumour induced 184 hypophosphatemia. For localization of tumour 185 Gadolinium 68 DOTA-TOC PET-CT SCAN done. Scan 186 showed increased somatostatin receptor expressions 187 noted in 13x10x16 mm sized subcutaneous soft tissue 188 density nodule on right lower leg, seen anterior to distal 189 end of shaft of right tibia [Image no. 1]. Contrast 190 Enhance Magnetic Resonance Imaging (CEMRI) of 191 Right leg was performed to localize the tumour 192 boundaries before resection. CEMRI showed, Small 193 relatively well defined altered signal intensity lesion 194 measuring approximately 9x12 mm in subcutaneous 195 plain of anterior aspect of distal 1/3rd of right leg [Image 196 no.2] Tumour removed surgically and sent for



Histopathology. histopathological report revealed on gross examination, Unoriented, firm, brownish, fibrous tissue piece measuring 2.3 x 1.5 x 1.3 cm, with fragile tumour measuring 1.6 x 1.5 x1 cm noted. [Image no.3] Microscopy suggestive of benign neoplasm composed of spindle cells and osteoclast type giant cells. Spindle cells are bland and arranged in sheets and fascicles with highly vascular stroma. Mitosis and necrosis was not seen with no evidence of malignancy. Which has been labelled as **Phosphaturic mesenchymal tumour**. [Image no.4] (Bland spindles to oval neoplastic cells with intermingled osteoclasts like giant cells located by white arrow)

Patients pain reduced to 50% after 7 days of resection of tumour. His serum phosphorus level at discharge was- 2.3 mg/dl. Patient could stand with support at the time of discharge. Follow up at 3 months patient could walk with support and can do all his routine activities independently. Follow up at one year patient could walk without support. His serum phosphorus level-3.1 mg/dl. (*: N – Normal value)

221

222

224

225

226

227

228

DISCUSSION:

Tumour-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic syndrome characterized by abnormal phosphate and vitamin D metabolism, often attributed to small endocrine tumours. Diagnosis is frequently delayed for

several years due to underrecognition of condition. 229 Patients commonly present with multiple fractures, 230 height loss, and a generalized debilitated state, with 231 chronic bone pain being the typical initial symptom. 232 Confirmation of the diagnosis involves a notable 233 improvement in symptoms and metabolic abnormalities 234 post-complete excision of the responsible tumour. 235 These tumours are generally small, with elusive 236 locations in bone or soft tissue throughout the body, 237 exhibiting slow growth. Histologically, many are 238 classified as phosphaturic mesenchymal tumors (PMT), 239 characterized by spindle cells with low mitotic activity, 240 prominent vascularity, osteoclast-like giant cells, or the 241 presence of bony tissue. While most tumours appear 242 benign, rare instances of malignant presentation and 243 metastases have been reported (19-23). Infrequent 244 metastases emphasize the importance of wide surgical 245 margins to prevent persistence or recurrence, given the 246 infiltration of surrounding connective tissue." 247 Numerous reports indicate an elevation of FGF23 in 248 some patients with TIO, but not consistently across all 249 cases (24-25). Tumour removal is associated with a 250 reduction in serum FGF23 concentrations, and a 251 temporal correlation exists between the decrease in 252 FGF23, elevated serum phosphate, decreased renal 253 phosphate wasting, and increased 1,25(OH)2D3 254 concentrations (26-27). Diagnosing TIO poses challenges 255 due to small and elusive tumours. Various imaging 256 techniques including bone scanning, CT (28), MRI, 257 Indium-111 pentetreotide or octreotide scintigraphy, and 258 PET, are employed for tumour localization (29). 259 Advocating a stepwise approach, 99Tcm-OCT

scintigraphy as the primary method to locate tumour. In

turnitin turnitin

260

octreotide-negative cases with a strong suspicion of a tumor, FDG-PET/CT is employed, and recently, 68Ga-DOTANOC PET/CT has been explored (30). Once suspicious lesions are identified through functional imaging, confirmation through anatomical imaging (X-rays, CT, and/or MRI scans) is recommended. In our patient Ga 68 DOTA-TOC PET-CT SCAN done followed by CEMRI was done.

The treatment of choice for TIO is tumour resection with a wide margin to ensure complete removal as recurrences of tumour has been reported. (22,23,31). Postoperative intermittent monitoring is crucial. Tumour resection is almost always curative, resulting in a rapid disappearance of FGF23 from circulation and a return to normal serum phosphate levels within five days postoperation (27).

Most patients experience improvement within days to weeks after tumour removal. Bone healing begins immediately, but significant clinical improvement may take a year or more, depending on the severity of the disease. When the tumour cannot be localized nor surgically resectable, medical intervention includes phosphate supplementation and the administration of calcitriol or alfacalcidiol.

The ensuing treatment plan closely aligns with that employed for non-TIO hypophosphatemia. During the initiation of treatment, it is prudent to consistently monitor weekly laboratory results to guide the gradual adjustment of medications until treatment goals are met. Future therapeutic approaches are anticipated to benefit from an enhanced comprehension of FGF23 biology and a deeper understanding of the characteristics associated with these tumors.

296

297

298

This case highlights the challenges of diagnosis and management in resource-constrained settings, emphasizing the importance of timely intervention for improved outcomes.

299

Conclusion:

301

300

- Nonspecific symptoms like Chronic aches and pains may
- be presenting complaint of hypophosphatemia. Most of
- the time hypophosphatemia is common and incidental
- lab finding. Systematic approach to hypophosphatemia is
- needed to reach to the conclusion. Patient with multiple
- and recurrent fractures with unknown cause of
- osteomalacia needs evaluation of TIO

309

310

Refrences:-

- 1. Jiang Y., Xia W.B., Xing X.P., Silva B.C., Li M.,
- Wang O., Zhang H.B., Li F., Jing H.L., Zhong D.R., Jin
- J., Gao P., Zhou L., Qi F., Yu W., Bilezikian J.P., Meng
- 314 X.W. Tumor-induced osteomalacia: an important cause
- of adultonset hypophosphatemic osteomalacia in China:
- Report of 39 cases and review of the literature. J Bone
- Miner Res. 2012;27(9):1967–1975.
- 2.Chong W.H., Molinolo A.A., Chen C.C., Collins M.T.
- Tumor-induced osteomalacia. Endocr Relat Cancer.
- 320 2011;18
- 3.R53–R77 Yu W.-J., He J.-W., Fu W.-Z., Wang C.,
- Zhang Z.-L. Reports of 17 Chinese patients with tumor-
- induced osteomalacia. J Bone Miner Metab.
- 2017;35(3):298–307.
- 4. Prader A, Illig R, Uehlinger E, Stalder G. Rickets
- following bone tumor. Helv Paediatr Acta. 1959;14:554-
- ₃₂₇ 565.

- 5.Meyer RA, Jr., Meyer MH, Gray RW. Parabiosis
- suggests a humoral factor is involved in X-linked
- 330 hypophosphatemia in mice. J Bone Miner
- 331 Res1989;4:493-500
- 6. Nesbitt T, Coffman TM, Griffiths R, Drezner MK.
- ³³³ Cross transplantation of kidneys in normal and Hyp mice.
- Evidence that the Hyp mouse phenotype is unrelated to
- an intrinsic renal defect. J Clin Invest. 1992;89:1453–
- ₃₃₆ 1459.
- 7. Econs MJ, Drezner MK. Tumor-induced
- osteomalacia—unveiling a new hormone. N Engl J Med.
- 1994;330:1679–1681.
- 8. Shimada T., Mizutani S., Muto T., Yoneya T., Hino R.,
- Takeda S., Takeuchi Y., Fujita T., Fukumoto S.,
- Yamashita T. Cloning and characterization of FGF23 as
- a causative factor of tumor-induced osteomalacia. *Proc*
- Natl Acad Sci U S A. 2001;98(11):6500–6505.
- 9. Habra M.A., Jimenez C., Huang S.C., Cote G.J.,
- Murphy W.A., Jr., Gagel R.F., Hoff A.O. Expression
- analysis of fibroblast growth factor-23, matrix
- extracellular phosphoglycoprotein, secreted frizzled-
- related protein-4, and fibroblast growth factor-7:
- identification of fibroblast growth factor-23 and matrix
- extracellular phosphoglycoprotein as major factors
- involved in tumorinduced osteomalacia. Endocr Pract.
- 353 2008;14(9):1108–1114.
- 10. White K.E., Larsson T.E., Econs M.J. The roles of
- specific genes implicated as circulating factors involved
- in normal and disordered phosphate homeostasis: frizzled
- related protein-4, matrix extracellular
- phosphoglycoprotein, and fibroblast growth factor 23.
- 359 Endocr Rev. 2006;27(3):221–241.

- 11. Jan de Beur S.M. Tumor-induced osteomalacia.
- *JAMA*. 2005;294(10):1260–1267.
- 12. Marie P.J., Glorieux F.H. Relation between
- 363 hypomineralized periosteocytic lesions and bone
- mineralization in vitamin D-resistant rickets. Calcif
- 365 *Tissue Int.* 1983;35(1):443–448.
- 13.Jonsson K.B., Zahradnik R., Larsson T., White K.E.,
- Sugimoto T., Imanishi Y., Yamamoto T., Hampson G.,
- Koshiyama H., Ljunggren Ö., Oba K., Yang I.M.,
- Miyauchi A., Econs M.J., Lavigne J., Jüppner H.
- Fibroblast growth factor 23 in oncogenic osteomalacia
- and X-linked hypophosphatemia. N Engl J Med.
- 372 2003;348(17):1656–1663.
- 14. Scheinman S.J. X-linked hypercalciuric
- nephrolithiasis: clinical syndromes and chloride channel
- mutations. *Kidney Int.* 1998;53(1):3–17.
- 15. Econs M.J., McEnery P.T. Autosomal dominant
- 377 hypophosphatemic rickets/osteomalacia: clinical
- characterization of a novel renal phosphate wasting
- disorder. J Clin Endocrinol Metab. 1997;82(2):674–681.
- 16. Tanner Y Grose RP Dysregulated FGF signalling in
- neoplastic disorders. Semin Cell Dev Biol. 2016; 53:
- ₃₈₂ 126–135.
- ³⁸³ 17 Shimada T, Mizutani S, Muto T, Yoneya T, Hino R,
- Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita
- T. Cloning and characterization of FGF23 as a causative
- factor of tumor-induced osteomalacia. Proceedings of the
- 387 National Academy of Sciences 2001;98(11):6500–6505
- 18. Murer H, Forster I, Biber J. The sodium phosphate
- cotransporter family SLC34. Pflügers Archiv
- 390 2004;447(5):763–767
- 19. Wyman AL, Paradinas FJ, Daly JR.
- 392 Hypophosphataemic osteomalacia

- associated with a malignant tumour of the tibia: report of
- a case. *J Clin Pathol*. 1977;30:328–335.
- 20. Rico H, Fernandez-Miranda E, Sanz J, Gomez-
- Castresana F, Escriba A, Hernandez ER, Krsnik I.
- Oncogenous osteomalacia: a new case secondary to a
- malignant tumor. *Bone*. 1986;7:325–329.
- 21. Harvey JN, Gray C, Belchetz PE. Oncogenous
- osteomalacia and malignancy. Clin Endocrinol (Oxf)
- 401 1992;37:379–382.
- 22. Ogose A, Hotta T, Emura I, Hatano H, Inoue Y,
- 403 Umezu H, Endo N. Recurrent malignant variant of
- 404 phosphaturic mesenchymal tumor with oncogenic
- osteomalacia. Skeletal Radiol. 2001;30:99–103.
- 23. Uramoto N, Furukawa M, Yoshizaki T. Malignant
- 407 phosphaturic mesenchymal tumor, mixed connective
- tissue variant of the tongue. Auris Nasus Larynx.
- 409 2009;36:104–105.
- 24. Cai Q, Hodgson SF, Kao PC, Lennon VA, Klee GG,
- Zinsmiester AR, Kumar R. Brief report: inhibition of
- renal phosphate transport by a tumor product in a patient
- with oncogenic osteomalacia. N Engl J Med.
- 1994;330:1645–1649.
- 25. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y,
- Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K,
- Yamashita T, Fukumoto S. Increased circulatory level of
- biologically active full-length FGF-23 in patients with
- hypophosphatemic rickets/osteomalacia. J Clin
- 420 Endocrinol Metab. 2002;87:4957–4960.
- 26. Takeuchi Y, Suzuki H, Ogura S, Imai R, Yamazaki Y,
- Yamashita T, Miyamoto Y, Okazaki H, Nakamura K,
- Nakahara K, Fukumoto S, Fujita T. Venous sampling for
- fibroblast growth factor-23 confirms preoperative

- diagnosis of tumor-induced osteomalacia. J Clin
- 426 Endocrinol Metab. 2004;89:3979–3982.
- 27. Jiang Y, Xia WB, Xing XP, Silva BC, Li M, Wang O,
- ⁴²⁸ Zhang HB, Li F, Jing HL, Zhong DR, Jin J, Gao P, Zhou
- L, Qi F, Yu W, Bilezikian JP, Meng XW. Tumor-
- induced osteomalacia: an important cause of adult-onset
- hypophosphatemic osteomalacia in China: Report of 39
- cases and review of the literature. J Bone Miner Res.
- 433 2012;27:1967–1975.
- 28. White KE, Jonsson KB, Carn G, Hampson G,
- Spector TD, Mannstadt M, Lorenz-Depiereux B,
- 436 Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom
- TM, Juppner H, Econs MJ. The autosomal dominant
- hypophosphatemic rickets (ADHR) gene is a secreted
- polypeptide overexpressed by tumors that cause
- phosphate wasting. J Clin Endocrinol Metab.
- 441 2001;86:497–500.
- 29. Farrow EG, White KE. Tumor-induced osteomalacia.
- Expert Rev Endocrinol Metab. 2009;4:435–442.
- 30.Hesse E, Moessinger E, Rosenthal H, Laenger F,
- Brabant G, Petrich T, Gratz KF, Bastian L. Oncogenic
- osteomalacia: exact tumor localization by co-registration
- of positron emission and computed tomography. J Bone
- 448 Miner Res. 2007;22:158–162.
- 31. Clunie GP, Fox PE, Stamp TC. Four cases of acquired
- hypophosphataemic ('oncogenic') osteomalacia.
- Problems of diagnosis, treatment and long-term
- management. Rheumatology (Oxford) 2000;39:1415-
- 453 1421.